
1

1

Jernej Barbic
University of Southern California

CSCI 520 Computer Animation and Simulation

Quaternions and Rotations

2

Rotations

• Very important in computer animation
and robotics

• Joint angles, rigid body orientations,
camera parameters

• 2D or 3D

3

Rotations in Three Dimensions

• Orthogonal matrices:

RRT = RTR = I
det(R) = 1

4

Representing Rotations in 3D

• Rotations in 3D have essentially three
parameters

• Axis + angle (2 DOFs + 1DOFs)
– How to represent the axis?

Longitude / lattitude have singularities

• 3x3 matrix
– 9 entries (redundant)

5

Representing Rotations in 3D

• Euler angles
– roll, pitch, yaw
– no redundancy (good)
– gimbal lock singularities

• Quaternions
– generally considered the “best” representation
– redundant (4 values), but only by one DOF (not severe)
– stable interpolations of rotations possible

Source: Wikipedia

6

Euler Angles

1. Yaw
rotate around y-axis

2. Pitch
rotate around (rotated) x-axis

3. Roll
rotate around (rotated) y-axis

Source: Wikipedia

2

7

Gimbal Lock

Source: Wikipedia

When all three gimbals
are lined up (in the same
plane), the system can only
move in two dimensions
from this configuration,
not three, and is
in gimbal lock.

8

Gimbal Lock

Source: Wikipedia

When all three gimbals
are lined up (in the same
plane), the system can only
move in two dimensions
from this configuration,
not three, and is
in gimbal lock.

9

Choice of rotation axis sequence
for Euler Angles

• 12 choices:
XYX, XYZ, XZX, XZY,
YXY, YXZ, YZX, YZY,
ZXY, ZXZ, ZYX, ZYZ

• Each choice can use static axes, or
rotated axes, so we have
a total of 24 Euler Angle versions!

10

Example: XYZ Euler Angles

• First rotate around X by angle q1,
then around Y by angle q2,
then around Z by angle q3 .

• Used in CMU Motion Capture
Database AMC files

• Rotation matrix is:

11

Outline

• Rotations
• Quaternions
• Quaternion Interpolation

12

Quaternions

• Generalization of complex numbers

• Three imaginary numbers: i, j, k

i2 = -1, j2 = -1, k2 = -1,
ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j

• q = s + x i + y j + z k, s,x,y,z are scalars

3

13

Quaternions
• Invented by Hamilton in 1843 in Dublin, Ireland

• Here as he walked by
on the 16th of October
1843 Sir William Rowan
Hamilton in a flash of
genius discovered the
fundamental formula for
quaternion multiplication
i2 = j2 = k2 = i j k = −1
& cut it on a stone of this bridge.

Source: Wikipedia

14

Quaternions

• Quaternions are not commutative!

q1 q2 ¹ q2 q1

• However, the following hold:

(q1 q2) q3 = q1 (q2 q3)
(q1 + q2) q3 = q1 q3 + q2 q3
q1 (q2 + q3) = q1 q2 + q1 q3
a (q1 + q2) = a q1 + a q2 (a is scalar)
(aq1) q2 = a (q1q2) = q1 (aq2) (a is scalar)

• I.e., all usual manipulations are valid, except cannot
reverse multiplication order.

15

Quaternions

• Exercise: multiply two quaternions

(2 - i + j + 3k) (-1 + i + 4j - 2k) = ...

16

Quaternion Properties

• q = s + x i + y j + z k

• Norm: |q|2 = s2 + x2 + y2 + z2

• Conjugate quaternion: q = s - x i - y j - z k

• Inverse quaternion: q-1 = q / |q|2

• Unit quaternion: |q| =1

• Inverse of unit quaternion: q-1 = q

17

Quaternions and Rotations

• Rotations are represented by unit quaternions

• q = s + x i + y j + z k

s2 + x2 + y2 + z2 = 1

• Unit quaternion sphere
(unit sphere in 4D)

Source:
Wolfram Research

unit sphere
in 4D

18

Rotations to Unit Quaternions

• Let (unit) rotation axis be [ux, uy, uz], and angle q

• Corresponding quaternion is

q = cos(q/2) +
sin(q/2) ux i + sin(q/2) uy j + sin(q/2) uz k

• Composition of rotations q1 and q2 equals q = q2 q1

• 3D rotations do not commute!

4

19

Unit Quaternions to Rotations

• Let v be a (3-dim) vector and let q be a unit quaternion

• Then, the corresponding rotation transforms
vector v to q v q-1

(v is a quaternion with scalar part equaling 0,
and vector part equaling v)

R =

For q = a + b i + c j + d k

20

Quaternions

• Quaternions q and -q give the same rotation!

• Other than this, the relationship between
rotations and quaternions is unique

21

Outline

• Rotations
• Quaternions
• Quaternion Interpolation

22

Quaternion Interpolation

• Better results than
Euler angles

• A quaternion is a point
on the 4-D unit sphere

• Interpolating rotations
corresponds to curves
on the 4-D sphere

Source:
Wolfram Research

23

Spherical Linear intERPolation
(SLERPing)

• Interpolate along the great
circle on the 4-D unit sphere

• Move with constant angular
velocity along the great circle
between the two points

• Any rotation is given by
two quaternions, so there are two
SLERP choices; pick the shortest

San Francisco
to London

24

SLERP

• u varies from 0 to 1

• qm = sm + xm i + ym j + zm k , for m = 1,2

• The above formula automatically produces a

unit quaternion (not obvious, but true).

5

25

Interpolating more than two rotations

• Simplest approach:
connect consecutive
quaternions using SLERP

• Continuous rotations

• Angular velocity
not smooth at the joints

26

Interpolation with smooth velocities

• Use splines on the
unit quaternion sphere

• Reference: Ken Shoemake
in the SIGGRAPH '85
proceedings (Computer
Graphics, V. 19, No. 3,
P. 245)

27

Bezier Spline
• Four control points

– points P1 and P4 are on the curve
– points P2 and P3 are off the curve;

they give curve tangents at beginning and end

28

Bezier Spline

• p(0) = P1, p(1) = P4,

• p'(0) = 3(P2-P1)
• p'(1) = 3(P4 - P3)

• Convex Hull property:
curve contained within the
convex hull of control points

• Scale factor “3” is chosen to
make “velocity” approximately
constant

29

The Bezier Spline Formula

Bezier basis Bezier
control matrix

• [x,y,z] is point on spline corresponding to u
• u varies from 0 to 1
• P1 = [x1 y1 z1] P2 = [x2 y2 z2]
• P3 = [x3 y3 z3] P4 = [x4 y4 z4]

30

DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines.
Similar to Horner rule for polynomials.
Can be extended to interpolations of 3D rotations.

6

31

DeCasteljau on Quaternion Sphere

Given t, apply DeCasteljau construction:

Q0 = Slerp(P0,P1,t) Q1 = Slerp(P1,P2,t)
Q2 = Slerp(P2,P3,t) R0 = Slerp(Q0,Q1,t)
R1 = Slerp(Q1,Q2,t) P(t)= Slerp(R0,R1,t) 32

Bezier Control Points for Quaternions

• Given quaternions qn-1, qn , qn+1 , form:
an = Slerp(Slerp(qn-1, qn, 2.0), qn+1, 0.5)
an = Slerp(qn , an , 1.0 / 3)
bn = Slerp(qn , an , -1.0 / 3)

33

Interpolating Many Rotations on
Quaternion Sphere
• Given quaternions q1, ..., qN ,

form Bezier spline control points (previous slide)

• Spline 1: q1, a1, b2, q2

• Spline 2: q2, a2, b3, q3 etc.

• Need a1 and bN; can set
a1 = Slerp(q1, Slerp(q3, q2, 2.0), 1.0 / 3)
bN = Slerp(qN, Slerp(qN-2, qN-1, 2.0), 1.0 / 3)

• To evaluate a spline at any t, use DeCasteljau
construction

