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6-DoF Haptic Rendering of Static Coulomb
Friction Using Linear Programming
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Abstract—Simulating frictional contact between objects with complex geometry is important for 6-DoF haptic rendering applications.
For example, friction determines whether components can be navigated past narrow clearances in virtual assembly. State-of-the-art
haptic rendering of frictional contact either augments penalty contact with frictional penalty springs, which do not prevent sliding and
cannot render correct static friction, or uses constraint-based methods that have difficulties in meeting the stringent haptic loop
computation time requirements for complex geometry. We give a 6-DoF Coulomb friction haptic rendering algorithm for distributed
contact between rigid objects with complex geometry. Our algorithm is compatible with the fast point vs implicit function penalty-based
contact method such as the Voxmap-PointShell method. Our algorithm incorporates the maximal dissipation principle and produces
correct static friction, all the while inheriting the speed of penalty-based methods. We demonstrate our algorithm on several challenging
6-DoF haptic rendering examples.

Index Terms—haptics, penalty contact, friction, feasibility test
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1 INTRODUCTION

VIRTUAL assembly and simulation of real-world engineer-
ing tasks using haptics is challenging due to the stability,

accuracy and fast computation requirements. A key bottleneck
in realistic haptic rendering of complex geometry is accurate
and efficient collision modeling. Recent methods in haptics have
achieved stable haptic rendering with complex collision environ-
ments. Among them, penalty contact forces [1], [2], [3], [4] and
static virtual coupling [5] are two commonly used techniques
that can provide fast computation with acceptable physical re-
alism. However, Coulomb friction whereby objects do not slip
unless friction cone thresholds are exceeded has remained too
computationally intensive for complex geometry. Friction is an
important component of the haptic experience and plays a crucial
role in determining whether manufactured parts can be assembled
successfully or not.

Two common approaches to modeling distributed contact are
the penalty-based and constraint-based methods. Distributed con-
tact here refers to general, complex contact between two rigid ob-
jects with complex geometry, varying spatially and temporally, and
usually consisting of several collision sites with varying sizes and
orientations. The penalty method computes collision forces based
on penetration depths or volumes, whereas the constraint method
applies equality or inequality constraints to remove penetrations,
usually performed by solving linear complementarity problems
(LCP). Constrained-based modeling gives correct contact results,
but is generally slow for complex geometry. The penalty method is
easy to implement and scales well with complex scenes at haptic
rates, at the cost of reduced accuracy. The majority of the friction
literature adopts Coulomb’s law to model the complex physical
frictional interaction. One popular approach extends the normal
penalty contact forces by adding anchors and penalty friction
springs [6]. It inherits the simplicity and speed of penalty-based
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methods, but since it uses a spring to model static friction, correct
static friction cones cannot be simulated; objects will slide even
under very small forces.

In contact mechanics literature, it is generally accepted that an
exact approach for friction is to model both the normal contact and
friction as constraints, resulting in a nonlinear complementarity
problem (NCP). Although the approximation of the friction cone
using inscribed friction polygons [7] reduces the complexity to
a LCP, the constraint framework is generally computationally
expensive for complex geometry, limiting its distributed contact
haptic applications. So, the question that we aim to answer in
our paper is, “How do we simplify/approximate exact friction
methods, so that we still obtain plausible static Coulomb friction,
and are able to scale to haptic rates with complex geometry?”
Given the success of frictionless penalty-based methods for com-
plex geometry at haptic rates such as the VPS method [1], [2]
and general point-vs-implicit function 6-DoF haptic rendering [3],
[4], it is natural to wonder if proper Coulomb friction can be
somehow added to such methods. In this work, we demonstrate
such an approach. In order to accelerate LCP methods, one has
to somehow remove the complementarity. For complementarity of
the normal contact force and normal velocity, we do this by using
the penalty forces (call this ingredient A). For complementarity
between friction forces and tangential velocities, we achieve this
using our linear programming approach (call this ingredient B).
We would like to emphasize that both A and B are necessary
in order to avoid the complementarity nature of the optimization
problem to solve at each timestep. While we do not claim to be
as accurate as the friction methods of Stewart and Trinkle [8],
Kaufman [9] or Duriez [10], our method is an improvement over
friction methods that were previously available for haptic rates
with complex geometry (Yamane’s method [6]).

We give a new friction algorithm that can compute correct
static Coulomb friction and that runs at haptic rates even for
complex geometry and more than one hundred contacts. Our
algorithm uses the penalty-based method for normal contact forces
and can be easily added to standard state-of-the-art penalty-based
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methods for 6-DoF haptic rendering of complex geometry, such as
the VPS method [1], [2], [3], [4]. Because the manipulated object
dynamics is not of primary concern in virtual assembly, we use
static virtual coupling [5]. Static virtual coupling does not model
rigid body dynamics. It models the velocity as always being zero,
and always places the object in static equilibrium under the virtual
coupling, normal contact and frictional contact forces.

Our work demonstrates how to combine the rapid penalty-
based contact forces with Coulomb frictional inequality con-
straints and the maximal dissipation principle. At first glance,
Coulomb friction seems incompatible with both the penalty
method and fast computation, as it is not obvious how to combine
penalty forces in any meaningful way with constraint-based con-
tact, and because Coulomb friction leads to quadratic optimization
problems (QP) or linear complementarity problems (LCPs) that
are slow to solve for complex geometry. We demonstrate how
to use penalty forces as normal contact forces in a stable way
(thereby removing them from optimization, boosting speed) and
how to replace the quadratic static friction optimization program
for a linear program (LP). The linear program is much faster
to solve, which enables good scaling of our method under an
increasing number of contacts. Our algorithm runs faster than 1
msec with about 100 contact points (Figure 1), which is about 50⇥
faster than the state-of-the-art constraint-based friction approaches
(Figure 15). Because we can achieve haptic rates (1,000 Hz)
directly, we do not need to use multirate simulation. We prove that
for static friction, the solution to our linear program is equivalent
to the original quadratic program. We are not aware of this obser-
vation being made previously anywhere in the contact literature.
Using Coulomb static friction, we augment virtual assembly with
the ability to discover that certain insertion paths are impossible
under high friction, but possible with small (or zero) friction. We
experimentally demonstrate that such effects cannot be achieved
with Yamane’s penalty-based friction [6]. When our linear pro-
gram is infeasible, this provably means that the static friction is
too weak to keep the object motionless. In such configurations,
we then use static damping [11] to simulate dynamic friction-like
effects and improve haptic simulation stability.

We do not model dynamic friction in our work. Our goal is to
provide plausible static Coulomb friction for complex geometry
at haptic rates. Constraint-based methods do not run at haptic
rates for complex geometry. The existing state of the art for
friction for complex geometry at haptic rates is the Yamane’s
method [6]. Although Yamane’s friction is very fast, it has a
substantial limitation: the objects do not stay still, but slide already
under arbitrarily small forces. Our work improves upon this: in
our work, if the object is undergoing static friction at all contacts,
it will not slide. We note that we define the precise meaning of
undergoing static friction at all contacts in Section 4; and this
definition matches the familiar expected intuition. However, if the
friction coefficient(s) at some contact(s) is/are too low for static
friction to occur at all contacts, then in the real-world, the object
will slide at those contacts. This is where our method differs from
the ground truth: in our method, we slide at all contacts, not just
the ones where the friction was inadequate. However, this is still a
substantial improvement over the Yamane’s method, which always
slides, even under tiny forces when the object is undergoing static
friction. In Section 5.6, we perform an extensive comparison to
Yamane’s method. We observe that there is a substantial differ-
ence in allowing penalty-based compliance in both normal and
tangential directions (as in Yamane’s work [6]), versus allow it

Fig. 1: Scalability of our friction algorithm. The total time spent
on collision detection and static Coulomb friction computation is
under than 1 msec for 100 contact points. This figure corresponds
to the cube (256⇥ 256⇥ 256 signed distance field) vs 90-degree
corner (7,772 points, 8-level nested point shell) example (Sec-
tion 5.4).

only in the normal direction (as in our work). In the real world,
normal contact forces originate from normal compliance, namely
deformations of the contact site in the normal contact direction. In
contrast, friction forces do not originate from any such tangential
compliance or tangential deformation. Instead, they originate from
many micro-contacts on the serrated contact site geometry, which
collectively add to completely block the motion, without any
deformations, unless the friction cone constraints are exceeded.
Therefore, there is a substantial difference in the nature of normal
and tangential compliances, which warrants a different treatment
for the two directions.

2 RELATED WORK

A survey of haptic rendering can be found in [12] and we also
refer the reader to [13] for a good introduction of several com-
monly used haptic rendering algorithms. Many techniques exist
for efficient haptic rendering of contact. To achieve fast collision
detection, McNeely [1] introduced the Voxmap PointShell method
(VPS), followed by several VPS improvements [14], [15]. Barbič
and James [3] proposed using signed distance fields and nested
point trees for improved collision quality and speed. To lessen the
problems caused by too many contacts, contact clustering [16],
[17], [18], [19] and adaptive contact stiffness scaling [4] can be
applied, making the contact more tractable and robust. Virtual
coupling [2], [5] is often used to stabilize haptic rendering and
reduce penetration. Direct force rendering is also used in some
publications [16], [20]. Most of the 6-DoF haptic rendering meth-
ods apply to contact between rigid objects, whereas some work
studied deformable objects [10]. Otaduy [21] simulated collisions
between a rigid tool and a deformable environment. Barbič and
James [3] and Kaufman [9] simulated deformable objects in the
model-reduced space. Tournier [22] developed a stable method to
allow some compliance for constraint-based contact.

The penalty method has a long history in physically based
simulation [23]. Due to their simplicity, penalty forces [2], [3], [4]
are commonly used to resolve collisions at haptic rates. Several
recent publications [24], [25] on penalty forces stabilized their
collision response. Yamane [6] demonstrated how to add friction
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to penalty-based forces, by modeling friction as penalty forces as
well. After normal penalty forces are computed, Yamane’s friction
forces are generated from virtual springs for static friction, or
according to Coulomb’s law under dynamic friction. Yamane’s
method is very fast, but cannot model correct Coulomb static
friction: virtual frictional springs cannot keep the object static
under static friction because the object must move a bit to stretch
the virtual friction spring so that a friction force can appear.
Constraint-based methods are more involved. Based on Coulomb’s
friction law, Baraff [26] developed a rigid body contact and
friction algorithm that is based on the contact point accelera-
tions. Mirtich [27] observed that the previous acceleration-level
formulations do not always lead to a unique solution and proposed
an impulse-based method to address this. Impulse-based methods
have been widely used [28], [29]. When no friction is modeled,
the constraint problem can be stated as an LCP. It can be extended
to model friction via the Coulomb’s friction law. This can be
performed at the position or velocity level [30], as done in the
popular Stewart and Trinkle velocity-based formulation familiar
to the audience in interactive simulation [8] (see also [31]). The
friction cone approximation is used to linearize the constraints,
at the cost of introducing additional degrees of freedom to the
LCP. We note that LCPs are in general not equivalent to linear
programs (LP). The LCP-LP equivalence is known for a special
class of matrices, called “Z-matrices” [32], but the LCP for
a friction problem does not lead to “Z-matrices” and hence it
cannot be solved using such techniques. Duriez [10] proposed an
iterative Gauss-Seidel-like algorithm to solve the nonlinear friction
constraints directly. Because the Signorini’s friction law is not
perfect and may give indeterminate solutions, Kaufman [9] and
Drumwright [33] used the principle of maximum dissipation to
compute a well-defined and unique friction. They cast the friction
problem as a quadratic programming (QP) problem. Kaufman
solved it via staggered projections and a convex QP solver, using
the QL library [34]. Constraint-based methods are usually slower
than penalty-based methods, so a multirate framework can be
used to allow the contact force computation to run at a lower
rate than the haptic computation [21], [35]. Multirate simulation
comes at a cost of decreased haptic fidelity. Different from all
these prior methods, we do not need to use multirate simulation.
We utilize the penalty method for normal contact forces, but use
a constraint method for static friction. Our novel combination
greatly accelerates static Coulomb friction.

3 BACKGROUND: PENALTY-BASED CONTACT
AND STATIC VIRTUAL COUPLING

Our penalty contact model uses a nested point shell and a signed
distance field to perform collision detection between two rigid
bodies [3]. During collision detection, we check points from the
point shell against the distance field. When the distance value of a
point is negative, we label it in contact and apply a penalty normal
force and torque to it,

Fn =�kndN, tn = r⇥Fn, (1)

where kn is the normal contact stiffness, d < 0 is the penetration
depth, and N,r 2R3 are the contact normal and the torque handle.
The penetration depth d is obtained from a precomputed signed
distance field [36]. We use precomputed (rigidly rotated with the
object) contact normals on the point shell. We utilize the adaptive

(a) Using penalty forces (b) Using constraint forces

Fig. 2: Flexibility and tolerance of penalty-based contact vs
constraint-based contact. When the peg size is slightly larger
(1%) than the hole size, the constraint-based method prevents the
peg from entering into the hole, due to the strict non-deformable
and non-penetration property. However, much like in many real
structures, the penalty method is able to simulate the assembly
process by modeling a small (adjustable) compliance.

stiffness method [4], which improves stability of contact render-
ing. The penalty model requires less time to resolve contact than
constraint-based methods. The gradients of the normal contact
force and torque have been given in [25],

∂Fn

∂x
=�knNNT ,

∂Fn

∂w
=�∂Fn

∂x
· [r]⇥, (2)

∂tn

∂x
= (

∂Fn

∂w
)T +[Fn]⇥,

∂tn

∂w
= [r]⇥ · ∂Fn

∂w
, (3)

where [r]⇥ represents a skew-symmetric matrix

[r]⇥ =

2

4
0 �r3 r2
r3 0 �r1
�r2 r1 0

3

5 . (4)

We note that in constraint-based methods, friction does not
affect the insertability of the object into complex geometry. In
other words, for constraint-based methods, the object is either
insertable for all coefficients of friction (including infinite), or
not insertable at all. This is because the constraint-based methods
do not permit any penetration. Suppose that an insertion with a
constraint-based method is possible, but involves contact (call it
“original simulation”). Then, the user can always perform exactly
the same insertion trajectory with zero contact forces and torques,
by navigating the manipulandum so that the change in the virtual
coupling forces and torques relative to the original simulation
equals the contact forces and torques in the original simulation.
Therefore, the value of the friction coefficient does not change
insertability with constraint-based methods. For both position-
based and velocity-based rigid body constraint-based methods,
the insertion simulations are hampered because the tiny contact
deformations cannot be mimicked by non-penetrable constraints.
In contrast, our penalty-model can simulate a certain level of
compliance, mimicking the real-world effect that objects are not
rigid in contact, but bend and dent somewhat to accommodate in-
sertion. We know from practical every day experience that friction
coefficient matters for insertability into tight spaces. Our penalty-
based approach gives the simulation such compliance (Figure 2),
and makes insertability dependent on the friction coefficient.
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We now briefly explain static virtual coupling, which we adopt
because it decreases penetration and stabilizes simulation. There
are two copies of the manipulated object, the manipulandum object
and the simulation object. By moving the arm of a haptic device,
the user can move and rotate the manipulandum object. Rigid body
simulation is performed on the simulation object, and collision
detection is performed between the simulation object and the rigid
environment. Three types of forces are applied to the simulation
object: the virtual coupling force Fvc, the normal contact force Fn
and the friction force Ff . Accordingly, there are three types of
torques, the virtual coupling torque tvc, the normal contact torque
tn and the friction torque t f . We use impedance control in this
work: at each haptic cycle, we read positions and orientations
from the device, and calculate and set the forces and torques.
The position and orientation of the manipulandum object are read
from the haptic device, and then the virtual coupling force Fvc and
torque tvc are computed by

Fvc = kvc(xm � xs), (5)
tvc = kvc,tor(wm �ws), (6)

where xm and xs are the translations of the manipulandum and
simulation object, respectively, and equivalently for wm and ws
for rotations. Parameters kvc and kvc,tor are the virtual coupling
force and torque stiffness. One then performs collision detection
to calculate the normal contact forces and torques, and their
gradients. The standard way of using static virtual coupling [3],
[5] is to then compute the change of translation Dx and rotation
Dw of the simulation object, by solving the 6⇥6 linear system of
equations,

F +
∂F
∂x

Dx+
∂F
∂w

Dw +Ff = 0, (7)

t + ∂t
∂x

Dx+
∂t
∂w

Dw + t f = 0, (8)

F = fvc +Â
i

Fi
n, t = tvc +Â

i
t i

n. (9)

Force F is the sum of the virtual coupling force and all the normal
contact forces gathered at all contact points, and equivalently
for the torque t. Finally, one completes the haptic cycle by
updating the position and the rotation of the simulation object
by x = x+ Dx,w = w + Dw. The above 6⇥ 6 linear system of
Equations 7-8 postulates that the friction forces Ff and torques Tf
are known. Prior to our work, this has typically been done by com-
puting them using Yamane’s penalty-based friction method [6]. In
our work, we do not solve the 6⇥6 linear system of Equations 7-
8. Instead, we modify the static friction formulation to support
Coulomb static friction (Section 4). We do so by defining and solv-
ing a linear program that is a generalization of the linear system of
Equations 7-8, and that becomes equivalent to Equations 7-8 when
the friction coefficient is zero. Our linear program simultaneously
solves for the friction forces and the change of translation Dx and
rotation Dw.

4 STATIC FRICTION VIA LINEAR PROGRAMMING

For static friction, Coulomb’s law states

Ff ? Fn, (10)
kFf k2  µkFnk2, (11)

where Fn and Ff are the normal contact force and friction force,
respectively, µ � 0 is the friction coefficient, and k ·k2 is the L2-
norm. We linearize the friction inequality constraint (Equation 11)

by approximating the friction cone with a `-sided pyramid (Fig-
ure 3), for some integer `� 3,

Ff = buTu +bvTv = T b , (12)
bu cosq j +bv sinq j  µkFnk, j = 0,1, . . . ,`�1, (13)

where q j = (2 j + 1)p/`, vectors Tu,Tv 2 R3 are the two tan-
gential directions at contact, T = (Tu Tv) 2 R3⇥2 and b = (bu
bv)T 2 R2. Equation 13 requires the projection of Ff on direction
(cosq j,sinq j) to be smaller or equal to µkFnk. Different from
previous friction constraints which are written using ` unknowns
(impulse magnitudes), ` inequalities that constrain the impulse
magnitudes to be non-negative and one “general” inequality con-
straint (the friction cone constraint) [9], we use two unknowns
bu,bv (friction force components on two tangential directions) and
` “general” inequality constraints. We note that, geometrically in
terms of permitted friction forces, our discretized friction cone is
the same as in [9], scaled by the constant factor cosq0, which we
prove in the theorem below. Note that as `! •, cosq0 ! 1, i.e.,
the two friction cones converge to each other. Compared to [9], our
friction cone formulation decreases the number of unknowns, at
the expense of making the inequalities general linear inequalities
(i.e., of the form Âaixi � 0), as opposed to coordinate inequalities
(i.e., of the form xi � 0). In our work, this results in faster solves
because the computation time of our linear programming problem
is more sensitive to the number of unknowns than the number of
constraints.

Fig. 3: 8-sided (`= 8) friction pyramid. The red circle represents
the original friction cone of exact Coulomb friction, whereas the
8-sided polygon bounded by the 8 blue straight lines represents
the approximated friction cone. We also label the linear equations
on two of the straight lines.

Theorem: Our approximate friction cone defined by Equa-
tions 12-13 is identical to the friction cone of [9], geometrically
scaled by cosq0, i.e., defined by the following equations,

Ff =
`�1

Â
i=0

biTi, (14)

Ti = (cosji)Tu +(sinji)Tv, i = 0,1, . . . ,`�1, (15)
ji = 2pi/`, (16)

`�1

Â
i=0

bi  µkFnk/cosq0, (17)

bi � 0, i = 0,1, . . . ,`�1. (18)
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Proof: Suppose Ff satisfies Equations 12-13. Because Ti are
sorted counter-clockwise, there exists i 2 [0,`) such that Ff “lies
between” consecutive vectors Ti and T(i+1)%`, defined mathemati-
cally as

(Ff ⇥Ti) ·N  0  (Ff ⇥T(i+1)%`) ·N, (19)

where ⇥ and · denote cross and dot products, respectively, and %
denotes the integer remainder, and N is the contact normal. We
now prove that the following solution satisfies Equations 14-18,

bi = (Ff ⇥T(i+1)%`) ·N/sinj1 (20)
b(i+1)%` =�(Ff ⇥Ti) ·N/sinj1, (21)
b j = 0, for j /2 {i, (i+1)%`}, (22)

where i comes from Equation 19. It is easy to verify that bi
satisfy Equations 14-15. Because of Equation 19, bi also satisfy
Equation 18. Finally, we verify Equation 17:

`�1

Â
i=0

bi = bi +b(i+1)%` = Ff ⇥ (T(i+1)%`�Ti) ·N/sinj1

= Ff ⇥
⇣
(cosji+1 � cosji)Tu +(sinji+1 � sinji)Tv

⌘
·N/sinj1

= (buTu +bvTv)⇥ (�2sinqi sinq0Tu +2cosqi sinq0Tv) ·N/sinj1

= (2cosqi sinq0buN +2sinqi sinq0bvN) ·N/sinj1

= 2sinq0(cosqibu + sinqibv)/(2cosq0 sinq0)

 µkFnk/cosq0. (23)

Conversely, for any Ff that satisfies Equations 14-18, for any
j 2 [0,`), we have

Ff =
`�1

Â
i=0

biTi =
`�1

Â
i=0

bi cosjiTu +
`�1

Â
i=0

bi sinjiTv, (24)

bu =
`�1

Â
i=0

bi cosji, bv =
`�1

Â
i=0

bi sinji, (25)

µkFnk �
`�1

Â
i=0

bi cosq0 �
`�1

Â
i=0

bi cosq j�i

=
`�1

Â
i=0

bi(cosji cosq j + sinji sinq j)

= bu cosq j +bv sinqi. (26)

Therefore, Ff also satisfies Equations 12-13. ⌅
The maximal dissipation principle [37] states that friction

maximizes the rate of negative work of all forces, or, equivalently,
minimizes the kinetic energy at the end of the timestep,

Ekinetic =
1

2Dt2 (DxT MDx+DwT IDw), (27)

where M, I 2 R3⇥3 are the mass matrix and inertia tensor. Be-
cause our goal is to augment penalty-based methods with static
Coulomb friction, we assume that the normal contact forces are
already determined in the usual way (penalty method), and are not
themselves subject to optimization. We determine static friction

Fig. 4: Virtual assembly with friction. The left picture shows
the car engine virtual assembling setup, with the car starter engine
(highlighted) inserted in the engine. The right pictures show the
contact forces on the starter motor from two different views. The
red and orange lines denote normal and frictional contact forces,
respectively.

forces by combining Equations 7, 8, 12, 13 and 27, which yields
the following quadratic program (Equations 28-31)

min
b ,Dx,Dw

1
2
�
DxT MDx+DwT IDw

�
, subject to (28)

F +
∂F
∂x

Dx+
∂F
∂w

Dw +T b = 0, (29)

t + ∂t
∂x

Dx+
∂t
∂w

Dw +Rb = 0, (30)

b i
u cosq j +b i

v sinq j  µkFi
nk for all i, j, (31)

where i runs over all contacts i = 0, . . . ,k � 1 (k = #contacts),
and j = 0, . . . ,`� 1 runs over all sides of the friction pyramid.
Force F is the sum of virtual coupling and normal contact forces,
whereas torque t gives the equivalent summation for torques. We
denoted T = (T 0, ...,T k�1) 2 R3⇥2k, R = (R0, ...,Rk�1) 2 R3⇥2k,
b = (b 0

u ,b 0
v , ...,b k�1

u ,b k�1
v )T 2R2k, where Ri = [ri⇥T i

u ri⇥T i
v ].

Note that the constraints given by Equations 29-31 are feasible,
as b = 0 always satisfies them; hence the given quadratic opti-
mization problem is feasible. The case b = 0 corresponds to not
applying any friction. In this case, Equations 29 and 30 uniquely
determine Dx and Dw. This special case corresponds to standard
frictionless static virtual coupling [5].

In this work, we are not interested in dynamic friction, as we
are primarily concerned with virtual assembly haptic rendering
applications (Figure 4). Our manipulated object is always in static
equilibrium under the virtual coupling, normal and friction contact
forces. We use static virtual coupling and do not simulate dynamic
effects. Therefore, we designed our friction algorithm so that
it detects whether all contacts are undergoing static friction; if
not, this means that the object is undergoing dynamic friction
and therefore we exclude friction from the static equilibrium
computation. Intuitively, an object is undergoing static friction if
the friction cone threshold is not activated at any contact, i.e., the
inequality constraints of Equation 31 are not “active”.

Definition: Mathematically, we define the object to be in static
friction if there exists a solution (b ,Dx,Dw) to the optimization
problem of Equations 28-31 with the property that (b ,Dx,Dw)
also solves the optimization problem defined by Equations 28-30,
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i.e., the solution does not change if we remove Equation 31. We
can now state and prove our main result.

Theorem: An object is in static friction if and only
if the following linear program for the unknown variables
(b ,Dx,Dw,l1,l2) is feasible (Equations 32-37):

MDx+
�∂F

∂x
�T l1 +

�∂t
∂x

�T l2 = 0, (32)

IDw +
� ∂F

∂w
�T l1 +

� ∂t
∂w

�T l2 = 0, (33)

T T l1 +RT l2 = 0, (34)

F +
∂F
∂x

Dx+
∂F
∂w

Dw +T b = 0, (35)

t + ∂t
∂x

Dx+
∂t
∂w

Dw +Rb = 0, (36)

b i
u cosq j +b i

v sinq j  µkFi
nk for all i, j. (37)

Furthermore, if the linear program is feasible, then for any feasible
solution (b ,Dx,Dw,l1,l2), the triple (b ,Dx,Dw) minimizes the
quadratic program of Equations 28-31. We note that for feasibility,
the specific objective function of the LP is not important; hence,
we do not state it.
Proof: Suppose the object is in static friction. Then, by definition,
there exists a solution (b ,Dx,Dw) to the optimization problem
of Equations 28-30 that also satisfies Equation 31. By using the
technique of Lagrange multipliers for the optimization problem of
Equations 28-30, it follows that there exist Lagrange multipliers
l1,l2 2R3 such that Equations 32-34 are satisfied. Because Equa-
tions 31 and 37 are the same, it follows that (b ,Dx,Dw,l1,l2)
is a feasible solution of the linear program of Equations 32-
37. Conversely, suppose (b ,Dx,Dw,l1,l2) is a feasible solution
of the linear program of Equations 32-37. Then, (b ,Dx,Dw)
minimizes the optimization problem of Equations 28-30. Because
Equations 31 and 37 are the same, (b ,Dx,Dw) also satisfies
Equation 31. This means that (b ,Dx,Dw) also minimizes the
quadratic optimization problem of Equations 28-31, i.e., object
is in static friction. ⌅

Fig. 5: Comparison of the computational cost of LP vs QP.
The blue line shows that the numbers of contacts is 98 for both
methods. The red line shows that on average, QP (5.15ms) is 6.1⇥
slower than LP (0.85ms). Cube vs 90-deg corner example.

In each haptic cycle, we first read the position and orientation
of the device and set this as the manipulandum object’s position.
Then, we perform discrete collision detection between the mov-
able simulation object and the fixed environment. This gives us the
contacts and the penalty normal contact forces. Then, we use our
linear programming model to compute the friction forces and the
new static equilibrium position of the simulation object. We do
so by solving the linear program of Equations 32-37. We note
that the constraint matrix formed by expressing Equations 32-
37 in a matrix form is sparse. This is because the inequalities

of Equation 37 only have two non-zero entries for each row
of Equation 37. The number of non-zero entries is linear in k.
This speeds up the SNOPT linear program solver. If there is
a feasible solution, we displace the virtual object according to
Dx and Dw. Otherwise, we apply no friction and calculate Dx
and Dw via static equilibrium, defined by Equations 29 and 30.
After updating the position of the simulation object, we send the
computed virtual coupling force and torque to the device. Since the
Lagrange multipliers are only applied to the six-dimensional static
equilibrium constraints (Equations 32, 33), but not the friction
cone constraints, the size of our LP does not grow much compared
to the original QP. Our LP method achieves a 6x speedup over QP
(Figure 5).

4.1 Avoiding Stickiness
In some configurations (Figure 6), the static friction could cause
spurious sticking forces, acting against separation of contact. This
is due to our hybrid algorithm where the normal contact forces are
determined using penalty forces and are not optimized, whereas
the friction is optimized. For example, when the user tries to
lift the box in Figure 6, the non-zero penalty forces at contact
points create non-zero friction forces which counter-balance the
upward virtual coupling force. To avoid such cases, we amend
the friction model by removing friction forces at contact points
that are separating while the normal contact force is preserved. To
determine whether a contact is separating or not, we first pretend
that there is no friction and compute the predicted displacement of
all the contact points under the static virtual coupling and normal
contact forces, using Equation 29 and 30 where we set b = 0.
If the angle between the predicted contact point displacement
and the outward contact normal is smaller than 90 degrees, and
at the same time the angle between the predicted contact point
displacement and the direction of the virtual coupling force is less
than 90 degrees, we label this contact as separating. Only the non-
separating contacts enter the linear program of Equations 32-37;
we apply no friction at the separating contacts.

4.2 Static Damping
Physically, when static friction is not strong enough to keep the
object motionless, dynamic friction should be applied to reduce
the kinetic energy. However, since our model does not model
dynamics or dynamic friction, the sliding object may jump to the
static equilibrium target location rapidly from one haptic cycle
to another. The motion can be made smoother by adding static
damping to the static virtual coupling model. In each haptic cycle
with collisions, after computing Dx and Dw as described in Sec-
tion 4, we use (1�a)Dx and (1�a)Dw as our final displacements.
The parameter a 2 [0,1) controls the amount of static damping.
The higher the a , the higher the “dynamic friction” felt by the
user. With static damping, the object will slide more slowly and
converge to the static friction equilibrium (defined by a = 0).
In our experiments, we found a = 0.6 to be a good value that
keeps the simulation stable and the virtual coupling force smooth.
For each haptic cycle without collisions, we do not apply any
static damping, and directly use the translation and rotation results
from the static virtual coupling equilibrium. We note that static
damping could be applied also to cycles without collisions, but
then it just adds damping to free-space motion; we did not see
stability changes if it was added, hence we omit it. We analyze
static damping in Figure 7.
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Fig. 6: Addressing artificial stickiness. Top: When the cube
is lifted, static friction forces may point downhill, which may
artificially prevent the cube from being lifted. Our method of
Section 4.1 addresses this by removing such contacts from the
optimization problem. Bottom-left: Without the method of Sec-
tion 4.1, the starter motor sticks to the engine even when the
manipulandum (shown in wireframe) is pulling it out of contact.
Bottom-right: With our method, no stickiness occurs even with
high friction (µ = 10).

(a) Initial frame (b) After one frame;
static damping is on

(c) After one frame;
static damping is off

Fig. 7: Static damping: The top figures show how the static
damping (a = 0.6) influences the simulation. The wireframe
cube indicates the haptic manipulandum position. From the ini-
tial position shown in the top-left figure, the user moves the
manipulandum to the left. In the top-middle figure, due to static
damping, the simulated cube stops halfway to the position above
the manipulandum. Without static damping, the cube can move
very far in one cycle (top-right). The bottom figure shows the
equivalent simulation result for the starter motor sliding on the
car engine model. Larger static damping coefficients a produce
smoother simulation object motion.

5 RESULTS

We conducted a number of experiments to verify the performance
and robustness of our friction method. We render our forces and
torques using the 6-DoF Haption Virtuose 6D haptic device. We
use the SNOPT Library [38] to solve all linear programming
problems. All examples were computed on a 3.00GHz Intel Xeon
i7 CPU E5-2687W v4 processor using a maximum of 7.4 GB of
memory and a Quadro P5000 graphics card with 16 GB of RAM.
We used a single thread (the haptics servo thread generated by the
Virtuose API) to solve the linear programs to compute the friction
force. All examples run at 1,000 Hz haptic rates.

5.1 Car Engine

In our first experiment of haptic virtual assembly, we manipulate
a car starter motor into its target location in a car engine. In this
example, the manipulated motor is modeled by a point shell (8,517
points, 8-level nested point tree), and the fixed car engine is mod-
eled by a 1024⇥ 1024⇥ 1024 signed distance field (Figure 8a).
We use a 8-regular pyramid to approximate the friction cone.

(a) Car engine and starter motor geometry

(b) The contact force on the simulation object

Fig. 8: Static Coulomb friction. The right-top image depicts the
point shell of the starter motor. The blue points indicate the points.
We show one slice of the signed distance field of the car engine,
where green represents interior and blue represents exterior. In the
bottom, the black wireframe shows the manipulandum position.
The red arrow represents the total contact force on the object,
which is the sum of the normal contact forces and the friction
forces, and is the force felt by the user via the haptic device. Our
method correctly simulates the friction force (bottom-left). Note
that the contact force in the frictionless case is always normal
to the contact (bottom-right), whereas our contact force has a
tangential frictional component (bottom-left).

Our static friction prevents the starter motor from sliding on
the surface of the car engine (Figure 8b). We also analyze the time
complexity of computing the friction (Figure 9). Our model can
achieve the 1,000 Hz haptic rate with over 100 contact points.



IEEE TRANSACTIONS ON HAPTICS, VOL. X, NO. Y, MONTH YEAR 8

Fig. 9: Performance and force rendering of the car engine.
Here, the starter motor is sliding on the engine surface as shown
in Figure 8b. The number of contacts in this experiment is
approximately 50 (top). The second figure shows that it costs
around 0.76 msec to compute the friction forces. This time budget
is sufficient to meet the 1,000 Hz haptic simulation requirement.
The third and forth figure show the magnitude of the total contact
forces and torques.

5.2 Car Door

Our second experiment is to manipulate a window motor into a car
door. The window motor is modeled by a 256⇥256⇥256 signed
distance field and the fixed car door is model by a point shell
(30,017 points, 8-level nested point tree). An 8-regular pyramid
is used to approximate the friction cone. When the motor collides
with the surface of the car door, static friction, acting in a direction
parallel to the contact surface, is able to prevent the sliding.

In Figure 10, parts (a) and (b) refer to a simulation with
friction. We can see that the total contact force, represented by the
red arrow, is not perpendicular to the surface, due to the presence
of friction. For experiment, we also slide the manipulated motor
tangentially, and track the magnitudes of all forces (Figure 11).
It can be seen that while the virtual coupling force is smoothly
changing, the normal contact force may change sharply due to
the change in the number of contact points. However, the static
friction is always able to respond immediately to compensate the

sharp normal contact force changes, keeping the object in place.

(a) With friction (b) With friction (c) Frictionless

Fig. 10: Car door static friction. The red arrow represents
the contact force on the object. (a) Our method can simulate
static friction. (b) Another view, also showing the manipulandum
position (black wireframe). (c) Comparison to frictionless contact.

Fig. 11: Performance and results of forces on the car door. The
top figure shows that the number of contacts is approximately 55.
It costs approximately 0.86 msec to compute the friction contact
forces on average, which is sufficient to maintain the 1,000 Hz
haptic update rate. The bottom figure shows the magnitudes of the
virtual coupling force, the contact force and the friction force.

5.3 Peg Insertion

In our third example, we insert a peg into a hole. The size of the
hole is 1% smaller than the size of the peg. The peg is modeled
by a 128 ⇥ 128 ⇥ 128 signed distance field whereas the peg is
modeled by a point shell with 672 points and a nested point tree
with 6 levels. We use an 4-regular pyramid to approximate the
friction cone. Due to the difference in size, there is always a
slight penetration and the penalty normal contact force always
exists when the peg is inserted. In such configurations, friction is
unavoidable and it may block the insertion process if the friction
coefficient is sufficiently high (Figure 12).
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(a) Before insertion (b) With friction (c) Frictionless

(d) Minimal force to insert

Fig. 12: Hole-peg insertion under varying friction coefficients.
A peg is manipulated into a slightly smaller hole. Without friction,
the insertion can be done easily and with a very small virtual
coupling force. With friction, the insertion requires a larger virtual
coupling force. The bottom figure shows the relation between the
minimal virtual coupling force to insert the peg and the friction
coefficient. The observed linear relation confirms the correctness
of our Coulomb’s static friction cone. The stiffness and stiffness
scaling [4] is the same in all experiments.

5.4 90-Degree Corner and Cube

Our fourth example is to slide a cube against a 90-degree corner
shape (Figure 13). The yellow corner is modeled by a point shell
with 7,772 points and a nested point tree with 8 levels, whereas
the green cube is modeled by a 256⇥ 256⇥ 256 signed distance
field. We use a 4-regular pyramid to approximate the friction cone.
We set a high friction coefficient to measure the quality of static
friction. Our static friction prevents the cube from sliding.

Fig. 13: Cube manipulated against a 90-degree corner. The red
arrow gives the total contact force on the cube.

We also did this experiment with a high static damping
coefficient (a = 0.9), and moved the manipulandum object left-
and-right very quickly. Under such high static damping, when
the static friction is not able to keep the cube motionless, the
cube will slowly slide towards to manipulandum position until
the static friction is strong enough to keep the cube motionless
again. When the cube is sliding, the linear programming solver
will detect that no feasible static friction is possible. Figure 14
analyzes the performance and transitions between static friction
and sliding.

Fig. 14: Simulation performance of the 90-degree corner and
cube example. In these figures, the blue lines indicate that the
object is in static friction, whereas the orange lines indicate that the
object is sliding. The top figure shows that the number of contacts
in this experiment is approximately 70. The second figure indicates
that the cost of each haptic cycle is approximately 0.72 msec,
which is sufficient to maintain the 1,000 Hz haptic simulation
rates.

5.5 Comparison with constraint-based methods
We have compared our method with two constraint-based meth-
ods: Staggered Projections by Kaufman [9] and Gauss-Seidel-like
method by Duriez [10]. We performed our comparison experiment
on the 90-degree corner model. When sliding the cube, the
number of contact points is approximately 72. The computation
time (Figure 15) shows that our method can maintain the 1,000
Hz haptic rate under a moderate number of contact points. The
computation rates of the two compared constraint-based methods
fall below 100 Hz.
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Fig. 15: Time cost and static friction quality of our method
and constraint-based methods. It can be seen that our method
is about 50⇥ faster than the two constraint-based methods. The
quality of the friction computed by our method is as good as
in Kaufman’s staggered projections [9] (both methods keep zero
positions at all times), and better than using the Gauss-Seidel-
like method of Duriez [10] which permits a small (but practically
negligible) offset.

5.6 Comparison to Yamane’s frictional springs

We also compare our method with the penalty-based frictional
springs of Yamane [6]. We use implicit integration of Yamane’s
springs. Otherwise, if the stiffness of the friction spring is set high
to reduce the sliding, the virtual coupling system easily becomes
unstable under explicit Yamane’s springs. Even with implicit
springs, we observe a stability stiffness limit in practice. Because
of its simplicity, Yamane’s method can compute friction about
6⇥ faster than our linear programming method. However, we will
now demonstrate in three separate experiments that our method
produces better static friction quality than Yamane’s friction. First,
our static friction can stop the cube without any residual motion
(Figure 16). In Yamane’s method, the static friction originates
from stretching the friction springs, which permits the object to
always incorrectly slide when it should be motionless.

Second, we observe that Yamane’s friction has the following
flaw: it is possible to “cheat” Yamane friction via “snake”-like
motion (Figure 17). In this experiment, we set a very high friction
coefficient (µ = 100). For our method, we experimentally verified
that our friction correctly prevents the “snake” peg insertion
(Figure 17, a). However, with Yamane’s springs, if we manipulate
the peg in left-right “snake” motion when inserting the peg, we
will cause the contacts on the left side of the peg to appear and
disappear, and same for the right side. Therefore, the Yamane fric-
tion anchors will keep being removed and re-formed as contacts
appear and disappear. In each cycle the anchor position moves
slightly down. As a result, the peg will be slowly but steadily
incorrectly inserted. This does not happen in our method.

Fig. 16: Static friction quality of our method vs Yamane’s
frictional springs. Our static friction keeps the position of the
simulation object fixed, regardless of manipulandum motion.
However, with Yamane’s friction, the object will translate (creep)
to follow the manipulandum object.

We note that the non-stickiness technique of Section 4.1 was
enabled in all of our examples. In our method, because the size of
the peg is slightly larger than the hole, the peg will always be in
contact with at least one side of the hole. Therefore, in practice,
our LP formulation keeps the object still, preventing the snake
maneuver, unless the user applies a large force that exceeds the
friction cone limit. Note that for the technique of Section 4.1 to
activate, one required condition is that the virtual coupling force
must have a positive dot product with the contact normal. If one
attempts to perform the “snake” motion using our method, in order
to exploit the presence of the technique of Section 4.1, one has to
start from a state where the virtual coupling is pushing the peg
deep into contact, so that the opposite side of the peg is contact
free. Then, one would have to abruptly move the manipulandum
a large distance out of contact in one haptic cycle, so that the
positive dot product condition is satisfied. Note that if done more
slowly, the contacts on the other side of peg will activate during
subsequent haptic cycles, blocking the maneuver. Such abrupt
manipulandum motion is not possible in practice due to the human
limits on the manipulandum speed. In contrast, with Yamane’s
method the snake maneuver is possible with arbitrarily smooth
user manipulandum motion, because the Yamane’s method always
permits sliding.

We note that the virtual coupling stiffness does not actually
affect the feasibility of the snake-like motion. If virtual coupling
stiffness was made smaller and smaller, then the user can still
break the contacts to perform the snake motion in Yamane’s
method; she will just need to move the manipulandum deeper
into contact. Conversely, if virtual coupling stiffness was made
larger and larger, then the Yamane contacts will break already for
a small manipulandum motion into the contact direction. In either
case, they will break, permitting the snake motion in Yamane’s
method.

We also compare our method to Yamane’s friction in the
car engine example (Figure 18). Under a friction coefficient of
µ = 0.8, the starter motor cannot be inserted using our method
(and also not using Duriez’s and Kaufman’s methods), even
if very large virtual coupling forces are used. With Yamane’s
method, the motor can be spuriously inserted at µ = 0.8 all the
while the virtual coupling forces are smaller than in our method.
Furthermore, Yamane’s method permits a spurious motor insertion
even under much larger friction coefficients; the largest we tried
was µ = 1000.
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6 CONCLUSION

We presented a stable algorithm to compute static Coulomb
friction for 6-DoF distributed haptic contact between rigid objects
with complex geometry. Our method can be combined with the
existing penalty-based 6-DoF haptic rendering methods to provide
stable static friction rendering. By using our novel combination
of penalty normal contact forces and frictional constraints, we are
able to achieve haptic-rate performance for complex scenes and
more than 100 frictional contacts, without the need for multirate
simulation.

7 FUTURE WORK

In the future, we would like to incorporate correct dynamic
friction into our model, as well as study the applications of our
method to computer graphics and animation. Our friction makes
use of static virtual coupling to stabilize haptic rendering. We
do not simulate dynamic friction and hence the dynamics under
sliding is not physically accurate. We use static damping as
our “quasi-dynamics”. In the future, we would like to combine
dynamic virtual coupling and friction, by properly incorporating
the velocity of the simulated object into the friction model. As we

Fig. 17: Spurious insertion via “snake” motion in Yamane’s
friction. The red arrow gives the total contact force on the peg.
The wireframe gives the manipulandum location. Part (a) shows
that the peg correctly cannot be inserted under our friction. Parts
(b,c,d) show Yamane’s friction. The user moves the manipulandum
in a snake-like motion (indicated in (b)). This causes the peg
to slowly sink into the hole because the contacts keep appear-
ing and disappearing in alternation on the left and right wall.
Consequently, the Yamane friction anchors keep breaking and re-
appearing at a lower and lower position. Part (d) shows that the
peg eventually becomes fully inserted via the snake motion.

Fig. 18: Comparison to Yamane’s friction on the car engine
model. Left: the motor cannot be inserted with our method
(µ = 0.8). Right: with Yamane’s method, the motor can be spuri-
ously inserted into the car engine, despite a much larger friction
coefficient (µ = 1000), and a smaller virtual coupling force.

focus on quasi-static modeling without dynamics, our fast linear
programming method is not designed to handle configurations
where both static and dynamic friction exist simultaneously on the
object. Currently, if one wants to simulate both static and dynamic
friction, the user must specify what contacts are expected in static
friction and what contacts are expected in dynamic friction. By
removing variables b corresponding to dynamic friction contacts
from Equations 32- 37, our model can either compute correct static
friction for the rest of the contacts, or determine that the user’s
specification is incorrect. Also the system may take a guess about
what contacts are likely in static friction by the size of each friction
cone.

In the future, one may attempt to handle such hybrid con-
figurations by investigating heuristics to determine the contacts
where the static friction cone constraints may be satisfied. As
demonstrated by [22], it is possible to make constraint-based
methods compliant; it would be interesting to apply our LP
friction ideas to such methods. Similarly, one could attempt to
combine our LP friction with velocity-based formulation for static
equilibria. For simplicity, we did not use multirate simulation in
this paper, although in principle our work can be integrated into a
multirate system as well. Often, insertion in the real-world is made
possible by geometrically enlarging narrow passages via plastic
deformations, either of the environment or the manipulated object.
Modeling of complex plastic deformations would be interesting
future work.
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