
1

Jernej Barbic
University of Southern California

CSCI 520 Computer Animation and Simulation

Quaternions and Rotations

2

Rotations

• Very important in computer animation
and robotics

• Joint angles, rigid body orientations,
camera parameters

• 2D or 3D

3

Rotations in Three Dimensions

• Orthogonal matrices:

RRT = RTR = I
det(R) = 1

4

Representing Rotations in 3D

• Rotations in 3D have essentially three
parameters

• Axis + angle (2 DOFs + 1DOFs)
– How to represent the axis?

Longitude / lattitude have singularities

• 3x3 matrix
– 9 entries (redundant)

5

Representing Rotations in 3D
• Euler angles

– roll, pitch, yaw
– no redundancy (good)
– gimbal lock singularities

• Quaternions
– generally considered the “best” representation
– redundant (4 values), but only by one DOF (not severe)
– stable interpolations of rotations possible

Source: Wikipedia

6

Euler Angles

1. Yaw
rotate around y-axis

2. Pitch
rotate around (rotated) x-axis

3. Roll
rotate around (rotated) y-axis

Source: Wikipedia

7

Gimbal Lock

Source: Wikipedia

When all three gimbals
are lined up (in the same
plane), the system can only
move in two dimensions
from this configuration,
not three, and is
in gimbal lock.

8

Gimbal Lock

Source: Wikipedia

When all three gimbals
are lined up (in the same
plane), the system can only
move in two dimensions
from this configuration,
not three, and is
in gimbal lock.

9

Choice of rotation axis sequence
for Euler Angles

• 12 choices:
XYX, XYZ, XZX, XZY,
YXY, YXZ, YZX, YZY,
ZXY, ZXZ, ZYX, ZYZ

• Each choice can use static axes, or
rotated axes, so we have
a total of 24 Euler Angle versions!

10

Example: XYZ Euler Angles
• First rotate around X by angle q1,

then around Y by angle q2,
then around Z by angle q3 .

• Used in CMU Motion Capture
Database AMC files

• Rotation matrix is:

11

Outline

• Rotations
• Quaternions
• Quaternion Interpolation

12

Quaternions

• Generalization of complex numbers

• Three imaginary numbers: i, j, k

i2 = -1, j2 = -1, k2 = -1,
ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j

• q = s + x i + y j + z k, s,x,y,z are scalars

13

Quaternions
• Invented by Hamilton in 1843 in Dublin, Ireland

• Here as he walked by
on the 16th of October
1843 Sir William Rowan
Hamilton in a flash of
genius discovered the
fundamental formula for
quaternion multiplication
i2 = j2 = k2 = i j k = −1
& cut it on a stone of this bridge.

Source: Wikipedia

14

Quaternions
• Quaternions are not commutative!

q1 q2 ¹ q2 q1

• However, the following hold:

(q1 q2) q3 = q1 (q2 q3)
(q1 + q2) q3 = q1 q3 + q2 q3
q1 (q2 + q3) = q1 q2 + q1 q3
a (q1 + q2) = a q1 + a q2 (a is scalar)
(aq1) q2 = a (q1q2) = q1 (aq2) (a is scalar)

• I.e., all usual manipulations are valid, except cannot
reverse multiplication order.

15

Quaternions

• Exercise: multiply two quaternions

(2 - i + j + 3k) (-1 + i + 4j - 2k) = ...

16

Quaternion Properties

• q = s + x i + y j + z k

• Norm: |q|2 = s2 + x2 + y2 + z2

• Conjugate quaternion: q = s - x i - y j - z k

• Inverse quaternion: q-1 = q / |q|2

• Unit quaternion: |q| =1

• Inverse of unit quaternion: q-1 = q

17

Quaternions and Rotations

• Rotations are represented by unit quaternions

• q = s + x i + y j + z k

s2 + x2 + y2 + z2 = 1

• Unit quaternion sphere
(unit sphere in 4D)

Source:
Wolfram Research

unit sphere
in 4D

18

Rotations to Unit Quaternions

• Let (unit) rotation axis be [ux, uy, uz], and angle q

• Corresponding quaternion is

q = cos(q/2) +
sin(q/2) ux i + sin(q/2) uy j + sin(q/2) uz k

• Composition of rotations q1 and q2 equals q = q2 q1

• 3D rotations do not commute!

19

Unit Quaternions to Rotations
• Let v be a (3-dim) vector and let q be a unit quaternion

• Then, the corresponding rotation transforms
vector v to q v q-1

(v is a quaternion with scalar part equaling 0,
and vector part equaling v)

R =

For q = a + b i + c j + d k

20

Quaternions

• Quaternions q and -q give the same rotation!

• Other than this, the relationship between
rotations and quaternions is unique

21

Outline

• Rotations
• Quaternions
• Quaternion Interpolation

22

Quaternion Interpolation

• Better results than
Euler angles

• A quaternion is a point
on the 4-D unit sphere

• Interpolating rotations
corresponds to curves
on the 4-D sphere

Source:
Wolfram Research

23

Spherical Linear intERPolation
(SLERPing)

• Interpolate along the great
circle on the 4-D unit sphere

• Move with constant angular
velocity along the great circle
between the two points

• Any rotation is given by
two quaternions, so there are two
SLERP choices; pick the shortest

San Francisco
to London

24

SLERP

• u varies from 0 to 1

• qm = sm + xm i + ym j + zm k , for m = 1,2

• The above formula automatically produces a

unit quaternion (not obvious, but true).

25

Interpolating more than two rotations

• Simplest approach:
connect consecutive
quaternions using SLERP

• Continuous rotations

• Angular velocity
not smooth at the joints

26

Interpolation with smooth velocities

• Use splines on the
unit quaternion sphere

• Reference: Ken Shoemake
in the SIGGRAPH '85
proceedings (Computer
Graphics, V. 19, No. 3,
P. 245)

27

Bezier Spline
• Four control points

– points P1 and P4 are on the curve
– points P2 and P3 are off the curve;

they give curve tangents at beginning and end

28

Bezier Spline

• p(0) = P1, p(1) = P4,

• p'(0) = 3(P2-P1)

• p'(1) = 3(P4 - P3)

• Convex Hull property:
curve contained within the
convex hull of control points

• Scale factor “3” is chosen to
make “velocity” approximately
constant

29

The Bezier Spline Formula

Bezier basis Bezier
control matrix

• [x,y,z] is point on spline corresponding to u
• u varies from 0 to 1
• P1 = [x1 y1 z1] P2 = [x2 y2 z2]
• P3 = [x3 y3 z3] P4 = [x4 y4 z4]

30

DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines.
Similar to Horner rule for polynomials.
Can be extended to interpolations of 3D rotations.

31

DeCasteljau on Quaternion Sphere

Given t, apply DeCasteljau construction:

Q0 = Slerp(P0,P1,t) Q1 = Slerp(P1,P2,t)
Q2 = Slerp(P2,P3,t) R0 = Slerp(Q0,Q1,t)
R1 = Slerp(Q1,Q2,t) P(t)= Slerp(R0,R1,t)

32

Bezier Control Points for Quaternions
• Given quaternions qn-1, qn , qn+1 , form:

an = Slerp(Slerp(qn-1, qn, 2.0), qn+1, 0.5)
an = Slerp(qn , an , 1.0 / 3)
bn = Slerp(qn , an , -1.0 / 3)

33

Interpolating Many Rotations on
Quaternion Sphere
• Given quaternions q1, ..., qN ,

form Bezier spline control points (previous slide)

• Spline 1: q1, a1, b2, q2
• Spline 2: q2, a2, b3, q3 etc.

• Need a1 and bN; can set
a1 = Slerp(q1, Slerp(q3, q2, 2.0), 1.0 / 3)
bN = Slerp(qN, Slerp(qN-2, qN-1, 2.0), 1.0 / 3)

• To evaluate a spline at any t, use DeCasteljau
construction

