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Introduction

- Most common method
- Not blow up with large timestamps
- If timestamp is very large -> large error but doesn’t blow up (Fluid slows down)
- N-S equations -> pde (Partial Diffrential Equations)
- Nabla Operator x,y,z)

The Navier-Stokes Equation

- ut = - (u u +  u – 1/ p + f

ut -> Tells how velocities change over time

- Mass Conservation Condition : u = 0

Explanation of the Four Terms

- 1st term -> Advection
- 2nd term -> Laplacian/diffuse term

 = viscosity coefficient ( >= 0)
 = 0 -> Euler equation -> no loss of energy

-> Add this term to slow down the velocity.
-> If velocity differs from neighbors, want to dissipate the difference.
-> If you had only this term -> difference in velocities between neighbors will 
become zero.
-> [We don’t solve it exactly so even if this term is not present(or set to zero), 
the fluid will slow down. Error causes slowdown (also called numerical 
viscosity)]
-> If this term is set to zero -> corresponds to no real material. Still commonly 
set to zero because of slowdown by error. Therefore low levels of viscosity 
difficult to obtain.

- 3rd term  
– 1/ p

-> pressure term.
- 4th term

f
->external forces

Mass Conservation Condition : u = 0

u = 0 vector field with respect to (x,y,z)



-> Divergence

-> Incompressibility

Helmholtz – Hodge Decomposition

W = u + p

We must have some method to ensure that the field is always divergence free.

u = Pw = W - p

Solving The Equation

Many ways to solve. One method is :

- Split the equation and solve the terms individually
- That means pretending other terms are not there
- Last step is projection, to make the field divergence free.

This method does not give very accurate solution, but for small time steps it is reasonably 
accurate.

- Add force fields.

Advection

Calculating velocity at the next time step:
- We have fixed locations on the grid 
- Which particle will drive into the location
- Set the velocity at t + t equal to the velocity of the particle at time t.

V(t+t)

t

Interpolate veolcities
of these points at this
timestep and set V(t+t) 
to this value.



- Even if velocity so high that the particle flies over a grid cell this method will not 
blow up.

Projection

- This is the most expensive step
- Conjugate gradients is a common method to solve it.

Weakness of the method

- A fundamental weekness of the method is that the system loses energy very fast.

Rendering Aspect

- We cannot show velocities, hence we can immerse some smoke i.e. introduce 
particles. However this is not commonly used, as it would need a lot of particles.

- A common method is to render densities. At every gird location we have velocity 
and a scalar density. Densities get conveyed by velocities. 

- Density/smoke will be dissipated if it differs from neighbors.
- We can render the density as the intensity of pixels in that grid cell.

- For 3D we may combine density with particles. We can render each particle as a 
sprite or radially decreasing intensity.


