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Finite Element Method (FEM) and Mass Spring System

Mass Spring System is easy to understand and implement. However, it has many disadvantages. For 
example, it has no material properties, meaning that it is very difficult to model different materials. 
Also, it does not converge to the true solution as the spring spacing goes to zero.

In contract, Finite Element Method (FEM) is a more accurate way to solve Partial Differential 
Equations (PDEs). In FEM, objects are discretized into many small elements (e.g. tetrahedra). Then the 
continuum PDEs is converted to a discretized system of Ordinary Differential Equations (ODEs), 
which can be time-stepped numerically.

Mesh Representation

One way to represent an object in computer graphics is to decompose the object into many small 
tetrahedra. Figure 1 shows two examples where the bunny and the dragon are discretized into 
volumetric meshes. A good quality volumetric mesh is very important to underlying simulations 
because ill-shaped tetrahdra are bad for stiffness matrix conditioning [5] and will cause numerical 
instabilities. Creating volumetric meshes with good dihedral angles still remains a difficult problem 
and is an active research area in computational geometry.

Figure 1: The volumetric meshes for bunny [1] and dragon [2]



Embedded Surface Mesh

Given a high resolution surface mesh, a very fine volumetric mesh is required to capture the surface 
details. However, such fine volumetric mesh may contain a lot of tetrahedra, and performing 
calculations on a large number of tetrahedra can be very time consuming. To alleivate this, we can 
embed the surface mesh in a coarse volumetric mesh (see Figure 2). We use the surface mesh for 
rendering as well as for collision dynamics, but all of the elasticity and plasticiy computations come 
from the coarse volumetric mesh. We can then intepolate deformations from the volumetric mesh to the 
surface mesh using barycentric coordinates.

Figure 2: (Left) A detailed surface is embedded in a coarse volumetric mesh [3],
(Right) A high reolution surface mesh (blue) embedded into a low

resolution mesh (gold) [6]

Young's Modulus and Poisson Ratio

The Young's Modulus E and the Poisson Ratio  are two important parameters in deformable 
object simulations. Let us consider a beam with cross section area S and initial length l0 as shown 
in Figure 3.

Figure 3: A beam is fixed at one end and is pulled 
at the other end by an extern force F



When an extern force F is applied in the direction of the beam perpendicular to the cross section S, the 
beam with original length l expands by  l . These quantities are related via Hooke's law as

F
S
=E

l
l0

The equation states that the elongation of the beam increases as the force per area increases. If the force 
per area (i.e. lhs) is fixed, then the elongation is small when the Young's modulus E is large. On the 
other hand, if the Young's modulus is small then the elongation is large. Therefore, the Young's 
modulus E describes the stiffness of the beam. 

The behavior of the beam can also be described by the following equation:

V
V 0
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 l
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where V 0 is the initial volume of the beam, and V is the change of the volume. If we keep
l
l0

fixed, then when  equals 0.5, the change of volume would be 0, which means the volume is 
conserved. Therefore, the Poisson ratio  describes the compressibility of the beam.

Displacement Vector

The displacement (or deformation) of the mesh vertices can be concatenate into one long vector. Let 
say we discretize the beam into six triangles and deform the beam to the right:

Figure 4: A beam (in black color) is deformed to the right (in blue color).
The red arrow shows the displacement vector [u0,x u0, y u0, z ] of the vertex 0.

The displacement vector can be written as

u=[
u0, x

u0, y

u0, z

⋮
u7, z

]



where the first sub-index represents the n-th vertex, and the second sub-index represents the x, y, or z 
component of the displacement at n-th vertex (e.g. u0, x is the x-component of the displacement of 
vertex 0) . Note that the size of the concatenated displacement vector u equals to the number of 
vertices in the mesh multiplies with 3 (i.e. DOF of u = # vertices * 3).

Equations of Motion

The governing equation (derived from the principle of virtual work of Lagrangian mechanics) that 
describes the dynamics of the system can be written as:

M üD u̇f int u=f ext u

Here, u∈ℝ
3n is the concatenated displacement of the vertices, n is the number of vertices,

M∈ℝ
3n ,3n is the mass matrix, D∈ℝ

3n ,3n is the damping matrix, f int u ∈ℝ
3n is the internal 

deformation force, and f ext u∈ℝ
3n is the external force (e.g. gravity).

The internal deformation force f int u  can be written as the following using Taylor series:

f int 0u≈f int 0
∂ f int

∂ u
uO ∥u∥2



where the derivative 
∂ f int

∂u
is evaluated at the rest/initial configuration. The derivative is also known 

as the Stiffness Matrix K, which denotes the Jacobian matrix of the internal forces.

In our beam example, the Stiffness Matrix K has the following layout:

K=[
∂ f int

1

∂ u0, x

∂ f int
1

∂u0, y

⋯
∂ f int

1

∂u7, z

⋮ ⋮ ⋱ ⋮

∂ f int
24
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∂ f int
24

∂u0, y

⋯
∂ f int

24

∂u7, z

]
where f int

m is the m-th component of the f int vector.

At the rest/initial configuration, the displacement vector is 0 and so the internal force f int 0 is 
also 0 .

Therefore, the internal force can be written as:

f int u ≈
∂ f int

∂u
u=Ku



And our governing equation becomes:

M üD u̇Ku=f ext u

Key Idea of “Interactive Virtual Materials”

The key idea of the paper “Interactive Virtual Materials” is to compute elastic forces at a tetrahedron 
using the following steps:

1) Rotate the deformed tet to an unrotated frame.
2) Compute the force by multiplying the rotated displacement with the stiffness matrix.
3) Rotate the force back to the deformed frame.

To determine the rotation of a tetrahedron, the simplest way is to use Gram-Schmidt method. For more 
accurate results, Polar Decomposition should be used:

A=RS

The polar decomposition decomposes the deformation gradient A into a rotation matrix R and a scaling 
matrix S. Notice that S is a 3x3 symmetric matrix, which has 3 orthogonal eigenvectors (see Appendix 
C2 of [4]). So it can be decomposed into S=Q Q−1 where Q is the eigenvectors and  is the 
eigenvalues. Therefore, S can be think of a matrix that scales a vector along the directions of the eigen 
vectors. 
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