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Overview of numerical Simulation  

The simulation of fluid is typically based on solving the Navier-Stokes (NS) equations, which 

describe the fluid in terms of a continuous velocity field 𝑢   and a pressure p 
[1]

. They are usually 

written as: 

𝜕𝑢   

𝜕𝑡
= −𝑢  ∙ ∇𝑢  + 𝜈∇ ∙ ∇𝑢  −

1

𝜌
∇𝑝 + 𝑓             (1) 

                       ∇ ∙ 𝑢  = 0                                  (2) 

Equation (1) is a vector equation called “momentum equation” which ensures the momentum of 

the fluid is preserved. Though it seems a little complicated, we can split it up into individual parts 

and solve each one separately, which significantly reduced the problem’s difficulty. Generally, 

this formula could be divided into 4 parts, which are advection part, body force part, viscosity 

part and pressure part. The viscosity part and the body force part are very easy to handle. How to 

compute the advection has been discussed in previous class.  The last and most complex term is 

the pressure part. 

In order to solve it, we put our focus on Equation (2) named “incompressibility condition”. Pick 

an arbitrary chunk of fluid at some instant in time. Denote this volume  Ω and its boundary 

surface 𝜕Ω. (See Figure 1) 



 

Figure 1: Volume for application of the divergence theorem 
[4]

 

We could measure how fast the volume of this chunk is changing by integrating the normal 

component of its velocity around the surface area, that is, 

𝑑𝑉

𝑑𝑡
=  𝑢  ∙ 𝑛  

𝜕Ω

𝑑𝑠               (3) 

For incompressible fluid, this rate of change should be zero. 

By using Gauss Theorem, the equation (3) could be changed to a volume integral, 

𝑑𝑉

𝑑𝑡
=  𝑢  ∙ 𝑛  

𝜕Ω

𝑑𝑠 =    ∇ ∙ 𝑢  
Ω

= 0    (4) 

This equation should be true for any choice of Ω, thus we obtain, 

∇ ∙ 𝑢  = 0 

This is equation (2), the incompressibility condition. 

A vector field that satisfies the equation (2) is “divergence-free” 
[2]

. The advection should only 

be done in such kind of field. However given an arbitrary vector field 𝑤   , the equation (2) may not 

be guaranteed, i.e. ∇ ∙ 𝑤   ≠ 0. We have to implement Helmholtz-Hodge Decomposition on 𝑤    [3]
, 

which leads to: 

𝑤   = 𝑢  + ∇𝑞                  (5) 



In equation (5) 𝑢   is divergence-free and 𝑞 is scalar field. (Note: instead of q, the professor used p 

in equation (5) during the class. However as a general equation here, in order not to be confused 

with pressure p in equation (1), I changed the notation.) 

By multiplying both sides of equation (5) by gradient operator, 

∇ ∙ 𝑤   = ∇ ∙ ∇𝑞                (6) 

This is a Poisson equation for the scalar filed 𝑞 with certain boundary conditions.  

Things get clear now that given the velocity field computed from the previous steps we compute 

the pressure values in a way that ensures equation (2) holds. It turns out that a Poisson equation 

with certain boundary conditions has to be solved for the pressure 
[1]

. Once a correct pressure is 

obtained, the velocity field is adjusted to maintain the divergence free condition and describes the 

state of the fluid for the next time step 
[1]

. 

Discretization 

Our environment contains an arbitrary distribution of fluid, and submerged or semi-submerged 

obstacles. The computation domain is first divided into a fixed rectangular grid aligned with a 

Cartesian coordinate system. Without lose generality, we illustrate the method in 2D scene. (See 

Figure 2) 

 

Figure 2: Discretized computation domain 



  

Figure 3: 4-connected grids 

 

Suppose the length of each unit grid is h,  

∇ ∙ 𝑤   =
𝑤   1,𝑥 − 𝑤   2,𝑥

2ℎ
+

𝑤   3,𝑦 − 𝑤   4,𝑦

2ℎ
              7  

∇ ∙ ∇𝑞 =
𝑝1 − 2𝑝5 + 𝑝2

ℎ2
+

𝑝3 − 2𝑝5 + 𝑝4

ℎ2
        (8) 

We could set up the linear equation based on equation (6) (7) (8) and solve it using conjugate 

gradient method. 

Once 𝑞 is solved,  

𝑢  = 𝑤   − ∇𝑞                  (9) 

Boundary conditions 

Boundary conditions need only be checked once at the beginning of iteration. 

A boundary is an interface between the fluid and a solid obstacle, or between the fluid and 

atmosphere, or a point at which fluid flows into or out of the system. Solid obstacles and the 

atmosphere are treated as fluid, but with special properties that remain constrained throughout the 

calculation.  
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The component of fluid velocity normal to the face of obstacle is 0, e.g. 𝑢𝑥 = 0. In the case of a 

non-slip obstacle, the tangential velocity at the boundary is also 0. While in a free-slip case, the 

tangential velocity keeps unchanged at the boundary.  

As we are always considering 4-connected area during the calculation, we add virtual bounding 

grids around the computation domain for convenience and set their values accordingly. 

For the purpose of tracking fluid position and setting up the boundary conditions, the finite 

difference grids are labeled as 
[5]

, (See Figure 4 for example) 

 Empty E, a cell containing no particles. 

 Surface S, a cell containing at one particle that is adjacent to an empty cell. 

 Full F, a cell containing at least one particle that is not a surface cell. 

 

Figure 4: labeled computation domain 

Please check [5] for more information on configuration of cells. 

In conclusion, the iteration process during simulation could be summarized as follows: 

 

 

 

 

 

 

𝑢𝑡  
𝑢𝑡+1 

𝑤 
1. Advection 

2. Viscosity 

3. Body forces 

 

Pressure   Solver 

Identify S, E, F 

Particle Positions 



References: 

[1] Muller M., Stam J., James D., Thurey N.: Real time physics: class notes. In 

SIGGRAPH ’08: ACM SIGGRAPH2008 Course, pp. 1–90. 

[2] MÜLLER M., R. Bridson. Fluid Simulation, In SIGGRAPH’07: ACM SIGGRAPH2007 

Course 

[3] Stam J.: Stable fluids. In Proc. of ACM SIGGRAPH1999, pp. 121–128. 

[4] http://en.wikiversity.org/wiki/Introduction_to_Elasticity/Vectors 

[5] N. Foster, D. Metaxas. Realistic Animation of Liquids. Graphical Models and Image 

Processing, 58(5):471–483, 1996. 

 

 


