Rigid body dynamics

Basic representation

We generalize the concept of motion of a body by defining a state vector:
$X(t)=\left[\begin{array}{c}x(t) \\ v(t)\end{array}\right]$, it can be described as an array of 6 numbers.
The change of $\mathrm{X}(\mathrm{t})$ over time is given by: $\dot{X}(t)=\left[\begin{array}{c}v(t) \\ F(t) / m\end{array}\right]$

The change of object state from the left to right through translation matrix $X(t)$ and rotation matrix $\mathrm{R}(\mathrm{t})$, then we have: $R(t) \cdot e_{i}=E_{i}(i=1,2,3)$ (Note: $\mathrm{R}(\mathrm{t})$ is a 3×3 orthogonal matrix, $\left.\operatorname{det} \mathrm{R}=1\right)$

Therefore: $R(t)=\left[E_{1} E_{2} E_{3}\right]$

Center of mass $=\frac{1}{m} \int_{\Omega} \vec{r} \cdot \rho \cdot d v$
$P(t)=X(t)+R(t) \cdot P_{0}$
$\dot{P}=\dot{X}+\stackrel{\bullet}{R} \cdot P_{0}$

Angular Velocity

In addition to translation, a rigid body can also rotate. The rotation of the body must about some axis passes through the center of the mass. We describe the rotation as a vector $\omega(t)$

$$
\tau=(P(t)-X(t)) \times F ; \quad y \mapsto a \times y
$$

Particularly, given a vector $a=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] ; a \times y=\widetilde{a} \cdot y$
$\tilde{a}=\left[\begin{array}{ccc}0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0\end{array}\right]$
$\widetilde{a}=-\widetilde{a}^{T} \quad$ (Skew-Symmetric)

We do the similar thing to ω :
$V=\omega \times P=\omega \times R \cdot P_{0}=\stackrel{\bullet}{R} \cdot P_{0}$
$\dot{R} \cdot P_{0}=\widetilde{\omega} \cdot\left(R P_{0}\right)=\widetilde{\omega} R P_{0}$
$\dot{R}=\widetilde{\omega} R$
$\widetilde{\omega}=\dot{R} R^{T}$

Now the representation changes to:
$X(t)=\left[\begin{array}{c}x(t) \\ v(t) \\ R(t) \\ \omega(t)\end{array}\right]$

Inertia tension

$I(t)=\int \rho \cdot\left(\|F\|^{2} \cdot I-F^{T} F\right) d v$
$\mathrm{I}(\mathrm{t})$ is a 3 x 3 matrix (a rank 2 tensor)
For example:

The inertia tension of a concrete sphere is: $I(t)=\left[\begin{array}{ccc}\frac{2}{5} m R^{2} & 0 & 0 \\ 0 & \frac{2}{5} m R^{2} & 0 \\ 0 & 0 & \frac{2}{5} m R^{2}\end{array}\right]$

Linear Momentum

The linear momentum p of a particle with mass m and velocity v is defined as:
$P=m \cdot v(t)$
The conservation of linear momentum is:
$\int F(t) d t=\Delta P$
Therefore, we have: $\dot{P}=F(t)$

Angular Momentum

Usually we use angular momentum to simplify our equations. It's conserved by nature.
$L(t)=I(t) \cdot \omega(t)$ where $I(t)=R(t) \cdot I_{b o d y} \cdot R(t)^{T}$
Conservation law:
$\int \tau(t) d t=\Delta L$
$\dot{L}=\tau(t)$

The representation now is:
$X(t)=\left[\begin{array}{c}x(t) \\ P(t) \\ R(t) \\ L(t)\end{array}\right], \dot{X}=\left[\begin{array}{c}P / m \\ F(t) \\ \widetilde{\omega} R \\ \tau(t)\end{array}\right] ; \omega=I(t)^{-1} L(t)$

