
## The Jello Cube Assignment 1, CS599, Spring 2011

Jernej Barbic, USC

#### The jello cube





**Undeformed cube** 

**Deformed cube** 

- · The jello cube is elastic,
- · Can be bent, stretched, squeezed, ...,
- Without external forces, it eventually restores to the original shape.

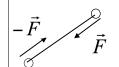
2

#### **Mass-Spring System**

- · Several mass points
- · Connected to each other by springs
- Springs expand and stretch, exerting force on the mass points
- · Very often used to simulate cloth
- Examples:

A 2-particle spring system
Another 2-particle example
Cloth animation example



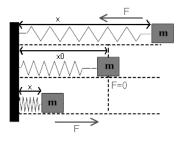

3

#### **Newton's Laws**

· Newton's 2nd law:

$$\vec{F} = m\vec{a}$$

- Tells you how to compute acceleration, given the force and mass
- Newton's 3rd law: If object A exerts a force F on object B, then object B is at the same time exerting force -F on A.




#### Single spring

· Obeys the Hook's law:

$$F = k (x - x_0)$$

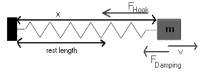
- $x_0$  = rest length
- k = spring elasticity (aka stiffness)
- For x<x<sub>0</sub>, spring wants to extend
- For x>x<sub>0</sub>, spring wants to contract



э

# Hook's law in 3D

- Assume A and B two mass points connected with a spring.
- · Let L be the vector pointing from B to A
- · Let R be the spring rest length
- · Then, the elastic force exerted on A is:


$$\vec{F} = -k_{Hook}(|\vec{L}| - R)\frac{\vec{L}}{|\vec{L}|}$$

6

#### **Damping**

- · Springs are not completely elastic
- They absorb some of the energy and tend to decrease the velocity of the mass points attached to them
- · Damping force depends on the velocity:

$$\vec{F} = -k_d \vec{v}$$



- k<sub>d</sub> = damping coefficient
- $k_d$  different than  $k_{Hook}!!$

7

#### Damping in 3D

- Assume A and B two mass points connected with a spring.
- · Let L be the vector pointing from B to A
- · Then, the damping force exerted on A is:

$$\vec{F} = -k_d \frac{(\vec{v}_A - \vec{v}_B) \cdot \vec{L}}{|\vec{L}|} \frac{\vec{L}}{|\vec{L}|}$$

- Here  $v_A$  and  $v_B$  are velocities of points A and B
- · Damping force always OPPOSES the motion

#### A network of springs

- Every mass point connected to some other points by springs
- Springs exert forces on mass points
  - Hook's force
  - Damping force
- · Other forces
  - External force field
    - » Gravity
    - » Electrical or magnetic force field
  - Collision force



9

# How to organize the network (for jello cube)

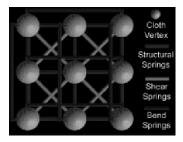
- To obtain stability, must organize the network of springs in some clever way
- Jello cube is a 8x8x8 mass point network
- 512 discrete points
- · Must somehow connect them with springs







Basic network


Stable network

Network out of control

10

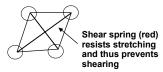
# **Solution:** Structural, Shear and Bend Springs

- There will be three types of springs:
  - Structural
  - Shear
  - Bend
- Each has its own function



11

#### Structural springs


- · Connect every node to its 6 direct neighbours
- · Node (i,j,k) connected to
  - (i+1,j,k), (i-1,j,k), (i,j-1,k), (i,j+1,k), (i,j,k-1), (i,j,k+1)(for surface nodes, some of these neighbors might not exists)
- Structural springs establish the basic structure of the jello cube
- The picture shows structural springs for the jello cube.
   Only springs connecting two surface vertices are shown.





A 3D cube (if you can't see it immediately, keep trying)

- · Disallow excessive shearing
- · Prevent the cube from distorting
- Every node (i,j,k)
   connected to its diagonal
   neighbors
- Structural springs = white
- Shear springs = red



13

# Bend springs

- · Prevent the cube from folding over
- Every node connected to its second neighbor in every direction (6 connections per node, unless surface node)
- white=structural springs
- yellow=bend springs (shown for a single node only)



Bend spring (yellow) resists contracting and thus prevents bending

14

#### **External force field**

 If there is an external force field, add that force to the sum of all the forces on a mass point

$$\vec{F}_{total} = \vec{F}_{Hook} + \vec{F}_{damping} + \vec{F}_{force\ field}$$

 There is one such equation for every mass point and for every moment in time



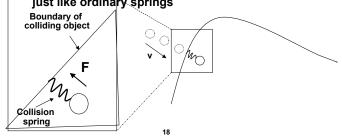
15

#### **Collision detection**

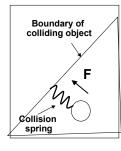
- The movement of the jello cube is limited to a bounding box
- · Collision detection easy:
  - Check all the vertices if any of them is outside the box
- Inclined plane:

$$F(x, y, z) = ax + by + cz + d = 0$$

- Initially, all points on the same side of the plane
- F(x,y,z)>0 on one side of the plane and F(x,y,z)<0 on the other
- Can check all the vertices for this condition


#### **Collision response**

- When collision happens, must perform some action to prevent the object penetrating even deeper
- Object should bounce away from the colliding object
- · Some energy is usually lost during the collision
- · Several ways to handle collision response
- · We will use the penalty method


17

#### The penalty method

- When collision happens, put an artificial collision spring at the point of collision, which will push the object backwards and away from the colliding object
- Collision springs have elasticity and damping, just like ordinary springs



#### **Penalty force**



- Direction is normal to the contact surface
- Magnitude is proportional to the amount of penetration
- Collision spring rest length is zero

19

#### **Integrators**

- · Network of mass points and springs
- Hook's law, damping law and Newton's 2nd law give acceleration of every mass point at any given time
- F=ma
  - Hook's law and damping provide F
  - 'm' is point mass
  - The value for a follows from F=ma
- Now, we know acceleration at any given time for any point
- Want to compute the actual motion

#### Integrators (contd.)

· The equations of motion:

$$\frac{d\vec{x}}{dt} = \vec{v}$$

$$\frac{d^2\vec{x}}{dt^2} = \frac{d\vec{v}}{dt} = \vec{a}(t) = \frac{1}{m}(\vec{F}_{Hook} + \vec{F}_{damping} + \vec{F}_{force\ field})$$

- x = point position, v = point velocity, a = point acceleration
- · They describe the movement of any single mass point
- F<sub>hook</sub>=sum of all Hook forces on a mass point
- F<sub>damping</sub> = sum of all damping forces on a mass point

21

#### Integrator design issues

- Numerical stability
  - If time step too big, method "explodes"
  - t = 0.001 is a good starting choice for the assignment
  - Euler much more unstable than RK2 or RK4
    - » Requires smaller time-step, but is simple and hence fast
  - Euler rarely used in practice
- Numerical accuracy
  - Smaller time steps means more stability and accuracy
  - But also means more computation
- Computational cost
  - Tradeoff: accuracy vs computation time

23

#### Integrators (contd.)

- When we put these equations together for all the mass points, we obtain a system of ordinary differential equations.
- In general, impossible to solve analytically
- Must solve numerically
- Methods to solve such systems numerically are called integrators
- Most widely used:
  - Euler
  - Runge-Kutta 2nd order (aka the midpoint method) (RK2)
  - Runge-Kutta 4th order (RK4)

22

#### Integrators (contd.)

- · RK4 is often the method of choice
- RK4 very popular for engineering applications
- The time step should be inversely proportional to the square root of the elasticity *k* [Courant condition]
- For the assignment, we provide the integrator routines (Euler, RK4)
  - void Euler(struct world \* jello);
  - void RK4(struct world \* jello);
  - Calls to there routines make the simulation progress one time-step further.
  - State of the simulation stored in 'jello' and automatically updated

### Tips

- Use double precision for all calculations (double)
- · Do not overstretch the z-buffer
  - It has finite precision
  - Ok: gluPerspective(90.0,1.0,0.01,1000.0);
  - Bad: gluPerspective(90.0,1.0,0.0001,100000.0);
- Choosing the right elasticity and damping parameters is an art
  - Trial and error
  - For a start, can set the ordinary and collision parameters the same
- · Read the webpage for updates