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1. Introduction 
 

Real Time Subspace Integration for St Venant Kirchhoff (St VK) Deformable Models is 
a fast method to simulate Finite Element Method (FEM) deformable objects.  This fast method 
can interactively simulate non-linear large deformation. 
 
2. Background 
 
2.1 Model Reduction 
 

Huge high dimensional system, such as fluids and deformable objects, have n degrees of 
freedom, n vertices, and very slow to time step.  These complex models can be very 
computationally expensive.  How can you simulate these models efficiently?  One method is to 
use model reduction, which reduces a huge high dimensional system into a simpler high 
dimensional system that will be used to approximate the complex model.   
 
2.2 Solid Mechanics Internal Forces under Deformation 
 

 
 

 
 

Figure 1. The standard pipeline internal forces in deformation. 
 

When an object is deformed there are internal forces that return objects to the original 
shape.  To compute the deformation we have to compute strain, which describes how an object is 
deformed from the mesh deformation.  However, computing strain is not enough, since it is a 
geometric measure and does not capture any internal forces or material properties.  Thus we use 
Material Law relationship to compute stress from strain, which calculates the internal forces 
incorporating the object’s material property.  By combining all these together we have the 
standard pipeline for internal forces in model deformations. 
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2.3 St. Venant-Kirchhoff Deformable Model 
 

 

Figure 2.  St Venant-Kirchhoff Deformable Model Definiton. 
 

In the St Venant Kirchhoff Deformable Model, the pipeline is similar to the solid 
mechanics internal forces deformation model.  However, mesh deformation has a geometric non-
linearity relationship with strain, while strain has a material linearity relationship with stress. 
 
2.4 Linear Modal Analysis 
  

 
Figure 3. Linear Modal Analysis Definition. 

 
The Linear Modal Analysis is applying reduction to the simplest deformation model.  The 

general idea is to extract natural frequencies of objects and combine it with the simplest 
deformation model, which has a geometric linearity and material linearity.  The benefits of 
Linear Modal Analysis are the speed and its usage of the GPU.  Unfortunately, the down fall 
with this method is Linear Modal Analysis can only handle purely linear deformations. 
 
3. Subspace Integration 
 
3.1 Subspace Integration Deformable Model 
 

 
Figure 4. Subspace Integration Deformable Model Definition. 

 
 Real-Time Subspace Integration expands the idea of Linear Modal Analysis, but utilizes 
geometric non-linearity instead of geometric linearity.  In addition, this method combines the 
deformation model with a low-dimensional basis.  Simulating in low quality space obtains 
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quality deformations.  As a result, we have faster non-linear dynamics and remove artifacts of 
linear modal analysis. 
 
3.2 Subspace Integration 
 

To compute how the objects’ deformation evolves through time, we utilize 3D 
Continuum Mechanics and FEM equations of motion: 
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NOTE: Rest state for the object is when u = 0.   
 

To simulate deformation evolution over time in Subspace with model reduction, we 
restrict the deformation vector u in 4D space with linear combinations of key basis shapes.  
Through model reduction, this creates a displacement basis matrix r3n,RU and a vector of 
reduced coordinates, 3nRq .  In addition, U is a constant and a time independent matrix 
specifying a basis of some r - dimensional linear subspace of 3nR .  By multiplying U and q we 
acquire an approximation of the High Dimensional System, u.  Thus we replace u with Uq.   
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By simply replacing u with Uq we obtain too many rows for computation.  To reduce the number 
of rows, we need to pick a specific displacement basis for this subspace.  How do you get the U 
basis?  We must have a basis that captures typical non-linear deformations.  For this subspace, 
the specific deformation basis is an orthogonal basis or make the columns of U mass-orthogonal.  
To accomplish this we need to project.  In the projection step, we pre-multiply by TU .   
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After inserting TUu   and pre-multiplying by TU , we derive a Reduced Equation of Motion: 
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In the Reduced Equation of Motion,  qR~  become the reduced internal forces of the object.  
Additionally, each component of  qR~  is a multivariate cubic polynomial in components of 
reduced coordinates q.  Due to this outcome, the cubic polynomial coefficients are constants.  
Furthermore, we can compute the gradient of the matrix,  qR~ , for increasing integration: 
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The result is a quadratic polynomial, which turns out to be the Reduced Stiffness Matrix.  Since 
the polynomials are low degree, we can efficiently pre-compute these coefficients and the 
gradient of the matrix,  qR~ .  In comparison, we have the Unreduced Equation of Motion, which 
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conclusion, Subspace Integration can interactively simulate non-linear large deformation. 
 
3.3 Subspace Integration Limitations 
 
 There are several limitations of Subspace Integration.  One limitation that is the 
polynomial evaluations takes  4r  time.  Another limitation are local deformations may need 
large basis (Multi-resolution extensions).  Lastly, St VK is inaccurate for large compressions in 
non-linear materials; this includes reduction, sketch, and modal derivatives.

 


