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Fig. 1. Nonlinear anisotropic damping that matches real-world leaf motion. We experimentally estimated both the leaf elastic nonlinear material, and
our nonlinear damping model, to match the real-world ground truth leaf motion. Our model accommodates anisotropic nonlinear damping, with di�erent
nonlinear damping properties for the leaf bending in the up-down (deformation 1) and le�-right directions (deformation 2).

To date, material modeling in physically based computer animation has
largely focused on mass and sti�ness material properties. However, defor-
mation dynamics is largely a�ected also by the damping properties. In this
paper, we propose an interactive design method for nonlinear isotropic and
anisotropic damping of complex three-dimensional solids simulated using
the Finite Element Method (FEM). We �rst give a damping design method
and interface whereby the user can set the damping properties so that mo-
tion aligned with each of a few chosen example deformations is damped by
an independently prescribed amount, whereas the rest of the deformation
space follows standard Rayleigh damping, or any viscous damping. Next, we
demonstrate how to design nonlinear damping that depends on the magni-
tude of the deformation along each example deformation, by editing a single
spline curve for each example deformation. Our user interface enables an art-
directed and intuitive approach to controlling damping in solid simulations.
We mathematically prove that our nonlinear anisotropic damping general-
izes the frequency-dependent Caughey damping model, when starting from
the Rayleigh damping. Finally, we give an inverse design method whereby
the damping curve parameters can be inferred automatically from high-level
user input, such as the amount of amplitude loss in one oscillation cycle
along each of the chosen example deformations. To minimize numerical
damping for implicit integration, we introduce an accurate and stable im-
plicit integrator, which removes spurious high-frequency oscillations while
only introducing a minimal amount of numerical damping. Our damping
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can generate e�ects not possible with previous methods, such as control-
lable nonlinear decaying envelopes whereby large deformations are damped
faster or slower than small deformations, and damping anisotropic e�ects.
We also �t our damping to videos of real-world objects undergoing large
deformations, capturing their nonlinear and anisotropic damping dynamics.
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1 INTRODUCTION
Three-dimensional Finite Element Method (FEM) simulations are
widely used in computer graphics, animation and related �elds. The
simulation behavior of a deformable object is uniquely determined
by the mass properties, the underlying “sti�ness” strain-stress ma-
terial law, as well as the damping model that irreversibly dissipates
the energy in a vibrating system and causes a decaying trend in the
system response. Despite several previous papers to design and op-
timize the strain-stress relationships, we are not aware of any prior
work on damping design for computer animation. Since the classic
publication of “Theory of Sound” [Rayleigh 1896], characterization
of the damping e�ects in a vibrating structure has long been an
active research topic in the mechanical engineering �eld. However,
there is still no single universally accepted damping model [Wood-
house 1998], due to the intricacies involved in understanding the
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Fig. 2. Our nonlinear damping produces decaying curves not achievable using linear damping. (a) The two example belly deformations and the
Rayleigh damping result, under the shown force. (b) Our method produces damping that is stronger under large deformations, but weakens under small
deformations. Here, we use forward design, where the user designs nonlinear damping by manipulating spline control points. (c) Reverse of (b): weaker under
large deformations and stronger under small deformations. Here, we use inverse design, where the user specifies the residual amplitude a�er one oscillation
cycle of unloading the object from a prescribed initial amplitude; an optimizer finds the matching spline damping curve. In both (b) and (c), we show the best
matching result under linear anisotropic damping. Such linear damping is not expressive enough to simulate the nonlinear e�ects.

state variables controlling the damping forces [Adhikari 2001]. Com-
mon practice in computer graphics is to use the linear viscous damp-
ing, in which the damping force linearly depends on the instanta-
neous velocities. Among them, Rayleigh damping [Rayleigh 1896],
which assumes that the damping matrix is simply a linear com-
bination of the mass and sti�ness matrix, is probably the oldest
but still most widely used form of viscous damping. In our design,
the user starts with “default damping”, which is usually Rayleigh
damping, but can be any viscous damping. We demonstrate how to
then depart from it to design anisotropic and nonlinear damping
e�ects, for computer animation purposes. In addition to design of
artist-directed damping properties, our method can also be used
to match the damping behavior of real systems, such as the leaf in
Figure 1.

In Rayleigh damping, one controls the damping e�ects globally
by tuning the mass and sti�ness proportionality constants. However,
di�erent deformations typically present varying damping behav-
iors. A typical example are the frequency-dependent mode decay
ratios observed in sound modal synthesis [Sterling and Lin 2016].
To create an animation, in artist endeavors, we typically envision de-
sired dynamics on a few (low-frequency) primary vibrations. With
global damping models, it can be cumbersome or impossible to
tune the parameters to achieve the desired damping e�ects. In-
spired by the example-based materials [Martin et al. 2011], our work

addresses this damping design challenge by introducing example-
based anisotropic damping, enabling independent damping design
for each example deformation. The user �rst prescribes a few exam-
ple deformations to indicate the motions to design, and our method
scales the default damping forces along the example deformations
by the user-speci�ed amount. We note that instead of designing
element-wise damping properties, which often have unpredictable
e�ects on global damping, our method is more artist-directed as it
designs damping directly in the global shape space.

As a motivation for our nonlinear damping, Elliott et al. [2015]
pointed out that the damping force function is “nonlinear in a num-
ber of mechanical systems and similar nonlinear damping behaviors
is also seen in many electrical, biological and other dynamic sys-
tems.” In many cases, “it is the damping that is the dominant source
of nonlinearity” [Elliott et al. 2015] and it is worthwhile to con-
sider nonlinear damping models beyond the viscous linear damping.
In our system, we approximate the nonlinear damping behaviors
with damping scaling factors that depend nonlinearly on the magni-
tude of each example deformation. For each example deformation,
the nonlinearity is modeled as a single 1-D spline curve and the
artist can easily adjust the damping e�ects by editing the spline.
We demonstrate that our nonlinear damping enables complex vi-
sual e�ects that cannot be achieved with standard linear viscous
damping (Figure 2). In order to provide a high-level damping design
interface, we also give a method for inverse damping design. In this
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method, the user can tune the damping of each example deformation
by prescribing an initial amplitude, and a residual amplitude after
one oscillation cycle. Given a few such (initial, residual) amplitude
pairs, we perform fast optimization to determine the 1-D nonlin-
ear damping curve for this example deformation. Our method is
inspired by “unloading tests” performed in mechanical engineering,
and provides a direct user interface to specifying the damping.

Our damping matrix is non-negative de�nite and only dissipates
energy, enabling stable integration under large timesteps. In our
work, we choose to use implicit integration for numerical stability.
Because our goal is to control damping, it is important to use a
numerical integration scheme which does not introduce substantial
numerical damping; hence, we do not use implicit backward Eu-
ler [Bara� and Witkin 1998]. Variational integrators [Marsden and
West 2001] have good energy-preserving properties, and as we pre-
fer implicit integration, we �rst considered perhaps the most widely
used integrator in structural dynamics, the implicit Newmark (also
called “Trapezoidal rule”) [Wriggers 2002], which has been shown
to be variational in the Veselov sense [Kane et al. 2000]. However,
implicit Newmark can su�er from stability problems, especially with
low damping levels, large timesteps and nonlinear dynamics. To im-
prove stability, we adopt a simple composite integration scheme that
combines the lightly-dissipative trapezoidal rule with the strongly
dissipative second-order implicit backward Euler process [Bathe
2007]. This method e�ectively maximizes high-frequency numerical
dissipation to remove the spurious oscillations, without introduc-
ing excessive numerical damping in the important low-frequency
region. To the best of our knowledge, this integration scheme has
to date not been used for computer animation applications. It is
second-order accurate and is signi�cantly more stable than implicit
Newmark under large deformations and timesteps, all the while
introducing approximately equal amounts of arti�cial damping as
implicit Newmark.

2 RELATED WORK
Damping causes energy to dissipate during mechanical vibrations of
an elastic body. In computer graphics, various damping models have
been adopted for physically-based simulation, such as strain-rate
damping for solids [Debunne et al. 2001; O’Brien et al. 2002; O’Brien
and Hodgins 1999], air drag and spring damping for cloth [Bara�
and Witkin 1998; Bhat et al. 2003] and internal friction for modeling
hysteresis e�ects [Lahey 2002; Miguel et al. 2013; Williams 2010].
However, among them, Rayleigh damping [Rayleigh 1896] is the
oldest but still the most popular damping model for simulating a
dynamic response of a structure, due to its simplicity and ease of
implementation. Although our method generalizes viscous damping
models, we start from the Rayleigh damping model in our system
because this model is already familiar to the artists. The existing
damping models control damping via a few global parameters. We
decouple the damping control in the space of the user-prescribed ex-
ample deformations and can design damping e�ects independently
for each example deformation. In order to create desired vibration
behaviors, several authors obtained the damping parameters by mea-
suring real deformations or recording sound. Measured cloth defor-
mation behaviors are reproduced via optimization of parameters for
the spring damping [Bhat et al. 2003] and internal friction [Miguel

et al. 2013]. With linear modal analysis, modal decay rates are also
obtained from multiple sound recordings [Lloyd et al. 2011; Pai et al.
2001] or through the space-time deformation constraints [Li et al.
2014]. For sound synthesis, Ren and colleagues [2013] extracted
Rayleigh damping parameters from a single audio sample. Recently,
the work was extended by [Sterling and Lin 2016] to �t the parame-
ters of the Caughey damping [Caughey 1960; Caughey and O’Kelly
1965], which gives frequency-dependent damping ratios. To capture
real-world deformations, Wang and her colleagues [2015] used het-
erogeneous corotational linear materials and optimized Rayleigh
damping parameters. These papers obtained damping parameters
from experimental data and did not aim to provide a method for
easy user design, adjustment, or modi�cation of damping. In our pa-
per, we give a damping model that can be easily and independently
tuned by the user using a small number of parameters. Furthermore,
previous work only addressed linear damping, whereas we give a
richer nonlinear damping model. In Figure 2, we demonstrate that
this model cannot be matched using linear models such as [Sterling
and Lin 2016]. Our damping model can also be used to �t viscoelastic
behavior of real objects (dragon and leaf examples).

2.1 Example-Based Methods
Example-based methods have been employed for graphics appli-
cations, such as mesh posing [Sumner and Popović 2004], texture
synthesis [Wei et al. 2009], sound synthesis [Ren et al. 2013], and
deformations [Jones et al. 2016; Martin et al. 2011; Wang et al. 2010].
Di�erent from these previous methods in which examples are used
for parameter �tting or interpolation, we employ example deforma-
tions as our damping design space. More similar to our approach
are example-based elastic materials [Martin et al. 2011; Schumacher
et al. 2012], which employ examples of desired deformations to
construct an anisotropic nonlinear elastic or plastic potential. This
potential controlled elasticity, and not damping. While we draw
inspiration from [Martin et al. 2011], we present an anisotropic
nonlinear example-based damping model.

2.2 Material Design
FEM simulations are greatly in�uenced by the speci�c strain-stress
material relationship, and the damping model. Since the pioneering
work of deformable object simulation [Terzopoulos et al. 1987],
there has been a lot of research on extending the expressive range
of materials [Bargteil et al. 2007; Irving et al. 2004; Müller and Gross
2004], forward design of materials [Li and Barbič 2014; Martin et al.
2011; Miguel et al. 2016; Schumacher et al. 2012; Xu et al. 2015b] or
material parameter optimizations [Becker and Teschner 2007; Bickel
et al. 2009; Xu et al. 2015a]. However, few publications focused on
the design of damping for physically-based simulation. To the best
of our knowledge, previous methods only modeled linear damping,
and we are the �rst work to present a design method for anisotropic
and/or nonlinear damping e�ects. Di�erent from [Li and Barbič 2014;
Xu et al. 2015b] which needed to specify element-wise orientations
for material anisotropy, our design of anisotropic damping is given
in the space of example deformations and is therefore more artist-
directable. Xu and colleagues [Xu et al. 2015b] presented a 1-D spline
system to control stress-strain hyperelastic material laws. Similar
to their work, we also employ 1-D splines, but use them to model
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nonlinear damping dependence on shape deformation or velocity
magnitude.

3 BACKGROUND: VISCOUS DAMPING
In solid mechanics, three-dimensional deformable objects are gov-
erned by the nonlinear partial di�erential equations of elasticity.
After applying FEM, one obtains the equations of motion,

Mü + fd (u, u̇) + fint (u) = fext , (1)

where u ∈ R3n is the displacement vector for the n mesh ver-
tices, M ∈ R3n×3n is the mass matrix, and fd , fint , fext ∈ R3n are
the damping, elastic internal and external forces, respectively. The
gradient of the elastic internal forces fint (u) with respect to u,
K(u) = ∂fint (u)/∂u, is called the tangent sti�ness matrix and is
determined by the speci�c material law. Viscous damping is de�ned
as damping where the force depends only on the current displace-
ment u and velocity u̇ [Adhikari 2001]. In non-viscous damping,
the damping force depends also on the history of u and u̇. In this
paper, we only model viscous damping.

Viscous damping is achieved by the incorporation of Rayleigh’s
Dissipation Function [Rayleigh 1896] given as

F = −
1
2

3n∑
i=1

3n∑
j=1

Ci j u̇i u̇j = −
1
2
u̇TCu̇, (2)

where C ∈ R3n×3n is a non-negative de�nite symmetric matrix,
known as the viscous damping matrix. The non-conservative damp-
ing forces fd can be obtained as

fd = −
∂F

∂u̇
= Cu̇. (3)

The damping matrix C is not necessarily constant and can de-
pend on the deformations and velocities. The most common ap-
proach to forming C is Rayleigh damping, whereby one uses lin-
ear combinations of the mass matrix M and sti�ness matrix K,
as C = αM + βK(u). Scalar α ≥ 0 sets the level of mass damp-
ing which slows down global deformations, and β ≥ 0 sets the
sti�ness damping, useful to remove high-frequency instabilities.
In this paper, the term non-negative de�nite matrix refers to any
square matrix A with the property that yTAy ≥ 0 for any vector
y. Note that A need not be symmetric for this de�nition. Because
yTAy = yT (A + AT )y/2, A is non-negative de�nite if and only if
the symmetric matrix (A + AT )/2 is semi-positive de�nite in the
usual sense.

4 DAMPING DESIGN
In this section, we will show how to edit the viscous damping matrix
for anisotropic and nonlinear damping e�ects and demonstrate the
properties of our model when starting from Rayleigh damping.

4.1 Example-Based Damping
With global damping models, the damping behaviors along various
example deformations are tightly coupled by the globally-tuned
damping parameters. The damping parameters constitute the de-
grees of freedom of the corresponding damping model space. We
note that for an animator, the primary concern is often the behavior
of a few (typically low-frequency) prominent deformations whereas

Fig. 3. Illustration of example-based anisotropic damping. Full simu-
lation with St.Venant-Kirchho� material. We start from Rayleigh damping
(red) and design our anisotropic damping (green) where the motion along
the first example deformation is 3× stronger, whereas the damping in other
directions is le� unmodified (the red and green curve are on top of each other
for the second example deformation). Globally tuning the Rayleigh damping
parameters to be 3× larger will a�ect motion along all the directions (blue).

for the rest of the deformation space, a natural but fast vibration
decay is usually most desirable. However, with the existing global
damping models, it is tedious and di�cult to tune the global damping
parameters to control the damping e�ects along each deformation
shape of interest. In our work, we give artist the local control of
damping e�ects with our anisotropic damping matrix.

Equipped with some default viscous damping force Cu̇, our sys-
tem �rst lets the artist provide k ≥ 1 example deformations X =
[x1 |x2 | . . . |xk ] ∈ R3n×k to indicate the linear motions that are
going to be designed with speci�c damping e�ects. The example
deformations can be selected using any suitable method, such as
via shape editing, modal analysis or quasi-static physical simula-
tion. Then, we replace the component of the default damping force
fid (u̇) that aligns with the example deformation xi with a scaled

damping force f̂
i
d (u̇) = γi f

i
d (u̇), and leave the orthogonal compo-

nent unmodi�ed. The scalar γi ≥ 0 enables the artist to attenuate
(0 ≤ γi < 1), or strengthen (γi > 1) the default damping along
the example deformation xi . Here, we �rst assume that all the ex-
ample deformations are C-orthonormalized (Appendix A) to each
other, i.e., xTj C xi = 0, if i , j, and xTi C xi = 1.We will discuss
the general case later. We achieve our designed damping e�ects by
modifying the damping force to

f̂d (u̇) = Cu̇ +
k∑
i=1

(
f̂
i
d (u̇) − f

i
d (u̇)

)
, (4)

where fid (u̇) = CPxi (u̇), andPxi (u̇) =
(
xTi Cu̇

)
xi is theC-weighted

projection of the velocity u̇ to the example deformation xi .We note
that when the velocity u̇ is C-orthogonal to all the example de-
formations, Pxi (u̇) are all 0, and therefore the damping force is
unmodi�ed. However, when u̇ is aligned with xi , the damping force
along xi is scaled with γi , i.e.,

f̂d (xi ) = γi fd (xi ) = γiCxi . (5)
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Fig. 4. Anisotropic damping control in the presence of collisions. The
first and second row scale the damping 0.1× compared to Rayleigh damping,
along the forward-backward motion (example deformation 1) and le�-right
motion (example deformation 2), respectively. The rest of the deformation
space uses unmodified Rayleigh damping. Under collision impact from the
4 balls, our anisotropic damping achieves much less damping along the
example deformations. The bo�om rows evaluates the visual di�erence
between using non-negative definite Π (which provably dissipates energy)
and Π̄ = RΓR−1 . It can be seen that the maximum vertex position di�erence
is small: under 1% of the bunny’s diameter.

By employing (bT c )a = (a ⊗ b)c, Equation 4 is transformed into

f̂d (u̇) =
(
C +

k∑
i=1

(
(γi − 1)Cxi

)
⊗ (Cxi )

)
u̇ =

=
(
C + CX(Γ − I) (CX)T

)
u̇,

(6)

where Γ = diag[γ1,γ2, . . . ,γk ].We can obtain the same formula as
in Equation 4 by modifying the Rayleigh’s Dissipation Function as

F̂ = −
1
2
u̇TCu̇ −

1
2

k∑
i=1

(γi − 1)u̇TCPxi (u̇), (7)

which physically means scaling the energy dissipation along the ex-
ample deformation xi byγi ,while keeping theC-orthogonal part un-
modi�ed. We note that we initially tried using mass-orthonormalized
example deformations, where the modi�ed damping matrix is C +
MX(Γ−I) (CX)T .However, this damping matrix is not non-negative
de�nite, which could lead to simulation instabilities with large or
small damping factors γ . Such damping also tightly couples example
deformations since the damping force along example deformation f̂

i
d

will also dissipate energy along the other example deformations. In
contrast, our damping control is independent for each C-orthogonal
example deformation (Figure 3) since we have xTj f̂

i
d = 0, if i , j .

Equation 6 assumes that the example deformations xi are already
C-orthogonal. Suppose the artist wants to design damping for non-
orthogonal example deformations. We can express the artist’s intent
via (yet unknown, to be determined) matrix Ĉ such that the damping
force for velocity xi equals Ĉxi = γiCxi , for i = 1, . . . ,k, or, in
matrix notation, ĈX = CXΓ. This property means that for velocities
aligned with xi , the damping force is scaled by γi ≥ 0, paralleling

Equation 5, except that xi are now non-orthogonal. We perform
C-weighted QR decomposition X = QR (Appendix A), where Q =
{q1 |q2 | . . . |qk } ∈ R

3n×k are C-orthonormalized deformations, and
R ∈ Rk×k is upper-triangular. Therefore, Ĉ must satisfy

ĈQ = ĈXR−1 = CXΓR−1 = CQΠ̄, for Π̄ = RΓR−1. (8)

Note the similarity between Equations 5 and 8: both prescribe
the damping on a set of C-orthonormalized deformations, except
that the damping in Equation 5 is independent for the di�erent
C-orthonormalized example deformations, whereas in Equation 8,
the coupling matrix Π̄ ∈ Rk×k is dense. In order to guarantee the
dissipation of energy (as proven in the next paragraph), the damping
coupling matrix must be non-negative de�nite. Because we have
Π̄R = RΓ, the eigenvalues of Π̄ equal γi , i = 1, . . . ,k, and are
therefore non-negative. However, as Π̄ is not symmetric, Π̄ could
still fail to be non-negative de�nite, although we did not commonly
encounter this case in practice. Intuitively, this case corresponds to
the artists prescribing inconsistent damping scaling factors, such as
prescribing very di�erent scaling factors γi for two nearly identical
non-orthogonal directions xi . In the spirit of positive-de�nite en-
forcement for elastic sti�ness matrices [Teran et al. 2005], we can
enforce non-negative de�niteness by replacing Π̄ for a non-negative
de�nite matrix Π = Π̄ −

∑p
i=1 λivi ⊗ vi , where λi are the negative

eigenvalues of (Π̄ + Π̄T
)/2, and vi are their respective eigenvectors

(proof is in Appendix B). We are now ready to modify the damping
force. Similarly as in Equation 4, we replace the default damping
force fid (u̇) with Π-weighted forces f jd (u̇),

f̂d (u̇) = Cu̇ +
k∑
i=1

( k∑
j=1

(
Πji f

j
d (u̇)

)
− fid (u̇)

)
=

= Cu̇ +
( k∑
i=1

k∑
j=1

(Π − I)jiCqj ⊗ Cqi
)
u̇ =

=

(
C + CQ(Π − I) (CQ)T

)
u̇ = (C + U(Π − I)UT )︸                  ︷︷                  ︸

Ĉ

u̇, (9)

where we de�ne U = CQ. For consistent artist input Π = Π̄, matrix
Ĉ as de�ned in Equation 9 produces the desired damping on example
deformations X = QR (note that QTCQ = I) :

ĈX = (C + CQ(Π − I)QTC)X = CX + CQRΓR−1QTCQR−

−CQQTCQR = CX + CXΓ − CX = CXΓ. (10)

Our example-based damping model can start with any viscous
damping matrix C, and preserves the default damping properties
for dynamics orthogonal to the example deformations. If spatially-
heterogeneous damping e�ects independent of the example defor-
mations are desired, we can simply set heterogeneous damping
parameters for the default damping matrix C. Our method will
preserve the spatial heterogeneity of damping. If one would like
to design damping just for deformations in a local region, we can
achieve that by selecting example deformations that have no dis-
placement outside the local region. Note that the damping of any
global deformations that are C-orthogonal to the example local
deformations won’t be a�ected by such design.
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Fig. 5. Anisotropic damping cannot be mimicked with anisotropic
elastic forces. The le� and right parts of the image both show simula-
tion frames computed under three methods (the rows): isotropic material
and damping, anisotropic (orthotropic) elasticity [Li and Barbič 2014] but
isotropic damping, and isotropic elasticity but anisotropic damping (our
method). The user’s intention is to generate a damping e�ect where the
le�-right and up-down beam deflections are damped 0.1× and 5× more
than the default Rayleigh damping, respectively. In order to produce the
e�ect with orthotropic elasticity, the user made the material so�er in the
le�-right direction, while making up-down sti�er. However, this drastically
changes the object frequency, the resulting shapes and their dynamics.

4.1.1 Dissipation of energy. Our damping model ensures energy
dissipation. For damping to dissipate energy, its power u̇T Ĉu̇ must
be non-negative at all times. Note that the sign of power here ad-
heres to the usual convention of placing the damping to the left-hand
side of Equation 1. Therefore, energy dissipation is equivalent to
non-negative de�niteness of Ĉ. Our anisotropic damping matrix
Ĉ is not necessarily symmetric under non-orthogonal example de-
formations. However, much like the original damping matrix C, it
is non-negative de�nite, mathematically ensuring that our damp-
ing always dissipates energy. This can be seen as follows. Given
that the deformations qi are C-orthonormalized, we can split any
nonzero vector y ∈ R3n into two C-orthogonal parts, z = y − z̄, for
z̄ =

∑k
i=1 ηiqi , where zTU = 0 and zTCz̄ = 0. Therefore,

yT Ĉy = (z + z̄)T (C − UUT + UΠUT ) (z + z̄) =

= zTCz + (z̄TU)Π(UT z̄) + z̄TCz̄ − z̄TUUT z̄ =

= zTCz + (z̄TU)Π(UT z̄), as z̄TCz̄ = z̄TUUT z̄ =
k∑
i=1

η2
i . (11)

Because both C and Π are non-negative de�nite, it follows that
yT Ĉy ≥ 0, i.e., Ĉ is non-negative de�nite. Because C is symmetric
and because we use the Woodbury formula to solve the linear system
at each timestep (Section 6.1), the non-symmetry of Ĉ does not a�ect
simulation stability. However, if needed, one can achieve matrix
symmetry by replacing Π by (Π+ΠT )/2. The non-negative de�nite
property of our damping matrix enables stable integration even
with large timesteps and with contact (Figure 4). We note that we
performed many simulations also directly with matrix Π̄, as opposed
to Π. While Π̄ does not o�er a theoretical guarantee of damping
energy dissipation, the visual output di�erence between Π̄ and the
theoretically stable Π was small in our examples (Figure 4, bottom).

4.1.2 Generalization of Caughey damping. The deformation u
can be represented as a linear combination of linear modes ϕ which
can be obtained by linear modal analysis,Mϕ = λKϕ, whereϕTi Mϕi =

1,ϕTi Kϕi = ω2
i and ωi is the frequency of mode i . The damping

ratio of a deformation is a measure of how much amplitude the
oscillation loses in one period. The damping ratio ξi of linear mode
ϕi under Rayleigh damping is

ξi =
1

2ωi
ϕTi Cϕi =

1
2ωi

(αϕTi Mϕi + βϕ
T
i Kϕi ) =

1
2
(
α

ωi
+ βωi ).

(12)
An extended Rayleigh damping, called Caughey damping [Caughey
1960; Caughey and O’Kelly 1965], is de�ned as

C = M
n2∑
j=n1

α j (M−1K) j , (13)

where 0 ≤ n1 < n2; note that Rayleigh damping follows for n1 = 0
and n2 = 1. Coe�cients α j relate to the damping ratios ξi by

ξi =
1

2ωi

n2∑
j=n1

α jω
2j
i . (14)

This model has adequate degrees of freedom to control the damping
ratio for each mode, although the coe�cients α j still couple all the
modes together. We note that the Caughey damping model will
produce a dense damping matrix (Equation 13) which is computa-
tionally expensive to obtain, and is therefore mostly just useful for
reduced simulations with linear modes. We can design our damping
to behave like Caughey damping in the space of example deforma-
tions, as follows. In our damping model, if we choose the Rayleigh
damping as the default damping, and select linear modes as the
example deformations, we then have ϕTj Cϕi = 0, if i , j . The
damping ratio for each mode in our model is

ξi =
1

2ωi
ϕTi Ĉϕi =

γi
2
(
α

ωi
+ βωi ). (15)

Note that we are controlling the damping ratio for each example
deformation independently with a single degree of freedom γi .
Therefore, our model achieves the same damping along the example
deformations as Caughey damping if we set γi =

∑n2
j=n1

α jω
2j
i /(α +

βω2
i ). Our model converges to Caughey damping under more and

more examples, and becomes identical to Caughey damping when
the examples span the complete deformation space of the object.
Note that Caughey damping is also a viscous damping model, and
therefore it could also be used as the default damping directly.

4.1.3 Comparison to anisotropic materials. Changing material
sti�ness a�ects Rayleigh damping due to the sti�ness-damping term,
when β , 0. Therefore, one may try to mimick anisotropic damping
with anisotropic elasticity. However, under modi�ed elasticity, the
deformation and frequency change signi�cantly (Figure 5). Our
method can produce the desired damping e�ect easily without any
change to the underlying elasticity. In practice, this means that the
user can keep the existing scene setup, gravity strength, collision
parameters and timesteps when tuning damping. Our method also
makes it much easier to design the damping, as it operates in the
space of example deformations, which are of direct concern to the
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Fig. 6. User interface for forward design of damping. In the bo�om-
le� corner, the user can edit the spline curve that controls the nonlinearity
of damping for each example deformation. The three preview windows
show the result under Rayleigh damping, our damping corresponding to
the adjusted curve, and a visualization of the example deformation whose
damping is currently being edited.

user. In contrast, the element-level anisotropic elasticity parameters
are indirectly related to the damping e�ects and harder to tune.

4.2 Nonlinear Damping
Although widely used, viscous damping models that linearly depend
on velocity only constitute a small subset of all viscous damping
models. Under many circumstances, the damping matrix C can non-
linearly depends on the deformation or velocity, such as in �uid
damping, air drag or in structural Coulomb deformation damp-
ing [De Silva 2007]. In this section, we extend our example-based
damping model to easily and intuitively model nonlinear damping
along the example deformations, using a simple spline system.

Given the current deformation u, we can obtain the magnitudes
(excitations) χ = [χ1, . . . , χk ] ∈ Rk of the examples by a least-
square minimization of ‖Xχ − u‖2M, which has the solution χ =

(XTMX)−1 (XTMu). The inverse of XTMX ∈ Rk×k can be pre-
computed. Then, instead of setting a constant damping control
parameter γi , we vary it based on some user-prescribed function
of the deformation magnitude χi . Note that the index i here refers
to the deformation example index. To locally control the nonlinear
damping, we model the function γi (χi ) as a 1D spline (see Figure 6).
In an interactive process, for each nonlinear curve, the user provides
mi ≥ 1 samples ( |χ

j
i |, log10 (γ

j
i )), j = 1, 2, . . . ,mi , over a selected

range [0, |χi |max]. Here, we choose the absolute value of χi (as op-
posed to χi directly) as the x-axis, so that the resulting damping
is symmetric with respect to direction of deformation. We model
the splines in the logarithmic space so that the damping design
is symmetric under strengthening and attenuating. Although our
spline system is not limited to a speci�c spline type, we use the
Bézier spline to interpolate and extrapolate the sample points, to
accommodate the entire range of deformations. The user can freely
move the sample points to edit the curve and the damping control
parameters γi are ensured to be positive by our logarithmic space
design. We can similarly extend our method to model the nonlinear
damping e�ects dependent on velocity magnitude with a spline-
based nonlinear function γi ( χ̇i ), where χ̇ = (XTMX)−1 (XTMu̇)

Fig. 7. Our nonlinear damping e�ects cannot be obtained by adjust-
ing nonlinear elastic properties. Middle row: our nonlinear damping
curve and frames of the resulting animation. Bo�om row: our best a�empt
to obtain a similar result simply by using linear Rayleigh damping, but
se�ing nonlinear elastic properties. Even with excessive tuning, result is still
di�erent and fundamentally changes the object’s dynamics (right column).

(Figure 1). In order to control the nonlinear damping isotropically
and independently of example deformations, our spline-based non-
linear damping scaling can also be applied to the complete damping
matrix, using a factor γ (‖u‖2), in which case the spline x-axis is the
deformation magnitude ‖u‖2.We summarize our damping force as

f̂d (u, u̇) = C̄u̇, for (16)

C̄ = γ (‖u‖2)
(
C + U

(
Π(χ1, χ2, . . . , χk ) − I

)
UT

)
, (17)

where Π(χ1, χ2, . . . , χk ) is the non-negative de�nite matrix ob-
tained from R diag[γ1 (χ1),γ2 (χ2), . . . ,γk (χk )]R−1, as explained in
Section 4.1. We note that our model essentially approximates non-
linear damping with an equivalent velocity-linear damping, whose
matrix C̄ depends on excitations χ . Di�erent from quasi-linear elas-
ticity which makes the system nonconservative, our quasi-linear
damping model does not introduce visual artifacts due to the energy
dissipation property of the damping force [Elliott et al. 2015].

4.2.1 Comparison to nonlinear materials. With nonzero sti�ness
damping, one may try to achieve nonlinear damping by controlling
the nonlinearity of the material. In Figure 7, we select a koala wav-
ing ear as an example deformation, and design a nonlinear damping
curve such that the damping decreases with the deformation. There-
fore when pulled with a force, the ear initially behaves very lively
when it is mostly in the large deformation range. The motion is
damped much faster as soon as the amplitude decays to small de-
formations. In order to achieve similar nonlinear damping e�ects,
we attempt to tune the spline-based material [Xu et al. 2015b] to
make it sti� around the rest shape, but soft for large deformations.
From the decaying amplitude curves, we can see that although the
initial deformation was similar, the spline-based nonlinear material
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signi�cantly alters the vibration frequency (Figure 7). Tuning the
material nonlinearity also globally a�ects the dynamic behavior
for all the deformations, regardless of the deformation direction.
Furthermore, spline-based materials work in the space of principal
stretches of each individual element, whereas our example-space
damping model is more direct and intuitive to control.

5 INVERSE DAMPING DESIGN
Although our presented damping design is easy to use, it may require
a few manual design and simulation cycles to obtain the expected
damping e�ects. In this section, we demonstrate how to infer the
nonlinear damping control curves γi (χi ), i = 1, 2, . . . ,k, from a
high-level user-provided damping speci�cation.

We �rst need to de�ne a high-level speci�cation for the user to
describe the desired nonlinear damping. In mechanical engineering,
the linear damping parameters are typically measured from a few
“unloading” tests, where the object is unloaded from some displace-
ments and the amount of energy dissipated per cycle is a measure
of the structure’s damping level. Similarly, we let the user control
damping at a high level, by prescribing the amplitude of an example
deformation after one oscillation cycle, for various initial ampli-
tudes. Therefore, for each example deformation i , we unload the
object with some user-prescribed initial displacement aixi , ai > 0,
and let the user prescribe the amplitude 0 ≤ bi ≤ ai that remains
after one oscillation cycle. The end of an oscillation cycle is detected
as the timestep when the deformation magnitude switches from
increasing to decreasing. We also enforce that the signal has to pass
through the origin twice in each oscillation cycle in case of local
peaks due to high-frequency vibrations. We note that the residual
amplitude after one oscillation cycle monotonically decreases as
the damping function γi increases (see Figure 9). It approaches the
minimum value of 0 when the system is strongly overdamped (γi is
very large). The maximum value of bi is reached when only arti�cial
damping exists in the system (γi = 0). With only one prescribed
(ai ,bi ) pair (an “unloading target”), linear damping alone is already
enough. To inversely design nonlinear damping, the user needs
to specify multiple unloading targets (a

j
i ,b

j
i ), j = 1, 2, . . . ,mi .We

model the nonlinear damping curve γi (χi ) using piecewise-linear
splines (see Figure 8, bottom-left), for reasons explained later. We
use aji as the x-axis coordinates of the control points (the “knees”
of the piecewise-linear splines) to cover the entire range of defor-
mations in the unloading tests. Each unloading test j of example
deformation i will add one spline control point (aji , log10 (γ

j
i )).We

optimize γ ji , for all examples i and all unloading tests j, to mini-
mize the di�erence to the user-prescribed residual amplitudes. We
express our optimization problem as

min
γ 1

1 , ...,γ
m1
1 , ...,γ 1

k , ...,γ
mk
k

1
2

k∑
i=1

mi∑
j=1

( f (γi ,aji )
b
j
i

− 1
)2
, (18)

where f (γi ,a
j
i ) is a black-box function which returns the amplitude

of the example deformation i after one oscillation cycle, under the
initial amplitude a

j
i , and based on the damping curve γi modeled

Fig. 8. User interface for inverse damping design. For each example,
the users sets a few (initial amplitude, amplitude a�er one cycle) targets.
Our optimizer then produces the nonlinear damping curve (bo�om-le�).

with the current values of γki , i = 1, . . . ,k, j = 1, . . . ,mi .We evalu-
ate the black-box function f using simulation. We use relative errors
so that errors at all unloading tests are given equal importance.

The optimization problem 18 is highly nonlinear and one could
potentially obtain the gradient using the adjoint method [Barbič
et al. 2009; McNamara et al. 2004]. However, exploiting the fact
that bi is a monotonic function of γi , we can simply optimize our
problem using bisection (Figure 9). We �rst discuss the case when
there is only one example deformation i with multiple unloading
targets (aji ,b

j
i ), j = 1, 2, . . . ,mi .We note that for an unloading task

with an initial amplitude a
j
i , only the control points in the range

[0,aji ] a�ect the simulation. Therefore, we sort the initial amplitudes
a
j
i in ascending order, and proceed to optimize the control points
(a
j
i , log10 (γ

j
i )), j = 1, 2, . . . ,mi , one at a time. We run several one-

cycle-oscillation simulations from each amplitude a
j
i , searching

for optimal log10 (γ
j
i ) using bisection. The previously optimized

parameters are all in the deformation range [0,aji ), and we keep
them �xed. If we were to use a Bézier spline to represent the damping
curve, the position of the control point (aji , log10 (γ

j
i )) will a�ect the

curve in the previously optimized deformation range; hence, we use
piecewise linear segments (Figure 8, bottom-left). We start with the
current damping parameters and compare the amplitude at the end
of one oscillation cycle to b

j
i . If larger, we increase γ ji to 1000 (our

upper limit), in order to properly bracket the true γ ji value. If the
residual amplitude still remains larger, we terminate withγ ji = 1000.
Similarly, if the residual amplitude is smaller than b

j
i , we decrease

γ
j
i to 0.001. Otherwise, we proceed via bisection, setting the next

log(γ ji ) using linear interpolation of the two previous values that
came closest to the target. We terminate the optimization when the
error is smaller than some threshold (we use 1%), or when reaching
an iteration limit (we use 15). Our employed constants are examples
that worked well for us, and can be adjusted by the user.

We use the same method to optimize all the damping curves when
there are multiple example deformations. However, the unloading
simulations of one example deformation may be coupled with the
damping curves of the other examples. Therefore, for cases with
multiple example deformations, we use block-coordinate descent
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Fig. 9. Illustration of inverse design. X-axis is the damping strength
γ (the unknown) for an example deformation of interest (Koala demo).
Single example deformation, single unloading test; hence there is a single
control point and γ is independent of the deformation magnitude in this
illustration. Y-axis gives the amplitude of the example deformation a�er
one oscillation cycle, for three separate initial amplitudes 1.0, 2.0, 3.0. For
each of these amplitudes, note that the fall of amplitude at γ = 0 is purely
due to artificial damping. The user specified that for the initial amplitude of
3.0, the amplitude a�er one oscillation cycle should be b = 2.45. We show
the iterations Si of the automatic search algorithm for γ .

optimization where we �x the all but one damping curve, optimize
that damping curve, and proceed round-robin until convergence.
In practice, we observe that the coupling is often weak, and we
typically reach convergence in just two iterations.

Our optimization method is applicable both to full and reduced
simulation. For interactive optimization performance, we choose
to use reduced simulation. Given the reduced simulation basis Φ ∈
R3n×r , we project all the example deformations X into reduced
space as X̃ = ΦTX ∈ Rr×k . Then, our reduced damping matrix is

˜̄C = γ (‖ũ‖2)
(
C̃ + Ũ

(
Π(χ1, χ2, . . . , χk ) − I

)
ŨT

)
˙̃u. (19)

Matrix C̃ = ΦTCΦ ∈ Rr×r gives reduced default damping. X̃ = Q̃R,
Ũ = C̃Q̃, and ũ, ˙̃u ∈ Rr are the reduced deformation and velocity.

6 COMPOSITE IMPLICIT INTEGRATION
In computer animation, we often choose implicit backward Eu-
ler [Bara� and Witkin 1998]) or implicit Newmark (trapezoidal
rule) [Wriggers 2002] for stable integration of equations of motion.
The trapezoidal rule is very popular, mainly because it dissipates
the energy lightly and achieves second-order timestep accuracy.
However, in nonlinear dynamic analyses, it can become unstable un-
der large deformations. Implicit backward Euler o�ers much better
simulation stability, but introduces excessive numerical damping.
A natural idea for stable and accurate integration is to combine a
lightly dissipative and a strongly dissipative integration scheme.

Following the idea of [Bathe 2007], we calculate the unknown dis-
placements, velocities and accelerations by considering the timestep
∆t to consist of two equal substeps of size ∆t/2. In the �rst half
sub-step, we employ the trapezoidal rule

u̇t+∆t/2 = u̇t +
∆t

4
(üt + üt+∆t/2) (20)

ut+∆t/2 = ut +
∆t

4
(u̇t + u̇t+∆t/2), (21)

to advance Equation 1 to time t + ∆t/2. Applying Newton-Raphson
iterations i = 1, 2, 3, . . . , we obtain( 16

∆t2 M +
4
∆t

C(i−1)
t+∆t/2 + K

(i−1)
t+∆t/2

)
∆u(i ) =

= fext − fint (u
(i−1)
t+∆t/2) −M

( 16
∆t2 (u

(i−1)
t+∆t/2 − ut ) −

8
∆t

u̇t − üt
)
−

−C(i−1)
t+∆t/2

( 4
∆t

(u(i−1)
t+∆t/2 − ut ) − u̇

)
, (22)

whereu(i )
t+∆t/2 = u(i−1)

t+∆t/2+∆u
(i ) . Velocity u̇t+∆t/2 and acceleration

üt+∆t/2 can be obtained via Equations 20 and 21, once the Newton-
Raphson method converges or reaches an iteration limit.

In the second half sub-step, the second-order implicit Euler back-
ward method [Hairer et al. 1993] is applied for stability as

u̇t+∆t =
1
∆t

ut −
4
∆t

ut+∆t/2 +
3
∆t

ut+∆t (23)

üt+∆t =
1
∆t

u̇t −
4
∆t

u̇t+∆t/2 +
3
∆t

u̇t+∆t . (24)

Each Newton-Raphson iteration of advancing Eq. 1 to t + ∆t is( 9
∆t2 M +

3
∆t

C(i−1)
t+∆t + K

(i−1)
t+∆t

)
∆u(i ) = fext − fint (u

(i−1)
t+∆t )−

−M
( 9
∆t2 u

(i−1)
t+∆t −

12
∆t2 ut+∆t/2 +

3
∆t2 ut −

4
∆t

u̇t+∆t/2 +
1
∆t

u̇t
)
−

−C(i−1)
t+∆t

( 3
∆t

u(i−1)
t+∆t −

4
∆t

ut+∆t/2 +
1
∆t

ut
)
, (25)

where u(i )
t+∆t = u(i−1)

t+∆t + ∆u(i ) , and we get the �nal velocity and
acceleration from Equations 23 and 24.

Although this composite integration scheme requires about twice
as much computational e�ort as the one-step integrators, it achieves
second-order accuracy. In particular, the method remains stable even
when the trapezoidal rule becomes unstable. Figure 10 shows that
even under a 2× larger timestep (and hence equal invested com-
putational e�ort), the implicit Bathe integrator still achieves the
same accuracy as the trapezoidal rule (Figure 10 (a)). Under nonlin-
ear dynamics, the trapezoidal rule can become unstable due to the
non-conserved energy and momentum. The Newmark method with
β > 0.25 (also called the generalized-α method) can improve stability,
but introduces numerical dissipation. Implicit Bathe integrator e�ec-
tively maximizes the dissipation of spurious high-frequency vibra-
tions without adding excessive numerical damping to low-frequency
deformations (Figure 10 (b)). Compared to the generalized-α method,
implicit Bathe produces much less arti�cial damping (Figure 10 (a)).

6.1 Linear System Solve for Implicit Integration
In our system, we modify the damping matrix C to our anisotropic
nonlinear damping matrix Ĉ, which unfortunately is a dense ma-
trix, and therefore we cannot directly use sparse linear solvers to
perform implicit integration during a timestep. However, from Equa-
tion 6, we observe that the modi�ed damping matrix Ĉ is actually
obtained by perturbing the default C with a low-rank (rank = k)
dense matrix U(Γ − I)UT . Therefore, we can employ the Woodbury
formula [Woodbury 1950] to solve the linear system as

(A +wUV)−1 = A−1 − A−1U(I/w + V A−1U)−1V A−1, (26)
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Fig. 10. Comparison of integration accuracy and stability. A beam is
unloaded from an initial displacement without any external damping. We
show the energy decaying curves under linear and nonlinear material in
(a), and the simulation frames in (b). We use 2× larger timestep for implicit
Bathe than the other integrators, to normalize the computational e�ort in
each timestep. Trapezoidal rule does not remove spurious high-frequency
vibrations and fails to remain stable under large timesteps for nonlinear
material. Our method remains stable and preserves energy without intro-
ducing excessive damping, unlike the implicit backward Euler or Newmark
with β > 0.25. The curves for implicit Bathe and trapezoidal methods are
on top of each other for linear material simulation.

where V = (Γ − I)UT and A is the system matrix (i.e., the left-hand-
side matrix) under default damping in Equations 22 (w = 4/∆t )
and 25 (w = 3/∆t ). In our work, we use the Pardiso linear system
solver.The main overhead for our system solve is that we need to
solve k + 1 linear systems, instead of just one linear system as in the
standard damping case. However, we can reduce the performance
overhead signi�cantly by prefactoring the matrix A with Cholesky
decomposition, and solving the k + 1 linear systems in parallel
(we use 16 threads, Table 1). We note that this construction is only
required for anisotropic damping. For isotropic nonlinear damping,
one can continue to solve a single linear system per timestep, as with
standard damping. For large-scale simulations, one could replace
the direct solver for an iterative solver. Because the system matrices
in Equations 22 and 25 are perturbed with low-rank matrices, it is
straightforward to explicitly multiply any vector with these system
matrices, as needed for iterative solvers. Preconditioning schemes
such as Jacobi or Gauss-Seidel are also easily possible, as one can
quickly construct the diagonal of the system matrix.

7 RESULTS
We demonstrate our method with several examples (Table 2). All
examples used an Intel Xeon E5-2690 PC (1st gen., 2 processors @

k 0 1 2 4 8 10
system solve (sec) 0.09 0.09 0.14 0.16 0.22 0.24
one timestep (sec) 0.14 0.15 0.19 0.23 0.31 0.32

Table 1. Performance under a di�erent number of example deformations
k . Full implicit Bathe simulation on Koala. If k is smaller than the number
of physical cores (which is o�en the case in practice), the computation time
increases sublinearly with k .

#tets #modes #examples method fps
Elephant 10,416 - 4 AF 3

Koala (forward) 11,080 74 4 NAR 110
Koala (inverse) 11,080 74 4 NAR 110

Dragon 8,252 - 1 NAF 5
Leaf 6,210 - 2 NAF 10

Table 2. Summary of results. Method column: N=nonlinear damping,
A=anisotropic damping, R=reduced simulation, F=full simulation.

2.90 GHz, each 8 cores), with 32GB of RAM. We �rst demonstrate
our example-based anisotropic damping on a walking elephant
(St.Venant-Kirchho� material). The artist rigged and keyframed the
walking motion in Maya. We add secondary physically based motion
to the trunk, ears and belly, using a constraint-driven FEM simula-
tion, similar to [Li et al. 2016]. We select the left-right and forward-
backward deformations of the trunk and the forward-backward
bending ears motion as the four example deformations (see Figure 11
(a)). For evaluation, we design three sets of anisotropic damping mod-
els. In the �rst model, we make the damping of the trunk along the
left-right example deformation 10× weaker, and the other direction
3× stronger. In the output motion, we can clearly see that compared
to default Rayleigh damping, our damping makes the left-right trunk
motion much more lively, while the forward-backward motion is
damped out much faster (Figure 11 (b)). Our second damping setting
reverses the damping scales of the two trunk motions. Therefore, the
trunk dynamics is “biased” into the direction of forward-backward
motion (Figure 11 (c)). In the third damping setting, we leave the
trunk at its default damping levels, but make the forward-backward
motion of the ears 3×more damped (Figure 11 (c)). We observed that
the initial acceleration of the forward-walking elephant brings the
ears to about the same large deformations, under both the default
and our damping. However, our damping causes the ear to more
slowly recover to the rest shape. In contrast, with default damping,
the ears are vibrating around the rest shape. Such example-based
anisotropic e�ects are di�cult to achieve with element-level strain-
rate damping [O’Brien and Hodgins 1999] because the example
deformations overlap in space in arbitrary ways.

In our second example, we forward-design the nonlinear damping
curve to match the real-world damping observed on a 3D-printed
dragon (Figure 12). We recorded a video of the recovery of the dragon
mouth from an initial large deformation. The TangoBlackPlus mate-
rial is very viscous, devoid of oscillations; its visual appearance can
be characterized as “overdamped”. We observe that, as the mouth
is released from a large deformation, it �rst quickly recovers by a
certain amount, and then slowly continues to recover back to the
rest shape. In order to match the dynamic behavior, we tuned the
mass, sti�ness and damping properties. We �rst set the mass density
(1008kд/m3) by dividing the weighted mass with the volume of
the tetrahedral simulation mesh. Next, we tune the elastic material,
by statically loading the real dragon mouth with 5 sets of loading
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Fig. 11. Anisotropic damping design for the walking elephant. Part
(a) shows the four chosen example deformations: le�-right deflection of
the trunk, forward-backward deflection of trunk, le� ear bending, right
ear bending. In parts (b,c,d), we specify a damping scale for each of the
four example deformations, and show four selected simulation frames. Our
method clearly produces the prescribed anisotropic damping e�ects.

forces (see Figure 12 (a)), and recording the static deformations with
a millimeter paper. We then manually �t the nonlinear spline-based
material curve [Xu et al. 2015b] such that the simulation matches
the real quasi-static tests, using trial and error. We then proceeded
to �tting the damping. First, we observed that the Rayleigh damping
model is insu�cient to match the recorded dynamics (Figure 12
(c)). We therefore model the dragon using our damping model, as
follows. We use one simulation frame as an example deformation,

Fig. 12. Fitting the elastic material and damping based on real-world
observations. We subjected this 3d-printed dragon (Stratasys TangoBlack-
Plus material) to several static force loads and adjusted the spline elastic
material curve[Xu et al. 2015b] to best match the resulting deformation. We
then adjusted the damping of the “open-mouth” example deformation, to
match the real-world reference dragon video (“ground truth”). This partic-
ular material is more damped under small deformations than under large
deformations. Such an e�ect is impossible to match using linear damping.
One can either try to match the ground truth damping under large defor-
mations, which causes small deformation damping to be visibly too weak,
or match small deformation damping, which causes the simulation to be
severely overdamped under large deformations. Our nonlinear damping can
be seen to match the ground truth well.

and then edit our nonlinear damping curve to model the observed
motion (Figure 12 (b)). Starting from default Rayleigh damping, we
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Fig. 13. Our damping applied to a rig-driven physically-based simulation [Xu and Barbič 2016]. The damping parameters can be adjusted once (done
in Figure 2), and then applied to an arbitrary number of physically based character simulations in real time. Part (a) shows the animation frames, whereas part
(b) removes the rig from display, showing only the secondary dynamics which shows our intended anisotropic and nonlinear damping e�ects.

edit the damping spline curve such that at large deformations, the
material is lightly damped. The magnitude of damping is made to
increase to a large value around the rest shape (Figure 12 (b)). With
our tuned mass, sti�ness and damping properties, we were able to
visually �t the observed dynamic behaviors closely.

We use our system to interactively perform forward and inverse
damping design for model-reduced simulations of the koala. We
select the left-right and up-down belly motion (Figure 2), and the
bending motion of each ear (Figure 7) as four example deformations.
In the forward design process, we edit the nonlinear spline damping
curve such that the ear and left-right belly motions are much less
damped than the default Rayleigh damping under small deforma-
tions, whereas for large deformations, they are made more damped
(Figure 2). We set the up-down direction of belly motion to be 10×
more damped, producing anisotropic damping e�ects on the belly.
The artist can obtain interactive design feedback by simulating the
koala (pulling with the mouse). The damping needs to be designed
only once, after which it can be applied to an arbitrary number of
simulation inputs, such as for example, arbitrary skeleton anima-
tion encountered, say, in a computer game. We demonstrate this by
applying the designed damping to a rig-driven FEM simulation [Xu
and Barbič 2016] (Figure 13), for several input skeleton motions
that were not used during the damping design. Under the designed
damping, the up-down motion of the belly is quickly damped during
the high koala jumps. Large left-right belly deformations quickly

dissipate to a small value, after which the belly continues to vi-
brate in the small deformation range for a long time, due to the
designed nonlinear damping curve. Similar dynamic behavior is ob-
served in the ears. We choose to illustrate inverse damping design
by producing a di�erent kind of a belly damping curve where large
deformations are less damped, but small deformations are subjected
to large damping (Figure 2). For the left-right belly motion, we set
the after-one-cycle residual amplitudes to 0.2, 0.75, when unloading
it from amplitudes of 0.8, 1.6, respectively. For the up-down belly
motion, the residual amplitudes are set to 0.25, 0.65, for the same
initial amplitudes as in the left-right motion. Our optimization is
able to reach these targets within 1% for all of the four unloading
tests in 5− 10 iterations. In simulation, the belly energy then decays
slowly under large deformations, but once the motion is mostly in
the small deformation region, it dissipates the energy much faster.

Our nonlinear damping e�ects are impossible to achieve with
linear damping. In Figure 2, we tried to approximate the nonlinear
damping e�ects using linear anisotropic damping. For the forward-
designed koala curve, we averaged the nonlinear damping curves,
essentially �attening the nonlinear curve into a constant-valued
line. We obtained the damping scales γ = 0.6, 10 for the two ex-
ample deformations. For the inverse-designed curve, we optimized
a single damping scale parameter for each example deformation
based on our 4 unloading tests. With optimized damping scales
γ = 6.4, 5.5 for the two example deformations, the linear damping
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Fig. 14. Leaf FEM simulation with nonlinear elasticity and damping.
(a) We fit the nonlinear material elasticity and the rest shape based on
the static equilibrium under gravity and external loads. (b) We impact the
leaf with external forces in three directions. From the decaying amplitude
curves and simulation frames, we can see that the dynamics along example
deformation 1 (up-down, blue) is more damped than in the other direction
(sideways, red). The amplitudes decay nonlinearly. The nine images show
our simulation results.

model can achieve one-cycle oscillation amplitudes 0.22 (12% error),
0.47 (37% error), 0.27 (7% error), 0.53 (19% error) for the 4 unload-
ing targets, respectively. The amplitudes in linear damping must
decay exponentially with constant rates, and therefore damping
envelopes with non-constant rates cannot be reproduced (Figure 2).

In our last example (Figure 1), we �t the anisotropic nonlinear
damping curves to model the leaf vibration of the Carrotwood tree
(Cupaniopsis anacardioides). We observed that when the leaf vi-
brates, the sideways (i.e., left-right) motion is much more lively than
the up-down motion. Nonlinear damping e�ects can also be seen,
especially in the up-down direction, where the motion �rst quickly
gets damped and then vibrates for a few cycles with small ampli-
tudes. To reproduce this nonlinear anisotropic damping e�ects, we
�t both the nonlinear material and damping curves. Similar to our
dragon example, we �rst measure the mass density (135kд/m3) and
then manually tune the spline-based material curves using trial and
error, such that the FEM simulation matches the camera-recorded
leaf deformations under gravity and external loads (0, 1, 2, 3 gram,
Figure 14 (a)). We recover the rest shape of the leaf after tuning
the material, by running reverse gravity simulation. We iterate to

tweak the spline material curve and the rest shape until convergence.
Then, we select the �rst two linear vibration modes as example de-
formations; �rst mode vibrates up-down, and second mode vibrates
left-right. We then �t the two damping curves based on unloading
tests (Figure 1). Each direction has a small-deformation and a large-
deformation unloading test. We note that the leaf has low mass
and therefore the air drag in the up-down direction is prominent.
Therefore, we model our damping to be nonlinearly dependent on
the velocity magnitude. Based on our �tted damping curves, we can
clearly see that the damping in the up-down direction is larger than
in the left-right direction, which explains the anisotropic damping
e�ects. Consistently with the air drag force, we obtain an increasing
nonlinear damping curve for the up-down direction, i.e., damping
scales superlinearly with velocity. However, for the left-right mo-
tion, which is subjected both to structural damping and a smaller
amount of air drag, our experiment produced a damping curve that
decreases with velocity. We then use our �tted material and damping
in a FEM simulation, producing nonlinear and anisotropic vibration
e�ects close to real-world leaf motion (Figure 14 (b)).

8 CONCLUSION
We gave a method to design example-based linear or nonlinear
damping properties for solid three-dimensional deformable models
simulated using the Finite Element Method. We start with the fa-
miliar Rayleigh damping, and then permit the user to modify the
damping strength along each of a few chosen example deformations.
We proved that our damping is dissipative, and generalizes Caughey
damping. We also gave an intuitive system to model nonlinear
damping properties using easily tunable one-dimensional splines.
We demonstrated a high-level inverse interface whereby the user
controls the damping simply by prescribing the initial and residual
amplitudes of one-cycle unloading simulations. We compared our
method to Rayleigh damping and demonstrated visual e�ects impos-
sible with Rayleigh damping, but possible with our method. We also
introduced an implicit integrator with good stability and damping
properties, suitable for removing high-frequency oscillations while
only causing a minimal amount of numerical damping.

Our example-based constructions requires solving several linear
systems at each timestep; however, this is mitigated by the fact
that Cholesky decomposition during each timestep needs to be per-
formed only once, and the multiple right-hand sides can then be
solved in parallel. Our example magnitude coe�cients χi are lin-
ear in the deformation u, and therefore nonlinear damping may
not be modeled precisely under large rotations. We do not model
non-viscous properties which may require modeling viscoelastic
functions that depend on states at several previous timesteps. Al-
though we can model damping e�ects that depend nonlinearly on
u and u̇, our system models only a subset of all possible damping
relationships; further exploration of this space is left for future work.
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A C-ORTHOGONALITY
For the symmetric non-negative de�nite matrix C, two vectors
x,y are C-orthogonal (by de�nition) if xTCy = 0. A vector is C-
normalized if xTCx = 1. Mathematically, this concept is identical
to the more familiar mass-orthogonality commonly used in com-
puter simulation (see, e.g., [Barbič and James 2005]), except that
mass-orthogonality uses the mass matrix. In a C-weighted QR de-
composition X = QR, the matrix Q is C-orthogonal. We calculate it
using the standard QR algorithm (Gramm-Schmidt), except that all
inner products xT y are replaced with C-weighted products xTCy.

B NON-NEGATIVE DEFINITENESS OF Π

Let the eigenvalues and their orthogonal eigenvectors of the sym-
metric matrix (Π̄+ Π̄

T
)/2 be λi and vi , for i = 1, . . . ,k ; assume that

the �rst p are negative, for 0 ≤ p ≤ k . Let y ∈ Rk be an arbitrary
vector; expand it as y =

∑k
i=1 αivi . Then,

yT
(
Π̄ −

p∑
i=1

λivi ⊗ vi
)
y = yT

( Π̄ + Π̄T

2
−

p∑
i=1

λivi ⊗ vi
)
y =

= yT
( k∑
i=p+1

λivi ⊗ vi
)
y =

k∑
i=p+1

λiα
2
i ≥ 0. (27)
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