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About me 

•  Assistant professor in CS 
at Univ. of Southern California 
in Los Angeles 

•  Post-doc at MIT 

•  PhD, Carnegie Mellon University 
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About me 

•  Background: 
BSc Mathematics 
PhD Computer Science 

•  Research interests: 
graphics, animation, real-time physics,  
control, sound, haptics 
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About me 

 FROM mathematics,  

 TO computer graphics, 

 TO mechanics. 
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Computer  
simulation 

Computer  
graphics and 

animation 

Applied 
math Haptics 
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Physically Based Modeling 

Anything one man can imagine,  
other men can make real.  
Jules Verne 
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Deformable object simulations 

Task: Compute the dynamic deformations of the  
bridge under given external forces. 
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35,000 DOFs, 2000 timesteps 
Blue vertices = fixed 

Deformable objects are  
computationally challenging 

Non-interactive simulation 
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Real-time deformable objects 

•  30 Hz for graphics 

•  1000 Hz for force 
feedback 

•  44100 Hz for sound 

•  Difficult !!!  [Barbic and James, SIGGRAPH 2005] 

Real-time simulation 
65 microsec / timestep 
Speedup: 108,000x 
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Applications 

Can the components of 
this Boeing 777 landing  
gear be assembled? 

Surgery simulation 
(artist illustration) 

Make bridges deformable? 

[Source: Boeing] 

[Source: UW Dept of Surgery] 

[Source: Crytek (Far Cry)] 



11 

Outline 

• Vega FEM 

•  Introduction to Model Reduction 

• Linear Modal Analysis 

• Model Reduction of Nonlinear 
Deformations 

• Applications of Model Reduction 
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Vega FEM: 

A free physics library to simulate 
3D nonlinear deformable objects 

Jurij Vega (1754-1802) 
Slovenian mathematician, 
physicist and artillery officer 
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Vega 
•  Free and open source 

(BSD license), both for 
academia and industry 

•  50,000 lines of C/C++ code 

• No required external 
dependencies 

• Released Aug 6, 2012 

http://www.jernejbarbic.com/vega 13 
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Authors of Vega 

• Jernej Barbic 
(8 years of development) 

• Fun Shing Sin 

• Daniel Schroeder 

http://www.jernejbarbic.com/vega 14 
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Deformable Models in Vega 

•  Linear FEM [Shabana 1990] 

• Co-rotational linear FEM  
[Mueller and Gross 2004] 
Also with exact stiffness matrix  
[Barbic 2012] [Chao et al. 2010]  

•  Invertible FEM  [Irving et al. 2004]  
 [Teran et al. 2005] 

•  Saint-Venant Kirchhoff FEM  
• Mass-spring Systems 
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Deformable Models in Vega 
•  All models provide  

internal elastic forces, AND 
tangent stiffness matrices, in 
ANY deformed configuration 

•  All models include support for 
multi-core CPU computing 

•  All models support non-homogeneous 
material properties 16 
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Integrators in Vega 

•  Implicit Newmark [Wriggers 2002] 

• Central differences [Wriggers 2002] 

•  Implicit Backward Euler [Baraff and Witkin 1998]  

• Symplectic Euler  

• others can be added easily 

17 



18 

Vega is modular 

• All deformable models can be used 
independently of each other, and of the 
integrators 

• All integrators can be used independently 
of each other and of the deformable 
models 

18 
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Materials in Vega 

• Linear materials 

• Neo-Hookean 

• Mooney-Rivlin 

• Arbitrary isotropic  
nonlinear materials  
easily supported 

19 
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Elements in Vega: 

• Tetrahedral 

• Cubic 

20 
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Sparse Linear Solvers: 

• Jacobi-preconditioned  
Conjugate Gradients (iterative solver) 
“without the agonizing pain” [Shewchuk 1994] 

• PARDISO (direct solver) 

• SPOOLES (direct solver) 

21 
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Demo Application Screenshot 
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Real-time Interaction 
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Inversion Handling 
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Fun Shing Sin, Daniel Schroeder, Jernej Barbič:  
Vega: Nonlinear FEM Deformable Object Simulator,  
Computer Graphics Forum, to appear, 2012 

http://www.jernejbarbic.com/vega 
25 
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Direct Solver vs PCG 

• Direct solver 
times are 
constant 

• PCG solver times 
depend on: 
material stiffness, 
convergence threshold 

26 
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Why PCG times depend on stiffness 
•  System matrix 

has the form: 

A = k1 M + k2 K 
(for some constants k1 , k2) 

•  K is much more poorly conditioned than M 

•  As material is made stiffer, k2 grows, and the K 
term becomes dominant in A  
A becomes more poorly conditioned 
more CG iterations are needed  27 
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Limitations of Vega and Future Work 

• Cutting / fracture 

• Collisions must be handled externally 

• Shells (cloth) and strands  

• Model reduction 
(already released separately)  

28 
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Vega Live Demo 

29 
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Outline 

• Vega FEM 

•  Introduction to Model Reduction 

• Linear Modal Analysis 

• Model Reduction of Nonlinear 
Deformations 

• Applications of Model Reduction 



Online Course Notes: 
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http://www.femdefo.org 

(or, Google “Jernej Barbic”) 
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Model Reduction 

•  A technique to simplify  
simulations of systems  
described by Ordinary  
Differential Equations 

•  Project high-dimensional  
equations to low-dimensional  
equations 

HIGH  
DIMENSIONAL 

SYSTEM 

LOW  
DIMENSIONAL 

SYSTEM 

Model  
Reduction 

32 
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Model Reduction 

+ Faster computation 

+ Lower memory footprint 

-  Approximation only 

33 
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Low-dimensional 
approximation: 

Pre-multiply with 

A high-dimensional ODE: 

Projection-based Model Reduction 

Elasticity, fluids, voltages, etc.  
34 
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Other Names for  
Projection-Based Model Reduction 

•  “Principal Orthogonal Directions”  
method (POD) 

• Subspace integration 

35 
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Model Reduction Outside of  
Computer Graphics 

• Electric circuits 

• Electromagnetics 

• Microelectromechanical systems 

• Aeronautics: Navier-Stokes equations, 
coupled fluid-structure problems 

[Carlberg and Farhat 2010] 
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Model Reduction Outside of  
Computer Graphics 

• Mostly linear  
systems 

• Low-dimensional  
input,  
low-dimensional  
output 

input  
voltage 

output  
voltage 
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high-dimensional output (object shape) 

need different reduction methods 

In Computer Graphics: 

38 
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Outline 

• Vega FEM 

•  Introduction to Model Reduction 

• Linear Modal Analysis 

• Model Reduction of Nonlinear 
Deformations 

• Applications of Model Reduction 
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Model Reduction of 
Linear Systems 
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Notation: 
Deformation Vector (3D meshes)  

•  Contains the 3D deformation vectors 
for all the mesh vertices 

3n 

1 

3n 

1 

. . . 
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Linear Equations of Motion 
of 3D Solid Deformable Object 

•  u = deformation vector 

•  M = mass matrix 
•  D = damping matrix 
•  K = stiffness matrix 
•  f(t) = external forces 

[Shabana 1990] 

. . . 



Linear Equations of Motion 
of 3D Solid Deformable Object 

•  3D linear continuum mechanics + FEM 
•  Widely used (e.g., earthquake simulation) 
•  Captures transient waves 
•  Supports small deformations only 
•  High-dimensional; no reduction 
•  Slow for very complex meshes (supercomputers) 

[Shabana 1990] 

43 



44 

Applying Model Reduction to 

Express deformation vector u as: 

= 3n x r 3n 

r 

r << 3n 

( for some appropriately chosen basis matrix U ) 

reduced 
coordinates 
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Columns of U are deformation  
basis vectors  
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What is a good choice 
of basis? 
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Linear Modes 

Linear Modes 
k = 4 shown 

•  Shapes with the least resistance to deformation 

•  “Natural” deformations of a structure 

•  Depend on boundary conditions (fixed vertices) 
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Linear Modes 

Linear Modes 
k = 4 shown 

•  Only good for small deformations 

•  In the k       3n limit, one obtains the full linear model 
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Linear Modes 
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Linear Modes are Shapes with the 
Least Resistance to Deformation 

For a given amount of deformation, 

subject to fixed vertices, 

which shape increased the elastic 

strain energy by the least amount? 
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Linear Modes are Shapes with the 
Least Resistance to Deformation 

•  Measure mesh displacement: 

½<M u, u> = “total amount of displaced mass” 

 Note: <u, u> is not a good measure! 

•  Measure (linearized) strain energy: ½<K u, u> 

. . . 
u = deformation vector 
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Linear Modes are Shapes with the 
Least Resistance to Deformation 
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Linear Modes in Computer Graphics 

[Hauser, Shen,  
O’Brien 2003] 

[James and Pai 2002] [Pentland and 
Williams 1989] 
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Applications of Linear Modes 

•  Fast deformable object simulation 
(games, virtual surgery, fast previewing) 

•  Modeling of deformed shapes 
(interactive design of  
animations) 

•  Force feedback  
rendering / haptics 

•  Sound simulation 
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Computing Linear Modes 

•  Remove rows and columns corresponding to fixed 
vertices from K and M 

•  Solve generalized eigenvalue problem: 

•  Can use ARPACK (free eigensolver) 

•  λ = ω2,  ω = 2 π / T,  T = oscillation period 

K,  M 
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ARPACK 

•  Free eigensolver for large sparse matrices: 

A x = λ B x 

•  Arnoldi iteration 

•  Danny C. Sorensen, Rice University, mid-1990s 

•  http://www.caam.rice.edu/software/ARPACK/ 
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ARPACK 

•  Works very well 

•  Written in Fortran; compiles (today) without much 
difficulty 

•  Compilation instructions for Windows: 

http://www.jernejbarbic.com/arpack.html 
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When no fixed vertices: “free-fly” modes 

•  Useful for free-flying objects 

•  First six modes correspond to: 

all rigid translations (3 modes), and  

all infinitesimal rotations (3 modes) 

•  Zero frequency 

•  These modes are often discarded 
[Hauser, Shen, 
O’Brien 2003] 
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Free-fly Modes 
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Use Linear Modes for Reduction 

Reduced Equations of Motion 

Substitute 
Project 



61 

Independent modal oscillators 

Decoupled 1D modal oscillators 

•  If D = α M + β K (Rayleigh damping),  
then UTDU is diagonal. 

Decouples 
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Integrating modal oscillators 

•  Fast (1D simulation) 

•  Can use any numerical  
integrator 

•  Over-damped vs under-damped,  
depending on damping strength 

•  Exact integration possible  
using IIR filters 
[James and Pai 2002] 

time 
am

pl
itu

de
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Linear modal simulation 

[James  
and Pai  
2002] 
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Collision Detection for  
Reduced Deformable Models 

[James and Pai 2004]"BD-Tree 

undeformed deformed 
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Collision Detection for  
Reduced Deformable Models 

[James and Pai 2004]"BD-Tree 



66 

Correcting Artifacts of Large Deformations : 
Deformation Warping 

•  Two flavors: [Choi and Ko 2005], [Huang et al. 2011] 
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Software for model reduction 
(by Jernej Barbic) 

•  Compute linear modes for any  
tet mesh or triangle mesh 

•  Compute modal derivatives 

•  Compute the basis 

•  Compute cubic polynomials 

•  Timestep reduced models at runtime 

•  Available at: 

www.jernejbarbic.com/code 
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Live Demo:  

Computing Linear Modes 
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Live Demo:  

Building a Reduced  
Nonlinear Simulation 
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Outline 

• Vega FEM 

•  Introduction to Model Reduction 

• Linear Modal Analysis 

• Model Reduction of Nonlinear 
Deformations 

• Applications of Model Reduction 



Model Reduction of 
Nonlinear Deformations 

71 
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Motivation 
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3D Continuum Mechanics + FEM: 
Equations of Motion 

•  u = deformation vector 

•  Supports large deformations 
•  Nonlinear 

[Euler, Lagrange] 

. . . 
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How to approximate  
it for interactive 
applications ? 

High-dimensional system of ODEs 
Not real-time for large models 
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Reduced equations of motion  

Reduced Equations of Motion 

Substitute 
Project 
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•  Low-dimensional (e.g. r = 30)   

•  High-dimensional (e.g. 3n = 75,000)       

Reduced 

Unreduced 
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Reduced internal forces: 

slow to evaluate 



78 

Assumption: 
Large strain + linear material 

(“geometrically nonlinear FEM”) 

r cubic polynomials  
in components of q 

Coefficients depend on: 
•  object geometric shape 
•  material properties 

[Barbic and James 2005] 
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How to select the basis       ? 

Basis must capture typical  
nonlinear deformations 
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Motion basis selection 

0.  Example motion 

1.  Recorded user interaction 

2.  Modal Derivatives (automatic) 

[Krysl et al. 2001] 

[Barbic and James 2005] 

[Barbic and James 2005] 
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Motion basis from modal derivatives 

Linear Modes 
k=4 shown 

•  Linear modes only good for very small 
deformations 
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Modal derivatives are  
nonlinear corrections 

to linear modes 

The “twist” linear mode 
and artifacts for large  
deformations 

Modal derivative cancels 
volume growth 

[Idelsohn and Cardona 1985] 
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Runtime simulation: 
Modal Derivatives, r = 2 

Basis 
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Motion basis from modal derivatives 

Mass-scaled  
PCA 

Basis of motion 

Scale by frequency pair 

Scale by frequency 

[Barbic and James 2005] 
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Comparison: 
Full simulation vs reduced simulation 

Computation time: 0.71 sec  
50,000x faster 

Computation time: 10 hours  
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Spoon experiment accuracy plot 
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Modal Derivatives 

What load causes a displacement aligned 
with mode ψi ? 

Answer: 
f = λi M ψi 

Proof: 
fint(ψi) ≈ K ψi = λi M ψi 
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Modal Derivatives 
For any                      :  

This defines a function u = u(p). 

Taylor series: 

Modal 
derivative 
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Simplified Heart (modal derivatives) 
r =30; 1.4 msec; speedup = 21,000x 
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Multibody dynamics (modal derivatives) 

512 baskets (r = 35), 1.2 sec / time-step 
BD-Tree for collision detection 



Nonlinear materials + reduction 
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•  StVK cubic polynomial scales as O(r 4) 
(r = #modes) 

•  Can approximate reduced forces and reduced 
stiffness matrix in O(r 3) time, using 
numerical cubature [An, Kim and James 2008] 

•  Supports arbitrary nonlinear materials 



Nonlinear materials + reduction 

92 
[An, Kim and James 2008] 



Combining full simulation  
with model reduction [Kim and James 2009] 

93 

•  Adaptively decides whether to take a full step or 
reduced step, at runtime            online model 
reduction  

•  Makes it possible to throttle the simulation 
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Outline 

• Vega FEM 

•  Introduction to Model Reduction 

• Linear Modal Analysis 

• Model Reduction of Nonlinear 
Deformations 

• Applications of Model Reduction 
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Haptics (Greek; pertaining to the sense of touch) 

•  User feels forces 
generated by the 
haptic device. 

•  Requires high  
simulation 
update rates  
(1000 Hz) 

[Barbic and James 2005] 
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Haptic rendering of distributed contact 

•  Runs at 1000 Hz: 

deformable dynamics +  
collision detection + 
contact force computation. 

•  Adapts contact force 
accuracy to computer speed 

[Barbic and James 2008] 
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Virtual 
assembly 
(aircraft 

geometry) 

Both forces  
and torques 
rendered. 
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Deformable vs  
deformable 

contact 
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Optimal Control Using  
the Adjoint Method 

[Barbic,  
da Silva and 
Popovic 
2009] 
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Real-time tracking controller 
(using Linear Quadratic Regulators) 

[Barbic and 
Popovic 
2008] 
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[Barbic and 
Popovic 
2008] 

Real-time tracking controller 
(using Linear Quadratic Regulators) 
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Uncontrolled 

[Barbic and 
Popovic 
2008] 
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[Barbic and  
James 2010] 

Multibody dynamics with self-collision detection 
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Model Reduction + FEM + 
Domain Decomposition 

[Barbic and Zhao 2011] 

•  Decompose the object 

•  Simulate each domain using reduction 

•  Couple the domains 

•  Two approaches: 

•  Via polar decomposition gradients 

•  Via inter-domain spring forces [Kim and James 2011] 
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Model Reduction + FEM + 
Domain Decomposition 

[Barbic and Zhao 2011] 

 Via polar decomposition gradients 
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Detail [Barbic and Zhao 2011] 
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Space Station 
dynamics: 75 fps,  2500x speedup 

107,556 ���
voxels	



48 domains	



921 DOFs	



[Barbic and Zhao 2011] 



Via inter-domain spring forces 

108 [Kim and James 2011] 

Model Reduction + FEM + 
Domain Decomposition 



Acknowledgments 

•  National Science Foundation 
(CAREER-53-4509-6600) 

•  Eftychios Sifakis  

•  Yili Zhao 

109 


