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Terms
Ø What is GPGPU?

l General-Purpose computing on a Graphics 
Processing Unit

l Using graphic hardware for non-graphic 
computations

Ø What is CUDA?
l Parallel computing platform and API by Nvidia
l Compute Unified Device Architecture
l Software architecture for managing data-parallel 

programming
l Introduced in 2007; still actively updated
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Motivation
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CPU vs. GPU
Ø CPU

l Fast caches
l Branching adaptability
l High performance

Ø GPU
l Multiple ALUs
l Fast onboard memory
l High throughput on parallel tasks

• Executes program on each fragment/vertex

Ø CPUs are great for task parallelism
Ø GPUs are great for data parallelism
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CPU vs. GPU - Hardware

Ø More transistors devoted to data processing
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Traditional Graphics Pipeline

Vertex processing
ò

Rasterizer
ò

Fragment processing
ò

Renderer (textures)
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Pixel / Thread Processing
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GPU Architecture
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Processing Element

Ø Processing element = thread processor
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GPU Memory Architecture

Ø Registers
Ø Shared Memory
Ø Local Memory
Ø Global Memory

Cached:
Ø Constant Memory
Ø Texture Memory

Uncached:
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Data-parallel Programming

Ø Think of the GPU as a massively-threaded 
co-processor

Ø Write “kernel” functions that execute on 
the device -- processing multiple data 
elements in parallel

Ø Keep it busy!  [ massive threading
Ø Keep your data close! [ local memory
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Hardware Requirements
Ø CUDA-capable 

video card
Ø Power supply
Ø Cooling
Ø PCI-Express



17

A Gentle Introduction to 
CUDA Programming
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Credits
Ø The code used in this presentation is based 

on code available in:

l the Tutorial on CUDA in Dr. Dobbs Journal

l Andrew Bellenir’s code for matrix multiplication
l Igor Majdandzic’s code for Voronoi diagrams
l NVIDIA’s CUDA programming guide
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Software Requirements/Tools

Ø CUDA device driver
Ø CUDA Toolkit (compiler, CUBLAS, CUFFT)
Ø CUDA Software Development Kit

l Emulator

Ø Occupancy calculator
Ø Visual profiler

Profiling:
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To compute, we need to: 
Ø Allocate memory for the computation 

on the GPU (incl. variables)
Ø Provide input data
Ø Specify the computation to be performed
Ø Read the results from the GPU (output)
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Initially:

CPU Memory GPU Card’s Memory

array
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Allocate Memory in the GPU 
card

Host’s Memory GPU Card’s Memory

array_darray
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Copy content from the host’s memory to the 
GPU card memory

Host’s Memory GPU Card’s Memory

array_darray
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Execute code on the GPU

Host’s Memory GPU Card’s Memory

array_darray

GPU MPs
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Copy results back to the host 
memory

Host’s Memory GPU Card’s Memory

array_darray
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The Kernel
Ø The code to be executed in the 

stream processors on the GPU

Ø Simultaneous execution in 
several (perhaps all) stream 
processors on the GPU

Ø How is every instance of the 
kernel going to know which 
piece of data it is working on?
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Grid and Block Size

l Grid size: The number of blocks
• Can be 1 or 2-dimensional array of blocks

l Each block is divided into threads
• Can be 1, 2, or 3-dimensional array of threads
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Let’s look at a very simple example

Ø The code has been divided into two files:
l simple.c
l simple.cu

Ø simple.c is ordinary code in C
Ø It allocates an array of integers, initializes 

it to values corresponding to the indices in 
the array and prints the array.

Ø It calls a function that modifies the array
Ø The array is printed again.
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simple.c
Ø

#include <stdio.h>
#define SIZEOFARRAY 64 
extern void fillArray(int *a,int size);

/* The main program */
int main(int argc,char *argv[])
{
/* Declare the array that will be modified by the GPU */
int a[SIZEOFARRAY];
int i;
/* Initialize the array to 0s */
for(i=0;i < SIZEOFARRAY;i++) {
a[i]=0;

}
/* Print the initial array */
printf("Initial state of the array:\n");
for(i = 0;i < SIZEOFARRAY;i++) {

printf("%d ",a[i]);
}
printf("\n");
/* Call the function that will in turn call the function in the GPU that will fill 
the array */
fillArray(a,SIZEOFARRAY);
/* Now print the array after calling fillArray */
printf("Final state of the array:\n");
for(i = 0;i < SIZEOFARRAY;i++) {
printf("%d ",a[i]);

}
printf("\n");
return 0;
}
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simple.cu

Ø simple.cu contains two functions
l fillArray(): A function that will be executed on 

the host and which takes care of:
• Allocating variables in the global GPU memory
• Copying the array from the host to the GPU memory
• Setting the grid and block sizes
• Invoking the kernel that is executed on the GPU
• Copying the values back to the host memory
• Freeing the GPU memory
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fillArray (part 1)
#define BLOCK_SIZE 32
extern "C" void fillArray(int *array, int arraySize)
{

int * array_d;
cudaError_t result; 

/* cudaMalloc allocates space in GPU memory */
result = 
cudaMalloc((void**)&array_d,sizeof(int)*arraySize);

/* copy the CPU array into the GPU array_d */
result = cudaMemcpy(array_d,array,sizeof(int)*arraySize,

cudaMemcpyHostToDevice);
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fillArray (part 2)
/* Indicate block size */
dim3 dimblock(BLOCK_SIZE);
/* Indicate grid size */
dim3 dimgrid(arraySize / BLOCK_SIZE);

/* Call the kernel */
cu_fillArray<<<dimgrid,dimblock>>>(array_d);

/* Copy the results from GPU back to CPU memory */
result = 
cudaMemcpy(array,array_d,sizeof(int)*arraySize,cudaMemcpyDevice
ToHost);

/* Release the GPU memory */
cudaFree(array_d);

}
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simple.cu (cont.)
Ø The other function in simple.cu is cu_fillArray():

l This is the GPU kernel 

l Identified by the keyword: __global__

l Built-in variables:
• blockIdx.x  : block index within the grid
• threadIdx.x: thread index within the block
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cu_fillArray
__global__ void cu_fillArray(int * array_d)
{

int x;
x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
array_d[x] = x;

}

__global__ void cu_addIntegers(int * array_d1, int * array_d2)
{

int x;
x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
array_d1[x] += array_d2[x];

}
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To compile:

Ø nvcc simple.c simple.cu –o simple
Ø The compiler generates the code for both 

the host and the GPU
Ø Demo on cuda.littlefe.net …
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In the GPU:

Processing Elements

Array Elements

Thread 
1

Thread 
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Thread 
3

Thread 
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Thread 
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Thread 
2

Thread 
3

Thread 
0

Block 0 Block 1
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Another Example: saxpy
Ø SAXPY (Scalar Alpha X Plus Y)

l A common operation in linear algebra
Ø CUDA: loop iteration ð thread



42

Traditional Sequential Code
void saxpy_serial(int n, 

float alpha,
float *x,
float *y)

{
for(int i = 0;i < n;i++)

y[i] = alpha*x[i] + y[i];
}
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CUDA Code
__global__ void saxpy_parallel(int n,

float alpha,
float *x,
float *y) {

int i = blockIdx.x*blockDim.x+threadIdx.x;
if (i<n)

y[i] = alpha*x[i] + y[i];
}
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“Warps”
Ø Each block is split into SIMD groups of threads 

called "warps". 

Ø Each warp contains the same number of threads, 
called the "warp size”
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Keeping multiprocessors in mind…
Ø Each multiprocessor can process multiple blocks at a 

time. 

Ø How many depends on the number of registers per 
thread and how much shared memory per block is 
required by a given kernel. 

Ø If a block is too large, it will not fit into the resources of 
an MP.
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Performance Tip: Block Size

Ø Critical for performance
Ø Recommended value is 192 or 256
Ø Maximum value is 512
Ø Should be a multiple of 32 since this is the warp 

size for Series 8 GPUs and thus the native 
execution size for multiprocessors

Ø Limited by number of registers on the MP
Ø Series 8 GPU MPs have 8192 registers which 

are shared between all the threads on an MP
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Performance Tip: 
Grid Size (number of blocks)

Ø Recommended value is at least 100, but 1000 would 
scale for many generations of hardware

Ø Actual value depends on problem size

Ø It should be a multiple of the number of MPs for an even 
distribution of work (not a requirement though)

Ø Example: 24 blocks 
l Grid will work efficiently on Series 8 (12 MPs), but it will waste 

resources on new GPUs with 32MPs
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Example: Tesla P100

Ø Launched in 2016

Ø “Pascal” architecture (successors: Volta, Turing)

Ø Double-precision performance: 4.7 TeraFLOPS

Ø Single-precision performance: 9.3 TeraFLOPS

Ø GPU Memory: 16 GB
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Example: Tesla P100

Ø Number of Multiprocessors (MPs): 56
Ø Number of Cuda Cores per MP: 64
Ø Total number of Cuda Cores: 3584
Ø #Cuda Cores = #number of floating point 

instructions that can be processed per cycle
Ø MPs can run multiple threads per core 

simultaneously (similar to hyperthreading on CPU)
Ø Hence, #threads can be larger than #cores
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Memory Alignment

Ø Memory access faster if data aligned at 64 
byte boundaries

Ø Hence, allocate 2D arrays so that every 
row starts at a 64-byte boundary 

Ø Tedious for a programmer
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Allocating 2D arrays with “pitch”

Ø CUDA offers special versions of:

l Memory allocation of 2D arrays so that every row 
is padded (if necessary):  cudaMallocPitch()

l Memory copy operations that take into account the 
pitch: cudaMemcpy2D()
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Pitch

Rows

Columns

Pitch

Padding
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Dividing the work by blocks:

Rows

Columns

Pitch

Block 0

Block 1

Block 2
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Watchdog timer
Ø OS may force programs using the GPU to time out if 

running too long

Ø Exceeding the limit can cause CUDA program 
failure.

Ø Possible solution: run CUDA on a GPU that is NOT 
attached to a display.
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Resources on line

Ø http://www.acmqueue.org/modules.php?name=

Content&pa=showpage&pid=532

Ø http://www.ddj.com/hpc-high-performance-

computing/207200659

Ø http://www.nvidia.com/object/cuda_home.html#

Ø http://www.nvidia.com/object/cuda_learn.html

Ø “Computation of Voronoi diagrams using a 

graphics processing unit” by Igor Majdandzic et

al. available through IEEE Digital Library, DOI: 

10.1109/EIT.2008.4554342 

http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=532
http://www.ddj.com/hpc-high-performance-computing/207200659
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_learn.html

