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Introduction of the speaker 

Bachelor degree was obtained from UIUC. 

Master degree was obtained from UC Berkeley. 

He is a leader in one group of CUDA R&D. 

He was employed in CUDA,2006. 

He is responsible for development of DirectX 9 and 10 Drivers. 

Background and Motivation of CUDA 

 



Fig1. Moore’s Law, cited from slide of CS503, 2010, USC 

 

Transistor count in a chip doubles every 18 months. This performance doubling stopped not to 

be true about five years ago. Because clock speed flattened sharply as shown in Figure 1. In 

addition, the more transistors, the more power is cost. It is not power saving to add more 

transistors to augment the performance of a computer.  Parallelism costs less power than add 

more cores. Therefore parallelism is the way forward. 

GPU Programming Trend 

CIDA is an extension to C for programming GPUs 

Tesla server processes 

NVIDIA GPUs in super powerful computers 

Top 500 LINPACK benchmark -> 3 out of top 4 use NVIDIA GPUs 

Green 500 -> 2 out of 4 use NVIDIA 

Real-world Application Utilizes CUDA to improve Performance 

ANSYS, Matlab,  Adobe, Autodesk… 

Historical GPU Computing Using OpenGL 

Programming Graphics Pipeline( see Monday lecture ) 

GPGPU 

OpenGL Programming treats each pixel of a texture as a thread 

OPENGL limitations 

Threads have specific output 

Floating-point arithmetic only 

Limited instruction count 

Limited control flow 

No cross-thread communication 



GPU Architecture ( low latency or high Throughput ) 

CPU <- low latency 

GPU<-more transistors to computation 

GPU hides latency with computation 

Two main components 

Global memory( currently up to 6 GB ) 

Streaming Multiprocessor(SM) -> most interesting 

 

L2 -> cache , repeated units 

Fermi: 32 CUDA cores 

CUDA CORE 

2 warp schedulers 

32K 32-bit registers 

64K shared mem+L1 cache 

4 special – function Units 

Cos, sin, square root, hardware to do the computation 

Fermi: Memory system 

CUDA Programming: Launching Threads 

Serial code -> host (CPU) 

Parallel code -> device(GPU) 

: C with a few key words 

Function qualifier 

_host_ 

_global_ 



_device_ 

Kernel: functions called by the host that executes on GPU 

Thread blocks allow scalability 

The shallower the function is, the better. GPU function should be short, the wider threads are, 

the better. 

Maximum # of blocks 

Some case: 64,000.  

# of threads: 512 

CUDA Programming Example: AXPY 

Memory hierarchy 

Thread: 1) Registers 

               2) Local memory 

 Block of threads: shared memory 

All blocks, Global memory ( local, peer devices, host ) 

Per-Block Shared Memory 

_shared_ 

Latency : a few clock cycles 

bandwidth: 1.03 TB / s 

: Device Global Memory 

cudaMalloc(); 

cudaMemSet(); 

cudaFree(); 

Latency: 400~800 cycles 

bandwidth: 156 GB/s 



: Host, Peer, Global Memory 

Latency: many cycles 

bandwidth: 6GB/s 

:Host, Peer Global Memory 

Latency: many cycles 

bandwidth: 6 GB/s 

Memory hierach:  Peer Topologies 

1). Global Memory Gotches,malloc() X 

2).Host cannot access device memory 

PCIE latency is horrific 

CUDA Programming Example: GEMM 

GPGPU Tools or Libraries 

BLAs 

FFT 

Textbook and lecture notes: 

http://courses.engr.illinois.edu/ece498/al/ 

Debugs 

1). Windows: Parallel N sight 

2). Linux:cuda-gdb 

3).Runs on the GPU 

Questions: 

Q:How to schedule parallel tasks to different threads in GPU?  

A:You can assign different tasks to the different blocks or threads. 

Q:Does CUDA support dynamic arrays?  

http://courses.engr.illinois.edu/ece498/al/


A:Not yet. 

Q: What’s the maximal # of blocks and threads? 

A: Threads # are 512, maximal # of blocks depends on different GPU, i.e. 64,000(the range of 32 

bit interger). 


