CS 599 Physically Based Scribe Notes

Tuesday 2/16/10 Scribe - Michael Carroll

## Constraints

Examples of constraints:

Hinge joints, anatomical joints like a shoulder, elbow, or wrist.

Different joints have different degrees of freedom and have different limitations on that freedom.

Consider a model with two or more bodies connected by joints. The bodies can also be represented in an acyclic graph or in more complicated hierarchies a cyclic one.

Diagram 1:


Graph 1:



Diagram 2:
Simple Graphs:


Chain


Chain system

Diagram 3:

More complicated system with a loop.


Graph 3:


From last lecture regarding Lagrange Dynamics

$$
\begin{gathered}
M(q) * q^{\prime \prime}=f\left(q, q^{\prime}, t\right) \\
Q=[\alpha, \beta]
\end{gathered}
$$


$\qquad$

In this situation $M(q) * q^{\prime \prime}=f\left(q, q^{\prime}, t\right)$ but it is much more complex.

Acrobot Diagram 2:

More complex system.


This is referred to as the minimal coordinate or reduced coordinate approach.
Features of this approach:

- Complex mathematics
- Can't handle loops in 3D easily
- Compact (only 2 angles)
- Featherstone's algorithms can be used to solve more complicated systems.

Acrobot Diagram with Maximal Coordinates:


Mass points in are considered in isolation, in this example all points will have the same mass.

$$
\begin{gathered}
Q=[x 0, y 0, x 1, y 1, x 2, y 2] \\
M=\left[\left(\begin{array}{ccc}
m & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & m
\end{array}\right)\right] ; \text { M's diagonal } \\
q^{\prime \prime}=[f 01 x, f 01 y, f 11 x, f 11 y, f 21 x, f 21 y] \\
M * q^{\prime \prime}=f(t)
\end{gathered}
$$

## Constraints:

Length of rod = I
The Constraint Function: $C(q)=0 ; C(q)=[C 1(q), C 2(q), C 3(q), C 4(q)]$

- $X 0=0$
- $Y 0=0$
- $x 1^{\wedge} 2+y 1^{\wedge} 2=l^{\wedge} 2$
- $(x 2-x 1)^{\wedge} 2+(y 2-y 1)^{\wedge} 2=l^{\wedge} 2$

So,

- $\quad C 1(q)=x 0$
- $C 2(q)=y 0$
- $C 3(q)=x 1^{\wedge} 2+y 1^{\wedge} 2-l^{\wedge} 2$
- $\quad C 4(q)=(x 2-x 1)^{\wedge} 2+(y 2-y 1)^{\wedge} 2-l^{\wedge} 2$
\# of constraints < \# of degrees of freedom.

The new model becomes:
$M q^{\prime \prime}=f(t)+f_{c}$; where $f_{c}$ is the constraint force and $f_{c}$ can not alter the energy in the system. The system moves only from external forces.

$$
C(q)=0
$$

## Manifold Diagram:

Each set of constraints maps to a position on the manifold. $f_{c}$ must always be perpendicular to the tangent plane at point q on the manifold so that the dot product of $f_{c}$ and the derivative is 0 .
Representing 0 net change in work for the system.
The normal space is spanned by the rows of $d C / d q$ a $4 \times 6$ matrix
$f_{c}=\left(\frac{d C}{d q}\right)^{T} * \lambda ; \lambda \in R^{4}$ called a lagrange multiplier
Our main equation is now
(1) $M q^{\prime \prime}=f(t)+\left(\frac{d C}{d q}\right)^{T} * \lambda$
(2) $C(q)=0$

To solve, differentiate $C(q)$ with respect to time.

$$
\begin{gathered}
0=\frac{d}{d t} * C(q)=\left(\frac{d C}{d q}\right) * q^{\prime} \\
0=\frac{d C}{d q} * q^{\prime \prime}+\left(\frac{d}{d t}\right) *\left(\frac{d C}{d q}\right) * q^{\prime}
\end{gathered}
$$

By factoring: $\frac{d}{d q} *(d C / d t)=d C^{\prime} / d q$
Continuing, we can write out our main equation while inverting lambda:
$M q^{\prime \prime}+(d C / d q)^{T *} \lambda=f(t): 6$ equations
$\frac{d C}{d q} * q^{\prime \prime}=-\left(d C^{\prime} / d q\right) * q^{\prime}: 4$ equations

$$
\left.\begin{array}{c}
{\left[\begin{array}{cc}
M & \left(\frac{d C}{d q}\right)^{T} \\
d C / d q & 0
\end{array}\right] *\left[\begin{array}{c}
q^{\prime \prime} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
f(t) \\
-\left(\frac{\mathrm{dC}}{\mathrm{dq}}\right)
\end{array}\right) * \mathrm{q}^{\prime}}
\end{array}\right]
$$

## Problems with the simulation

Constant drift because of numerical simulator and only real requirement is $\mathrm{C}^{\prime \prime}=0$ to stabilize a location on the manifold.

The baumgarte stabilization is used to correct the simulation.

$$
C^{\prime \prime}+\alpha C^{\prime}+\beta C=0
$$

Revised Equation:

$$
\left[\begin{array}{cc}
M & \left(\frac{d C}{d q}\right)^{T} \\
d C / d q & 0
\end{array}\right] *\left[\begin{array}{c}
q^{\prime \prime} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
f(t) \\
-\left(\frac{\mathrm{dC}}{\mathrm{dq}}\right) * \mathrm{q}^{\prime}-\alpha\left(\frac{\mathrm{dC}}{\mathrm{dq}}\right) * \mathrm{q}^{\prime}-\beta C
\end{array}\right]
$$

