
Course Note: Grid Based Fluid Simulation

USC CS599 Physically Based Modeling for Interactive Simulation and Games

Instructor: Prof. Jernej Barbic

Date: Mar. 11 2010

Collator: Yili Zhao

(This record is based upon my original notes, my understanding on this problem and some

additional materials. Any comments, suggestions, and of course, the inevitable critique are highly

welcomed.)

Overview of numerical Simulation

The simulation of fluid is typically based on solving the Navier-Stokes (NS) equations, which

describe the fluid in terms of a continuous velocity field 𝑢 and a pressure p
[1]

. They are usually

written as:

𝜕𝑢

𝜕𝑡
= −𝑢 ∙ ∇𝑢 + 𝜈∇ ∙ ∇𝑢 −

1

𝜌
∇𝑝 + 𝑓 (1)

 ∇ ∙ 𝑢 = 0 (2)

Equation (1) is a vector equation called “momentum equation” which ensures the momentum of

the fluid is preserved. Though it seems a little complicated, we can split it up into individual parts

and solve each one separately, which significantly reduced the problem’s difficulty. Generally,

this formula could be divided into 4 parts, which are advection part, body force part, viscosity

part and pressure part. The viscosity part and the body force part are very easy to handle. How to

compute the advection has been discussed in previous class. The last and most complex term is

the pressure part.

In order to solve it, we put our focus on Equation (2) named “incompressibility condition”. Pick

an arbitrary chunk of fluid at some instant in time. Denote this volume Ω and its boundary

surface 𝜕Ω. (See Figure 1)

Figure 1: Volume for application of the divergence theorem
[4]

We could measure how fast the volume of this chunk is changing by integrating the normal

component of its velocity around the surface area, that is,

𝑑𝑉

𝑑𝑡
= 𝑢 ∙ 𝑛

𝜕Ω

𝑑𝑠 (3)

For incompressible fluid, this rate of change should be zero.

By using Gauss Theorem, the equation (3) could be changed to a volume integral,

𝑑𝑉

𝑑𝑡
= 𝑢 ∙ 𝑛

𝜕Ω

𝑑𝑠 = ∇ ∙ 𝑢
Ω

= 0 (4)

This equation should be true for any choice of Ω, thus we obtain,

∇ ∙ 𝑢 = 0

This is equation (2), the incompressibility condition.

A vector field that satisfies the equation (2) is “divergence-free”
[2]

. The advection should only

be done in such kind of field. However given an arbitrary vector field 𝑤 , the equation (2) may not

be guaranteed, i.e. ∇ ∙ 𝑤 ≠ 0. We have to implement Helmholtz-Hodge Decomposition on 𝑤 [3]
,

which leads to:

𝑤 = 𝑢 + ∇𝑞 (5)

In equation (5) 𝑢 is divergence-free and 𝑞 is scalar field. (Note: instead of q, the professor used p

in equation (5) during the class. However as a general equation here, in order not to be confused

with pressure p in equation (1), I changed the notation.)

By multiplying both sides of equation (5) by gradient operator,

∇ ∙ 𝑤 = ∇ ∙ ∇𝑞 (6)

This is a Poisson equation for the scalar filed 𝑞 with certain boundary conditions.

Things get clear now that given the velocity field computed from the previous steps we compute

the pressure values in a way that ensures equation (2) holds. It turns out that a Poisson equation

with certain boundary conditions has to be solved for the pressure
[1]

. Once a correct pressure is

obtained, the velocity field is adjusted to maintain the divergence free condition and describes the

state of the fluid for the next time step
[1]

.

Discretization

Our environment contains an arbitrary distribution of fluid, and submerged or semi-submerged

obstacles. The computation domain is first divided into a fixed rectangular grid aligned with a

Cartesian coordinate system. Without lose generality, we illustrate the method in 2D scene. (See

Figure 2)

Figure 2: Discretized computation domain

Figure 3: 4-connected grids

Suppose the length of each unit grid is h,

∇ ∙ 𝑤 =
𝑤 1,𝑥 − 𝑤 2,𝑥

2ℎ
+

𝑤 3,𝑦 − 𝑤 4,𝑦

2ℎ
 7

∇ ∙ ∇𝑞 =
𝑝1 − 2𝑝5 + 𝑝2

ℎ2
+

𝑝3 − 2𝑝5 + 𝑝4

ℎ2
 (8)

We could set up the linear equation based on equation (6) (7) (8) and solve it using conjugate

gradient method.

Once 𝑞 is solved,

𝑢 = 𝑤 − ∇𝑞 (9)

Boundary conditions

Boundary conditions need only be checked once at the beginning of iteration.

A boundary is an interface between the fluid and a solid obstacle, or between the fluid and

atmosphere, or a point at which fluid flows into or out of the system. Solid obstacles and the

atmosphere are treated as fluid, but with special properties that remain constrained throughout the

calculation.

𝑊3

𝑊1
 𝑊2

𝑊4

𝑞3

𝑞4

𝑞1 𝑞5 𝑞2

The component of fluid velocity normal to the face of obstacle is 0, e.g. 𝑢𝑥 = 0. In the case of a

non-slip obstacle, the tangential velocity at the boundary is also 0. While in a free-slip case, the

tangential velocity keeps unchanged at the boundary.

As we are always considering 4-connected area during the calculation, we add virtual bounding

grids around the computation domain for convenience and set their values accordingly.

For the purpose of tracking fluid position and setting up the boundary conditions, the finite

difference grids are labeled as
[5]

, (See Figure 4 for example)

 Empty E, a cell containing no particles.

 Surface S, a cell containing at one particle that is adjacent to an empty cell.

 Full F, a cell containing at least one particle that is not a surface cell.

Figure 4: labeled computation domain

Please check [5] for more information on configuration of cells.

In conclusion, the iteration process during simulation could be summarized as follows:

𝑢𝑡
𝑢𝑡+1

𝑤
1. Advection

2. Viscosity

3. Body forces

Pressure Solver

Identify S, E, F

Particle Positions

References:

[1] Muller M., Stam J., James D., Thurey N.: Real time physics: class notes. In

SIGGRAPH ’08: ACM SIGGRAPH2008 Course, pp. 1–90.

[2] MÜLLER M., R. Bridson. Fluid Simulation, In SIGGRAPH’07: ACM SIGGRAPH2007

Course

[3] Stam J.: Stable fluids. In Proc. of ACM SIGGRAPH1999, pp. 121–128.

[4] http://en.wikiversity.org/wiki/Introduction_to_Elasticity/Vectors

[5] N. Foster, D. Metaxas. Realistic Animation of Liquids. Graphical Models and Image

Processing, 58(5):471–483, 1996.

