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The jello cube

Undeformed cube Deformed cube

* The jello cube is elastic,

« Can be bent, stretched, squeezed, ...,

* Without external forces, it eventually
restores to the original shape.
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Mass-Spring System

Several mass points
Connected to each other by springs

Springs expand and stretch, exerting force on the
mass points

Very often used to simulate cloth
Examples:




Newton’s Laws

* Newton’s 2nd law:

* Tells you how to compute acceleration, given the
force and mass

 Newton’s 3rd law: If object A exerts a force F on
object B, then object B is at the same time exerting
force -F on A.




Single spring

Obeys the Hook’s law:
F=k(x-Xp)

X, = rest length

k = spring elasticity

(aka stiffness)

For x<x,, spring

wants to extend

For x>x,, spring

wants to contract




Hook’s law Iin 3D

Assume A and B two mass points connected with
a spring.

Let L be the vector pointing from B to A
Let R be the spring rest length
Then, the elastic force exerted on A is:




Damping

« Springs are not completely elastic

 They absorb some of the energy and tend to
decrease the velocity of the mass points attached
to them

 Damping force depends on the velocity:

\J/
Yy

rest length F )
F

Damping

* k, = damping coefficient
* k, different than ki, !
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Damping in 3D

« Assume A and B two mass points connected with
a spring.

* Let L be the vector pointing from B to A
* Then, the damping force exerted on A is:

* Here v, and vg are velocities of points A and B
 Damping force always OPPOSES the motion




A network of springs

 Every mass point connected to
some other points by springs

« Springs exert forces
on mass points
— Hook’s force
— Damping force

* Other forces
— External force field
» Gravity
» Electrical or magnetic force field
— Collision force




How to organize the network
(for jello cube)

To obtain stability, must organize the network of
springs in some clever way

Jello cube is a 8x8x8 mass point network
512 discrete points

Must somehow connect them with springs
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Solution:
Structural, Shear and Bend Springs

* There will be three

types of springs: ‘ ‘ ‘ W'r o

— Structural
— Shear Structural

— Bend . Springs
' has i l 3 ®

* Each has its r Shear
own function P Springs

< e Band
' ' , Springs




Structural springs

Connect every node to its 6 direct neighbours

Node (i,j,k) connected to
— (i+1,j,k), (i-1,j,k), (i,j-1,k), (i,j+1,k), (i,j,k-1), (i,j,k+1)
(for surface nodes, some of these neighbors might not exists)
Structural springs establish the basic structure
of the jello cube

The picture shows structural
springs for the jello cube.
Only springs connecting
two surface vertices are
shown.




Shear springs A 3D cube

(if you can’t see it
immediately, keep trying)
Disallow excessive shearing
Prevent the cube from distortin%
Every node (i,j,k)
connected to its diagonal
neighbors ° \
Structural springs = white
Shear springs = red

7< Shear spring (red)
,, resists stretching
LA

and thus prevents
shearing

O
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Bend springs

Prevent the cube from folding over
Every node connected

to its second neighbor

in every direction \
(6 connections per node,

unless surface node)

white=structural springs

yellow=bend springs

(shown for a single node /
only)

T~ /'< Bend spring (yellow)

resists contracting
and thus prevents
bending
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External force field

* |If there is an external force field, add that force to
the sum of all the forces on a mass point

— — —_

Eoml = L Hook + F amping T F force field

 There is one such equation
for every mass point and
for every moment in time




Collision detection

 The movement of the jello cube is limited to a
bounding box

« Collision detection easy:
— Check all the vertices if any of them is outside the box

* Inclined plane:
— Equation:

F(x,y,z)=ax+by+cz+d =0

— Initially, all points on the same side of the plane

— F(x,y,z)>0 on one side of the plane and F(x,y,z)<0 on the other
— Can check all the vertices for this condition




Collision response

When collision happens, must perform some action
to prevent the object penetrating even deeper

Object should bounce away from the colliding object
Some energy is usually lost during the collision
Several ways to handle collision response

We will use the penalty method




The penalty method

 When collision happens, put an artificial collision
spring at the point of collision, which will push
the object backwards and away
from the colliding object

« Collision springs have elasticity and damping,
just like ordinary springs




Penalty force

 Direction is normal to the
contact surface

 Magnitude is proportional to
the amount of penetration

» Collision spring rest length
IS zero




Integrators

Network of mass points and springs

Hook’s law, damping law and Newton’s 2nd law
give acceleration of every mass point
at any given time

F =ma
— Hook’s law and damping provide F
— ‘m’ is point mass
— The value for a follows from F=ma

Now, we know acceleration at any given time for
any point

Want to compute the actual motion




Integrators (contd.)

 The equations of motion:

—

_ | =
a(t) = ; (FHook + Fdamping + Fforceﬁeld)

X = point position, v = point velocity, a = point acceleration
They describe the movement of any single mass point
Fio.ox=sum of all Hook forces on a mass point

Fgamping = SUM of all damping forces on a mass point




Integrators (contd.)

When we put these equations together for all the
mass points, we obtain a system of ordinary
differential equations.

In general, impossible to solve analytically

Must solve numerically

Methods to solve such systems numerically are
called integrators

Most widely used:
— Euler
— Runge-Kutta 2nd order (aka the midpoint method) (RK2)
— Runge-Kutta 4th order (RK4)




Integrator design issues

 Numerical stability
— If time step too big, method “explodes”
— t=0.001 is a good starting choice for the assignment
— Euler much more unstable than RK2 or RK4
» Requires smaller time-step, but is simple and hence fast
— Euler rarely used in practice

 Numerical accuracy
— Smaller time steps means more stability and accuracy
— But also means more computation

 Computational cost
— Tradeoff: accuracy vs computation time




Integrators (contd.)

RK4 is often the method of choice
RK4 very popular for engineering applications

The time step should be inversely proportional to the
square root of the elasticity k [Courant condition]

For the assighment, we provide the integrator
routines (Euler, RK4)

— void Euler(struct world * jello);

— void RK4(struct world * jello);

— Calls to there routines make the simulation progress one time-step
further.

— State of the simulation stored in ‘jello’ and automatically updated




Tips

Use double precision for all calculations (double)

Do not overstretch the z-buffer
— It has finite precision
— Ok: gluPerspective(90.0,1.0,0.01,1000.0);
— Bad: gluPerspective(90.0,1.0,0.0001,100000.0);

Choosing the right elasticity and damping
parameters is an art
— Trial and error
— For a start, can set the ordinary and collision parameters the
same

Read the webpage for updates




