
Scribe notes for Rigid Body Dynamics lecture given on Feb 15
Jonathan Culp

There are 12 Degrees of Freedom (DOF) in an unconstrained rigid body:
3 for position q=[qx q yq z ]
3 for rotation ω=[ωxω yω z ]
3 for linear velocity q̇
3 for angular velocity ω̇

But – computationally speaking – its rare that the state vector is represented as [qw q̇ ẇ ] . More 
commonly Linear Momentum P  and Angular Momentum. L replace their respective velocities. So 
our state vector is now [q ,ω , P , L ] . 

Linear Momentum P (t ) : P (t )=m⋅v (t )
m is the mass
v (t ) is the linear velocity

Angular Momentum L (t ) : L (t )= I (t )⋅ω(t )
I ( t ) is the moment of inertia – also referred to as the inertia tensor – explained later. 
ω(t ) is the angular velocity

Notice the similarity of the two. Also notice that unlike mass – the moment of inertia is changes with  
time. 

Understanding the motion of the rigid body.

Unlike point-masses – we have additional problems to consider. 
Rigid bodies collide with each other with points away from their center of mass.

1.) If the object is spinning – the point of collision has a different velocity than the center of mass.
2.) A collision will act not only on the velocity of the center of mass of the object – but will also  

apply a torque to it which is dependent on the handle.

So to simulate both 1 and 2 properly we need to understand the rotational component of the rigid body.
A rigid body's movement can be broken down into a linear component v (t ) and an angular component 

ω(t )



How fast is any other point p i on the body moving? 
Imagine the body is “pinned” (it has no linear velocity) at its center of mass which 
we will denote by  pcmass and rotates about an axis ω(t ) . Note that the t 
implies that this axis of rotation can change with time – picture a spinning top that  
gradually looses its ability to stay upright. 

Create a vector from the pcmass  to another point p i denoted by r i . 

Imagine the circular path of p i as it rotates about ω(t ) . The velocity 
of our point is v p=ω×r i . This should be intuitive - ω×r i gives us a 

vector orthogonal to r i  and the axis of rotation ω - precisely the 
direction p i  is moving. One thing that may not be obvious here is that 
the amount of rotation about ω is given by ∣ω∣ . So if ω were 
longer – the body rotates more about ω . If this were not so - v p
would simply point in the direction that p i is headed but would not - in 
general - be the actual velocity of p i  

Now“unpin”our rigid body. It now has its own linear velocity denoted by vcmass . How is p i  

moving now? Simply v pi=v cmass+ω×r i

An aside for some notation: we can represent ω×a where a is an arbitrary 3 vector 
in matrix form like so:

[ 0 −ω2 ω1

ω2 0 −ω0
−ω1 ω0 0 ]×[a1a2a3]

In notation we write this as ω̃
Some notes on ω̃

ω̃ is skew symetric: ω−1=ωT

diagonals have to be 0 since a11=−a11 and a22=−a22 etc

Notice that we don't need to store p i explicitly; It can be written in terms of its offset from the center 

of mass and the objects Xform: P̄i=x ( t )+R (t )⋅P̄object
x (t ) is a translation and R (t ) is a rotation represented by a 3x3 matrix. The bar above P

indicates were dealing with world-space coordinates – not object space ones. 

A note about R (t ) We can store this as a 3x3 matrix but we would be storing 9 values to represent 3 
DOFs. And alternative is to store our objects rotation as a quaternion (4 values for 3 DOFs) and compute  
our 3x3 rotation matrix from it only when needed. 

Okay – were only missing one more thing. The inertia tensor. I ( t ) is a 3x3 matrix that is the scaling 
factor between angular momentum and angular velocity. Informally – very informally - it quantifies how 
easy it is to spin an object as a function of the distribution of mass for that object. Picture the difference  
between spinning a dense ball of iron surrounded by a large amount of foam, and large ball of foam 
surrounded by a thin – but massive – layer of iron. 



Specifically, its the integral of the mass over the volume. It changes with the rotation of the rigid body – 
so it varies with t . At first glance it looks as if we have to compute an expensive integral for each 
time-step in the simulation. But we can do some of the math in body space once for each rigid body and  
before the simulation starts to reduce the calculation at runtime.

To update I for each time-step we can use take the conjugate with the bodies rotation matrix.

I=R (t )× I body×R
T (t )

So what is I body and how is it computed? I body Is the inertia tensor at our bodies rest state. 

In a continuous setting I body=∫
Ω

ρ(∣∣⃗r∣∣I− r⃗ r⃗T )δV

In a discrete setting we can represent it like this: I body=∑ mi ((r0i
T r 0i)1−r0i r0i

T ) and is stored as a 3x3 
matrix.

The r here is the displacement of the i'th particle from the objects center, or in simpler terms the the 
body space coordinate of the i'th particle. mi  is the mass of the i'th particle and the 1 here is the 
identity matrix. 

Now we have everything we need to derive the equations of motion. From our state vector we can derive  
the following auxiliary quantities:

Ṗ=F L̇=τ τ=r×F v (t )= P(t )
M

ω(t )=I (t )−1 L( t )


