CUDA: Introduction

Christian Trefftz / Greg Wolffe
Grand Valley State University

Supercomputing 2008
Education Program

(modifications by Jernej Barbic, 2008-2019)

Terms
> What is GPGPU?

o General-Purpose computing on a Graphics
Processing Unit

o Using graphic hardware for non-graphic

computations

> VWhat is CUDA?

o Parallel computing platform and API by Nvidia
o« Compute Unified Device Architecture

o SoOftware architecture for managing data-parallel
programming

Introduced in 2007; still actively updated

Motivation

Theoretical Peak Performance, Single Precision

GFLOP/sec
)
w

INTEL Xeon CPUs +. 7
NVIDIA GeForce GPUs —Jil— °
AMD Radeon GPUs ——{)—
INTEL Xeon Phis =g

1 L

End of Year

2014 2016

Motivation

s Nvidia GPUs Intel CPUs

Motivation

cpu time vs gpu time

—»==cpu time
— ¥ = gpu time

z
—
=
o
-
-
[
Q
b
Q

|
500 1000 1500 2000 2500
iImage size [n x n]

CPU vs. GPU

> CPU

o Fast caches
o Branching adaptability
o High performance

> GPU

o Multiple ALUs
o Fast onboard memory

o High throughput on parallel tasks
Executes program on each fragment/vertex

> CPUs are great for task parallelism
> GPUs are great for data parallelism

CPU vs. GPU - Hardware

> More transistors devoted to data processing

Traditional Graphics Pipeline

Vertex processing
J
Rasterizer
J
Fragment processing

4
Renderer (textures)

Pixel / Thread Processing

O

Input Registers

Fragment Program

Thread Number

Texture

Constants

Registers

Output Registers

O

Thread Program

Parallel Data Cache

Texture

Constants

r)

Registers

Global Memory

GPU Architecture

Input Asembler

Thread Execon Manager o,
¥ 4 ¥

L] L
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
+ | 2
|

11 l1 ?1 i

Load/store

Global Memory

Processing Element

Thread Processors

A

> Processing element = thread processor

GPU Memory Architecture

Uncached:

> Registers

> Shared Memory
> Local Memory
> Global Memory

Cached.:
> Constant Memory

> lexture Memory

Data-parallel Programming

> Think of the GPU as a massively-threaded
CO-processor

> Write “kernel” functions that execute on
the device -- processing multiple data
elements in parallel

> Keep It busy! = massive threading
> Keep your data close! = local memory

Hardware Requirements

> CUDA-capable
video card

> Power supply
> Cooling
> PCIl-Express

A Gentle Introduction to
CUDA Programming

Credits

> I'he code used In this presentation Is based
on code available In:
o the Tutorial on CUDA in Dr. Dobbs Journal
o Andrew Bellenir's code for matrix multiplication

o Igor Majdandzic’s code for VVoronol diagrams
o NVIDIA's CUDA programming guide

Software Requirements/Tools

> C
> C
> C

st

st

s

DA device driver
DA Toolkit (compiler, CUBLAS, CUFFT)
DA Software Development Kit

o Emulator

Profiling:

> Occupancy calculator
> Visual profiler

To compute, we need to:

> Allocate memory for the computation
on the GPU (incl. variables)

> Provide input data
> Specify the computation to be performed
> Read the results from the GPU (output)

Initially:

array

CPU Memory GPU Card’s Memory

Allocate Memory in the GPU
card

array array_d

Host’s Memory GPU Card’s Memory

Copy content from the host's memory to the
GPU card memory

array array _d

Host’s Memory GPU Card’s Memory

Execute code on the GPU

GPU MPs

array array_d

Host’s Memory GPU Card’s Memory

Copy results back to the host
Memory

array array _d

Host’s Memory GPU Card’s Memory

The Kernel

> The code to be executed In the
stream processors on the GPU

Simultaneous execution in
several (perhaps all) stream

processors on the GPU

How is every instance of the
kernel going to know which
piece of data it is working on?

Grid and Block Size

o Grid size: The number of blocks
Can be 1 or 2-dimensional array of blocks

o Each block is divided into threads
Can be 1, 2, or 3-dimensional array of threads

Let’s look at a very simple example

> Ihe code has been divided into two files:
o SIMple.c
o SImple.cu

> simple.c Is ordinary code in C

> It allocates an array of integers, Initializes
It to values corresponding to the indices Iin
the array and prints the array.

> It calls a function that modifies the array.
> I'he array Is printed again.

simple.c

#include <stdio.h>
#define SIZEOFARRAY 64
extern void fillArray(int *a,int size);

/* The main program */
int main (int argc,char *argvl|[])
{
/* Declare the array that will be modified by the GPU */
int a[SIZEOFARRAY | ;
int i;
/* Initialize the array to 0s */
for (1=0;1 < SIZEOFARRAY;i++) {
afi1]=0;
}

/* Print the initial array */
printf ("Initial state of the array:\n");
for(i = 0;1 < SIZEOFARRAY;i++) {

printf ("sd ",ali]) s

t

orintf ("\n") ;
/* Call the function that will in turn call the function in the GPU that will f£ill
the array */

fillArray (a, SIZEOFARRAY) ;

/* Now print the array after calling fillArray */

printf ("Final state of the array:\n");

for(i = 0;1 < SIZEOEFEARRAY;i++) {

printf ("sd ",ali]) s

t
printf ("\n") ;
return 0;

}

simple.cu

> simple.cu contains two functions

o fillArray(): A function that will be executed on
the host and which takes care of:
Allocating variables in the global GPU memory
Copying the array from the host to the GPU memory
Setting the grid and block sizes
Invoking the kernel that is executed on the GPU

Copying the values back to the host memory.
Freeing the GPU memory

fillArray (part 1)

#define BLOCK SIZE 32
extern "C" void fillArray(int *array, 1nt arraySize)

{
int * array d;
cudakError t result;

/* cudaMalloc allocates space in GPU memory */

result =
cudaMalloc ((void**) &array d,sizeof (int) *arraySize) ;

/* copy the CPU array into the GPU array d */
result = cudaMemcpy (array d,array,sizeof (int) *arraySize,
cudaMemcpyHostToDevice) ;

fillArray (part 2)

/* Indicate block size */

dim3 dimblock (BLOCK SIZE) ;
/* Indicate grid size */
dim3 dimgrid(arraySize / BLOCK SIZE) ;

/* Call the kernel */
cu fillArray<<<dimgrid,dimblock>>> (array d) ;

/* Copy the results from GPU back to CPU memory */

result =
cudaMemcpy (array,array d,sizeof (int) *arraySize, cudaMemcpyDevice

ToHost) ;

/* Release the GPU memory */
cudaFree (array d) ;

simple.cu (cont.)

> I'he other function in simple.cu is cu_fillArray():
o [his is the GPU kernel
o ldentified by the keyword: global

o Built-in variables:
blockldx.x : block index within the grid
threadldx.x: thread index within the block

cu_fillArray

__global wvoid cu fillArray(int * array d)
{

int x;
= blockIdx.x * BLOCK SIZE + threadIdx.x;
array d[x] = x;

__global voild cu addIntegers (int * array dl, int * array d2)
int x;

= blockIdx.x * BLOCK SIZE + threadIldx.x;
array dl[x] += array d2[x];

To compile:

> nvcce simple.c simple.cu —o simple

> I'he compiler generates the code for both
the host and the GPU

> Demo on cuda.littlefe.net ...

In the GPU:

Processing Elements

Thread Thread Thread Thread | Thread Thread Thread Thread

Array Elements

Block 0 Block 1

Another Example: saxpy

> SAXPY (Scalar Alpha X Plus Y)

o A common operation in linear algebra
> CUDA: loop Iteration = thread

Traditional Sequential Code

vold sSaxpy serial (1nt n,
rloat alpha,
float *x,

rfloat *vy)

for(int 1 = 0;1 < n;it++)

yli] = alpha*x[i] + yli];

CUDA Code

__global wvoid saxpy parallel (int n,
float alpha,
float *x,
float *y) {
int 1 = blockIdx.x*blockDim.x+threadldx.x;
1f (i<n)

y[1i] = alpha*x[1] + y[1];

“Wa rpS”

> Each block is split into SIMD groups of threads
called "warps".

> Each warp contains the same number of threads,
called the "warp size”

threads

Block 1 Block 2 Block 3 Block 4

Multi-processor 1

Keeping multiprocessors in mind...

> Each multiprocessor can process multiple blocks at a
time.

> How many depends on the number of registers per
thread and how much shared memory per block is
required by a given kernel.

> If a block is too large, it will not fit into the resources of
an MP.

Performance Tip: Block Size

> Critical for performance
> Recommended value is 192 or 256
> Maximum value is 512

> Should be a multiple of 32 since this is the warp
size for Series 8 GPUs and thus the native
execution size for multiprocessors

> Limited by number of registers on the MP

> Series 8 GPU NMPs have 8192 registers which
are shared between all the threads on an MP.

Performance Tip:
Grid Size (hnumber of blocks)

> Recommended value is at least 100, but 1000 would
scale for many generations of hardware

> Actual value depends on problem size

> It should be a multiple of the number of MPs for an even
distribution of work (not a requirement though)

> Example: 24 blocks

o Grid will work efficiently on Series 8 (12 MPs), but it will waste
resources on new GPUs with 32MPs

Example: Tesla P100

> Launched in 2016

> "Pascal” architecture (successors: Volta, Turing)
> Double-precision performance: 4.7 TeraFLOPS
> Single-precision performance: 9.3 TeraFLOPS

> GPU Memory: 16 GB

Example: Tesla P100

> Number of Multiprocessors (MPs): 56
> Number of Cuda Cores per MP: 64

> [otal number of Cuda Cores: 3584

> #Cuda Cores = #number of floating point
Instructions that can be processed per cycle

> MPs can run multiple threads per core
simultaneously (similar to hyperthreading on CPU)

> Hence, #threads can be larger than #cores

Memory Alignment

> Memory access faster if data aligned at 64
byte boundaries

> Hence, allocate 2D arrays so that every
row starts at a 64-byte boundary

> T'edious for a programmer

Allocating 2D arrays with “pitch”

> CUDA offers special versions of:

o Memory allocation of 2D arrays so that every row
IS padded (if necessary): cudaMallocPitch()

o Memory copy operations that take into account the
pitch: cudalMlemcpy2D()

Pitch

Columns

Dividing the work by blocks:

.

Columns

.
.

]0)

Watchdog timer

> OS may force programs using the GPU to time out If
running too long

> Exceeding the limit can cause CUDA program
failure.

> Possible solution: run CUDA on a GPU that is NOT
attached to a display.

Resources on line

> hitp://www.acmqueue.org/modules.php?name=

Content&pa=showpage&pid=532
> http://www.dd].com/hpc-high-periormance-
computing/207200659
> http://www.nvidia.com/object/cuda home.html#
> http://www.nvidia.com/object/cuda_learn.hitml
» Computation of Voronoi diagrams using a
graphics processing unit® by Igor Majdandzic et
al. available through IEEE Digital Library, DOI:
10.1109/EIT.2008.4554 34 2

http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=532
http://www.ddj.com/hpc-high-performance-computing/207200659
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_learn.html

