Computer Animation Middleware Software

Jernej Barbic University of Southern California

Game Engines

- Unity (Unity Technologies)
- Unreal Engine (Epic Games)
- Source, Source2 (Valve)
- CryEngine (Crytek)
- AnvilNext (Ubisoft)
- Frostbite (Electronic Arts)
- (not an exhaustive list)

Character Animation Middleware

 NaturalMotion (real-time motion control using biomechanics) (acquired by Zynga for \$527M in 2014)

IKInema (full-body IK solver)

Physics in games

Custom, in-house software

Off-the shelf libraries

Physics middleware

Physics Engines

- Real-time
 - Video games

- High precision
 - Slow
 - Film
 - Scientific computing

Half-life 2

Real-time physics engines: open source

- Open Dynamics Engine (ODE)
- Bullet
- SOFA
- Vega FEM

and several others

Real-time physics engines: commercial

Havok (Ireland) (Intel => now Microsoft)

Physx (formerly NovodeX, now nVidia)

Vortex (Montreal)

Rubikon (Valve)

Components of physics engine

Collision detection

- Dynamics
 - rigid objects
 - cloth
 - fluids

Fracture

Rigid object contact

- Penalty-based
 - popular with soft/deformable objects

Impulse-based

- Constraint-based
 - expensive, suitable for continuous contact

Real-time simulation

- Speed more important than accuracy
- Objects have two representations:
 - Complex geometry (rendering)
 - Simplified geometry (collision detection, dynamics)

Characters

- Rag-doll physics
 - Rigid objects
- Cloth
- Controller
 - NaturalMotion

Particles (hair)

Physics processing unit (PPU)

 Dedicated physics co-processor

- academic
- Penn State, Univ. of Georgia
- Ageia (Switzerland, 2006)
 - later merged into nVidia
 - use AGEIA's PhysX SDK

GPGPU

- Havok FX
 - was cancelled
- Multi-GPU technology
 - AMD (CrossFireX)
 - nVidia (Scalable Link Interface (SLI))
 - SLI just parallelizes rendering, but can dedicate a specific card just to Physx (similar to AGEIA)
- Increasingly more suitable for physics

Intel Larrabee

Many-core x86

Fusion of CPU and GPU

Suitable for physics

- Was scheduled for 2010, but canceled
- AMD: APU (combo of CPU and GPU)

Havok

Real-time commercial physics engine

 Company bought by Intel (2007) (\$110 million)

- Used in over 300 games
 - Halo
 - Half Life 2

Havok Engine

- Animation
 - Fast playback
 - Real-time blending
 - Inverse kinematics
 - Retargeting

- A
 - path-finding

Havok Engine

- Behavior
 - Character behavior development tool
- Cloth
- Destruction
- Physics

- Collision detection
- Constraints
- Rigid bodies
- Cloth

Uncharted 2: Among thieves

Continuous physics

Vehicle simulation

Human ragdolls

- Character controller
 - simulate enemy characters being hit

- Visual debugger and profiler
- Content creation tools
- Integration with 3rd-party renderers
 - 3D Studio Max
 - Maya

- Extensively optimized (machine code)
- Microsoft Xbox
- Sony PLAYSTATION
- Nintendo Wii
- PC

```
main:
subu
         $sp, $sp, 32
         $ra, 20($sp)
sw
         $fp, 16($sp)
         $fp, $sp, 28
addiu
li
         $v0, 4
         $a0, str
syscall
         $a0, 10
li
ial
         fact
addu
         $a0, $v0, $zero
         $v0.1
li
syscall
         $ra, 20($sp)
lw.
         $fp, 16($sp)
lw
addiu
         $sp, $sp, 32
         $ra
įr
```

Havok Physics is not...

- Simple technology
 - Must invest time to use it

- Black box
 - Must understand the components and recombine them

Commercial renderer

- The "Havok World" (hkpWorld)
- Contains all physical objects in the simulation
- Timesteps the simulation forward in time

Rigid objects

The central object in Havok

hkpRigidObject class

Add to the "world"

Set mass, inertia tensor, etc.

Constraints

Ball and socket

Hinge

Translational

Static constraint definition

Dynamic simulation

Constraints

Collision Detection

Broad phase and narrow phase

Broad phase

Collision Detection

- Narrow phase
- Spheres
- AABBs
- Cylinders
- Capsules
- Compound shapes

Collision Detection: Queries

Closest points between two bodies

Whether two bodies penetrate

 Raycast a point through space and get colliding objects

Continuous Physics

Continuous Physics

• Time of impact:

Continuous Simulation Discrete Simulation Integration (Potential state) Collision detection Solve contact constraints Calculate contacts Integrate to a potential body state REVERSED Integration Collision detection Solve constraints Calculate <u>potential</u> contacts Integrate body state Generate TOI events while(TOI events present) Select involved objects Re-Calculate contact points Re-Integrate Re-Collide Client code to verify or correct: Allowed positions Interpenetration Tunneling