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About me

FROM mathematics,

TO computer graphics,
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Physically Based Modeling

acm Transactions
on Graphics
|

Anything one man can imagine,
other men can make real.
Jules Verne




Deformable object simulations

Vertices: 41361
Triangles: 59630

Task: Compute the dynamic deformations of the
bridge under given external forces.




Rendered triangle mesh
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Real-time deformable objects

30 Hz for graphics

1000 Hz for force
feedback

44100 Hz for sound

Difficult ! [Barbic and James, SIGGRAPH 2005]

Real-time simulation
65 microsec / timestep
Speedup: 108,000x




Surgery simulation
(artist illustration)

Can the components of
this Boeing 777 landing
gear be assembled?
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Make bridges deformable?
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Jurij Vega (1754-1802)
Slovenian mathematician,
physicist and artillery officer

Vega FEM:

A free physics library to simulate
3D nonlinear deformable objects




* Free and open source
(BSD license), both for
academia and industry

* 50,000 lines of C/C++ code

* No required external
dependencies

* Released Aug 6, 2012

http://www.jernejbarbic.com/vega




Authors of Vega

 Jernej Barbic
(8 years of development)

* Fun Shing Sin

 Daniel Schroeder

http://www.jernejbarbic.com/vega




Deformable Models in Vega

e Linear FEM [Shabana 1990]

e Co-rotational linear FEM
[Mueller and Gross 2004]

Also with exact stiffness matrix
[Barbic 2012] [Chao et al. 2010]

* |nvertible FEM Irving et al. 20
[Teran et al. 2005

e Saint-Venant Kirchhoff FEM
* Mass-spring Systems




Deformable Models in Vega

* All models provide
internal elastic forces, AND
tangent stiffness matrices, in
ANY deformed configuration

* All models include support for
multi-core CPU computing

* All models support non-homogeneous
material properties




Integrators in Vega

* I[mplicit Newmark [Wriggers 2002]
* Central differences [Wriggers 2002]

* Implicit Backward Euler [Baraff and Witkin 1998]

« Symplectic Euler

 others can be added easily




Vega is modular

* All deformable models can be used
independently of each other, and of the
integrators

 All integrators can be used independently
of each other and of the deformable
models




Materials in Vega

e | inear materials

* Neo-Hookean

* Mooney-Rivlin

* Arbitrary isotropic
nonlinear materials
easily supported




Elements in Vega:
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Sparse Linear Solvers:

 Jacobi-preconditioned

Conjugate Gradients (iterative solver)
“‘without the agonizing pain” [Shewchuk 1994]

* PARDISO (direct solver)

« SPOOLES (direct solver)




Demo Application Screenshot

M O Invertible StVK | implicitBackwardEuler | Elements: 2591 | DOFs: 2877 | 15.0 Hz | Defo CPU Load: 70% Controls

Deformahle object cumpliance:l 600 3
Force kernel size:| 3 =
Freguency scaling:l 1.0 =

- Newmark integrator parameters
v Link Beta and Gamma

Betal 0.25 i{
Gammal 0.5 ﬂ

[~ Static solver only

- Damping

Mass-proponional| 0.0 =
Stiﬂ’ness—proportionall 0.01 =

Stop deformations |

- Timestep control
[~ Sync with graphics

Timestep [sec]l 0.01 =
Suhsteps per timestep|1 =

- Mouse huttons:
Left + drag: apply force

Middle + drag: zoom infout

Right + drag: rotate camera

Keys “e’, 'E’, " toggle mesh display

- Perfarmance [sec]:
Force assembly: 0.0173395
System solve (PARDISO): 0.0129537

J. Barbic, F. 5. Sin, D. Schroeder
ChU, MIT, USC, 2005-2012

. Exit program |
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Real-time Interaction




Inversion Handling

timestep=1/249,600 s



Vega: Nonlinear FEM
Deformable Object Simulator

Funshing Sin’, Daniel Schroeder’2, Jernej Barbi¢'

1University of Southern California, USA
2Carleton College, USA

Fun Shing Sin, Daniel Schroeder, Jernej Barbic:
Vega: Nonlinear FEM Deformable Object Simulator,
Computer Graphics Forum, to appear, 2012

http://www.jernejbarbic.com/vega



Direct Solver vs PCG

-e- Pardiso, E = 1e3 N/m?
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* PCG solver times
depend on:
material stiffness,
convergence threshold




Why PCG times depend on stiffness

« System matrix
has the form:

A=k, M+ k, K

(for some constants k, , k,)

» As material is made stiffer, k, grows, and the K
term becomes dominant in A ==
A becomes more poorly conditioned =)
more CG iterations are needed




Limitations of Vega and Future Work

 Cutting / fracture

* Collisions must be handled externally

» Shells (cloth) and strands

* Model reduction
(already released separately)




Vega Live [
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Online Course Notes:

http://www.femdefo.org

(or, Google “Jernej Barbic”)




Model Reduction

HIGH

A technique to simplify DIMENSIONAL

simulations of systems SYSTEM
described by Ordinary u
Differential Equations Model

Reduction

Vi

* Project high-dimensional LOW
equations to low-dimensional | 5\ ENSIONAL

equations SYSTEM




Model Reduction

+ Faster computation

+ Lower memory footprint

- Approximation only




Projection-based Model Reduction

A high-dimensional ODE: 1 = F (U, 1,1 )

u=Ugqg

I
Pre-multiply with U

V
Low-dimensional q p— UTF(Uq, Uq, t)

approximation:

Elasticity, fluids, voltages, etc.




Other Names for
Projection-Based Model Reduction

* “Principal Orthogonal Directions”
method (POD)

» Subspace integration




Model Reduction Outside of
Computer Graphics

e Electric circuits

» Electromagnetics
[Carlberg and Farhat 2010]

» Microelectromechanical systems

» Aeronautics: Navier-Stokes equations,
coupled fluid-structure problems

36




Model Reduction Outside of
Computer Graphics

* Mostly linear
systems

* Low-dimensional
input,
low-dimensional
output




In Computer Graphics:

high-dimensional output (object shape)

!

need different reduction methods
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Model Reduction of

Linear Systems




Notation:
Deformation Vector (3D meshes)

 Contains the 3D deformation vectors
for all the mesh vertices




Linear Equations of Motion
of 3D Solid Deformable Object (shabana 1990]

Mii+ Du+ Ku = f(t)

u = deformation vector

M = mass matrix

D = damping matrix
K = stiffness matrix

f(t) = external forces




Linear Equations of Motion
of 3D Solid Deformable Object (shabana 1990]

Mii+ Du+ Ku = f(t)

3D linear continuum mechanics + FEM

Widely used (e.g., earthquake simulation)
Captures transient waves

Supports small deformations only
High-dimensional; no reduction

Slow for very complex meshes (supercomputeéll’?)s)




Applying Model Reduction to
Mii+ Du+ Ku = f(¢)

Express deformation vector u as:

u=Uqg

Ir reduced

coordinates
3n = 3nxr

r << 3n

( for some appropriately chosen basis matrix U )

44




Columns of U are deformation
basis vectors

Mode 1 =
= Column 1 of U




What is a good choice

of basis?




Linear Modes

Linear Modes
k =4 shown

« Shapes with the least resistance to deformation

 “Natural’” deformations of a structure

* Depend on boundary conditions (fixed vertices)




Linear Modes

Linear Modes
k =4 shown

* Only good for small deformations

 |n the k — 3n limit, one obtains the full linear model

Mii+Du+ Ku = f(t)




Linear Modes




Linear Modes are Shapes with the
Least Resistance to Deformation

For a given amount of deformation,

subject to fixed vertices,

which shape increased the elastic

strain energy by the least amount?




Linear Modes are Shapes with the
Least Resistance to Deformation

 Measure mesh displacement:

<M U, U> = “total amount of displaced mass”

u = deformation vector

Note: <U, U2 is not a good measure!

+ Measure (linearized) strain energy: /2<K u, u>




Linear Modes are Shapes with the

Least Resistance to Deformation

Vv = argmin < Ku,u >
u, <Mu,u>=1

VH = arg min < Ku,u >
uul y , <Mu,u>=1

V3 = arg min < Ku,u >
wyul y,ulyr, <Mu,u>=1




Linear Modes in Computer Graphics

[Pentland and [James and Pai 2002] [Hauser, Shen,
Williams 1989] O’Brien 2003]




Applications of Linear Modes

Fast deformable object simulation
(games, virtual surgery, fast previewing)

Modeling of deformed shapes
(interactive design of
animations) -

Force feedback
rendering / haptics

Sound simulation




Computing Linear Modes

Remove rows and columns corresponding to fixed
vertices from K and M

=) K M

Solve generalized eigenvalue problem:

Can use ARPACK (free eigensolver)

A=w? w=2T1/T, T=oscillation period




ARPACK

* Free eigensolver for large sparse matrices:

AX=ABXx

* Arnoldi iteration
« Danny C. Sorensen, Rice University, mid-1990s

* http://www.caam.rice.edu/software/ARPACK/




ARPACK

* Works very well

« Written in Fortran; compiles (today) without much

difficulty

e Compilation instructions for Windows:

http://www.jernejbarbic.com/arpack.html




When no fixed vertices: “free-fly” modes

Useful for free-flying objects

First six modes correspond to:

all rigid translations (3 modes), and

all infinitesimal rotations (3 modes) -
—d _
‘w

Zero frequency ‘

[Hauser, Shen,

These modes are often discarded O Brien 2003238




Large Modal Deformation Factory

View: Linear modes Mode: 1 [3! Frequency [cycles/s]: 0.000008 Amplitude: 0.142
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Use Linear Modes for Reduction
Mii+ Du+ Ku = f(t)

Substitute # = Uq
Project U’

§+U'DUG+Aqg=U" f(1)

Reduced Equations of Motion

60




Independent modal oscillators

 If D=a M+ 3 K(Rayleigh damping),
then U'DU is diagonal.

i+Cq+Ag=U" f(t)

lDecoupIes

Gi + Cigi + Aigi = fi(t)

Decoupled 1D modal oscillators 61




Integrating modal oscillators

Gi + Cigi + Aigi = fi(t)

Fast (1D simulation)

Can use any numerical
Integrator

Over-damped vs under-damped, '
depending on damping strength

Exact integration possible

using lIR filters
[James and Pai 2002]




Linear modal simulation




Collision Detection for
Reduced Deformable Models

BD-Tree [James and Pai 2004]

undeformed deformed




Collision Detection for
Reduced Deformable Models

BD-Tree [James and Pai 2004]

BD-Tree (undeformed) BD-Tree (deformed)




Correcting Artifacts of Large Deformations
Deformation Warping

Two flavors: [Choi and Ko 2005], [Huang et al. 2011]

] ll
lr..wi"'
"l\'l“,u‘ ‘t

’Jl "! .4!
.‘\ Hinn f;:f
T

f &
’Hm llrlllH'lI
I J’f;-n T N
L ; s wn AERaN g
I I, AR g3 R
!fl!ﬂ,' T IET T
’ iR igsi gl
'! 5. igh

no warping with warping




Software for model reduction
(by Jernej Barbic)

Compute linear modes for any
tet mesh or triangle mesh

Compute modal derivatives
Compute the basis

Compute cubic polynomials
Timestep reduced models at runtime
Avalilable at:

www.jernejbarbic.com/code




Live Demo:

Computing Linear Modes




Live Demo:

Building a Reduced

Nonlinear Simulation
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Model Reduction of

Nonlinear Deformations




Motivation

linear nonlinear



3D Continuum Mechanics + FEM:
Equations of Motion [Euler, Lagrange]

Mii+ Dui + fine(u) = fext(t)

 y = deformation vector

« Supports large deformations
* Nonlinear




Mii+ Dui + fine(u) = fext(t)

High-dimensional system of ODEs
Not real-time for large models

How to approximate
it for interactive
applications ?




Reduced equations of motion

Mii+ Du+ fin(u) = fext(t)

ISubstitute u = Ug
Project U’
§+U"DUGHU" fin(Uq) = U" fexi()

Reduced Equations of Motion

75




Unreduced

Mii+ Dit+ fini(u) = fext(?)

« High-dimensional (e.g. 3n =75,000)

Reduced
G§+U"DUGH+UT fi0(Uq) = U fuxe(2)

« Low-dimensional (e.g. r = 30)




Reduced internal forces:

];int(Q) — UTfint(UQ)

slow to evaluate




Assumption:
Large strain + linear material
(“geometrically nonlinear FEM”)

]Fint(Q) — UTfint(UQ) —

) 'Barbic and James 2005]

P,(q) r cubic polynomials
: in components of g

Coefficients depend on:
* object geometric shape
* material properties

78




How to select the basis [/ ?

u = Ugq

Basis must capture typical
nonlinear deformations




Motion basis selection

0. Example motion [Krys| et al. 2001]

1. Recorded user interaction
[Barbic and James 2005]

2. Modal Derivatives (automatic)
[Barbic and James 2005]




Motion basis from modal derivatives

Linear Modes
k=4 shown

* Linear modes only good for very small
deformations




Modal derivatives are
nonlinear corrections

to linear modes
[Idelsohn and Cardona 1985]

The “twist” linear mode Modal derivative cancels
and artifacts for large volume growth

deformations

82




Basis—,

Runtime simulation:
Modal Derivatives, r= 2




[Barbic and James 2005]

Motion basis from modal derivatives

Scale by frequency

\ Scale by frequency pair

Mass-scaled
PCA

l

Basis of motion U




Comparison:
Full simulation vs reduced simulation

Unreduced Modal derivatives
3n=11094 k=6, r=12

Computation time: 10 hours Computation time: 0.71 sec

50,000x faster
85




Spoon experiment accuracy plot

full simulation —&—

basis from full motion, r=12
modal derivatives, k=6, r=12 ----m--
sketch, r=12 - -+ -
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Modal Derivatives

fint(u) — f

What load causes a displacement aligned
with mode y, ?

Answer:
f=2 Moy,

Proof:
fine(;) = K = A My,




Modal Derivatives
For any p “ IRk ;

fint(u(p)) = MUyjin Ap

This defines a function u = u(p).

Taylor series:

Modal
derivative




Slmpllfled Heart (modal derivatives)
r=30; 1.4 msec; speedup = 21,000x




MU'thOdy dynamics (modal derivatives)

512 baskets (r=35), 1.2 sec / time-step
BD-Tree for collision detection




Nonlinear materials + reduction

« StVK cubic polynomial scales as O(r4)
(r = #modes)

« Can approximate reduced forces and reduced
stiffness matrix in O(r3) time, using
numerical cubature [An, Kim and James 2008]

« Supports arbitrary nonlinear materials




Nonlinear materials + reduction

Single Impulse Test

[An, Kim and James 2008] -




Combining full simulation
with model reduction [Kim and James 20091

« Adaptively decides whether to take a full step or

reduced step, at runtime === online model
reduction

 Makes it possible to throftle the simulation
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HaptICS (Greek; pertaining to the sense of touch)

« User feels forces
generated by the
haptic device.

* Requires high
simulation

update rates
(1000 Hz)

=

[Barbic and James 2005]




Haptic rendering of distributed contact

* Runs at 1000 Hz:
deformable dynamics +

collision detection +
contact force computation.

Adapts contact force
accuracy to computer speed

[Barbic and James 2008]




Warm GD: 2000 | Tree: 109121 Temper., 0-2: 04% 08% 05%
9 zsed: 0003 Temper. 3-5: 03% 05% 07%
. Forces [N1: 0.00 0.00 0.00
Torgues [mNml: O O O

Virtual
assembly
(aircraft
geometry)
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Deformable vs
deformable
contact

Deformable dragon and

Five-level hierarchical
pointshell

256,000 points
15-dim deformation basis

deformable dinosaur

Deformable distance field
256x256x256

5 domains, 40 proxies total
15-dim deformation basis

2

the domains
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Real-time tracking controller
(using Linear Quadratic Regulators)

Offline simulation
(scripted forces + stochastic wind)

3

[Barbic and
Popovic
2008]




Real-time tracking controller
(using Linear Quadratic Regulators)

Bee lands on the flower

[Barbic and

Popovic Ny
2008] s Fixed trajectory

Controlled
deformable object




Uncontrolled

[Barbic and
Popovic
2008]




Multibody dynamics with self-collision detection
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[Barbic and
James 2010]




Model Reduction + FEM +
Domain Decomposition

« Decompose the object
« Simulate each domain using reduction
* Couple the domains
* Two approaches:
* Via polar decomposition gradients [Barbic and Zhao 2011]

» Via inter-domain spring forces [Kim and James 2011]

104
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Detail [Barbic and Zhao 2011]

Domains




Space Station [Barbic and Zhao 2011]
dynamics: 75 fps, 2500x speedup

107,556
voxels

48 domains

921 DOFs

107




Model Reduction + FEM +
Domain Decomposition

Via inter-domain spring forces

[Kim and James 2011]
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