Fluids (Navier-Stokes)

Introduction

- Most common method
- Not blow up with large timestamps
- If timestamp is very large -> large error but doesn't blow up (Fluid slows down)
- N-S equations -> pde (Partial Diffrential Equations)
- Nabla Operator $\nabla=(\partial / \partial x, \partial / \partial y, \partial / \partial z)$

The Navier-Stokes Equation

- $\quad \partial \mathrm{u} / \partial \mathrm{t}=-(\mathrm{u} \cdot \nabla) \mathrm{u}+v \nabla^{2} \mathrm{u}-1 / \rho \nabla \mathrm{p}+\mathrm{f}$
$\partial u / \partial t$-> Tells how velocities change over time
- Mass Conservation Condition : $\nabla \cdot \mathbf{u}=0$

Explanation of the Four Terms

- $1^{\text {st }}$ term -> Advection
- $\quad 2^{\text {nd }}$ term $->$ Laplacian/diffuse term
$v=$ viscosity coefficient $(v>=0)$
$v=0$-> Euler equation $->$ no loss of energy
-> Add this term to slow down the velocity.
-> If velocity differs from neighbors, want to dissipate the difference.
-> If you had only this term -> difference in velocities between neighbors will become zero.
-> [We don't solve it exactly so even if this term is not present(or set to zero), the fluid will slow down. Error causes slowdown (also called numerical viscosity)]
-> If this term is set to zero -> corresponds to no real material. Still commonly set to zero because of slowdown by error. Therefore low levels of viscosity difficult to obtain.
- $3^{\text {rd }}$ term
$-1 / \rho \nabla p$
-> pressure term.
- $4^{\text {th }}$ term
f
->external forces

Mass Conservation Condition : $\nabla \cdot \mathbf{u}=\mathbf{0}$

$->\nabla \cdot \mathrm{u}=0$ vector field with respect to $(\mathrm{x}, \mathrm{y}, \mathrm{z})$
-> Divergence
-> Incompressibility

Helmholtz - Hodge Decomposition

$\mathrm{W}=\mathrm{u}+\nabla \mathrm{p}$
We must have some method to ensure that the field is always divergence free.

$$
\mathrm{u}=\mathrm{Pw}=\mathrm{W}-\nabla \mathrm{p}
$$

Solving The Equation

Many ways to solve. One method is :

- Split the equation and solve the terms individually
- That means pretending other terms are not there
- Last step is projection, to make the field divergence free.

This method does not give very accurate solution, but for small time steps it is reasonably accurate.

- Add force fields.

Advection

Calculating velocity at the next time step:

- We have fixed locations on the grid
- Which particle will drive into the location
- Set the velocity at $t+\Delta t$ equal to the velocity of the particle at time t.

- Even if velocity so high that the particle flies over a grid cell this method will not blow up.

Projection

- This is the most expensive step
- Conjugate gradients is a common method to solve it.

Weakness of the method

- A fundamental weekness of the method is that the system loses energy very fast.

Rendering Aspect

- We cannot show velocities, hence we can immerse some smoke i.e. introduce particles. However this is not commonly used, as it would need a lot of particles.
- A common method is to render densities. At every gird location we have velocity and a scalar density. Densities get conveyed by velocities.
- Density/smoke will be dissipated if it differs from neighbors.
- We can render the density as the intensity of pixels in that grid cell.
- For 3D we may combine density with particles. We can render each particle as a sprite or radially decreasing intensity.

