
Immersion of Self-Intersecting Solids and Surfaces

YIJING LI and JERNEJ BARBIČ, University of Southern California, USA

Self-intersecting, or nearly self-intersecting, meshes are commonly found
in 2D and 3D computer graphics practice. Self-intersections occur, for ex-
ample, in the process of artist manual work, as a by-product of procedural
methods for mesh generation, or due to modeling errors introduced by scan-
ning equipment. If the space bounded by such inputs is meshed naively, the
resulting mesh joins (“glues”) self-overlapping parts, precluding efficient
further modeling and animation of the underlying geometry. Similarly, near
self-intersections force the simulation algorithm to employ an unnecessarily
detailed mesh to separate the nearly self-intersecting regions. Our work
addresses both of these challenges, by giving an algorithm to generate an
“un-glued” simulation mesh, of arbitrary user-chosen resolution, that prop-
erly accounts for self-intersections and near self-intersections. In order to
achieve this result, we study the mathematical concept of immersion, and
give a deterministic and constructive algorithm to determine if the input
self-intersecting triangle mesh is the boundary of an immersion. For near
self-intersections, we give a robust algorithm to properly duplicate mesh ele-
ments and correctly embed the underlying geometry into the mesh element
copies. Both the self-intersections and near self-intersections are combined
into one algorithm that permits successful meshing at arbitrary resolution.
Applications of our work include volumetric shape editing, physically based
simulation and animation, and volumetric weight and geodesic distance
computation on self-intersecting inputs.
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1 INTRODUCTION
Polygonal meshes are commonly used in computer graphics due
to their versatility and ease of rendering. Many interesting shapes,
however, are modeled with geometry that nearly self-intersects, or
even self-intersects (Figure 1). Self-intersection may occur simply
due to errors in scanning equipment, inadequate modeling by artists;
and are sometimes unavoidable. A common example is meshing the
mouth of a human face, whereby the upper and lower lip (Figure 2),
and/or themesh of themouth cavity (teeth and tongue) typically self-
intersect in the neutral pose. Another example is meshing the eyes
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Fig. 1. Self-intersection-aware tet meshing: Our method properly du-
plicated and connected the tets to account for helix triangle mesh self-
intersections. Left: input triangle and tetrahedral mesh. Intersecting trian-
gles are shown red. Right: the output tet mesh has been successfully pulled
apart using volumetric ARAP [Sorkine and Alexa 2007].

and the eye socket. Self-intersections pose a significant problem for
simulation-based modeling and animation pipelines because they
preclude an easy generation of a quality simulation mesh. Naive
algorithms glue the self-intersecting parts, and/or require extremely
small elements to be employed to resolve near self-intersections in
the input geometry, resulting in long simulation times.

In our work, we give an algorithm to generate simulation meshes
that are properly “un-glued” both for self-intersecting inputs and
nearly self-intersecting inputs. Our algorithm is applicable both in
2D and 3D. This is achieved by first generating a world-space simula-
tion mesh (tetrahedral mesh in 3D; triangle mesh in 2D) against the
input geometry, using any method and at any user-chosen resolu-
tion. Our method then properly duplicates the simulation elements
(tets in 3D; triangles in 2D), correctly connects the element copies,
and embeds the input geometry into these duplicated elements for
correct subsequent modeling and/or animation. Our method works
in a unified way both for self-intersecting inputs and nearly self-
intersecting inputs. Often, in animation practice, the only reason for
using detailed meshes is to resolve nearly self-intersecting inputs;
even if the required deformation resolution does not necessitate such
detailed meshing. For nearly self-colliding inputs, inspired by the
work of Sifakis [2007], we propose a novel method to unglue tetra-
hedra containing nearly self-intersecting geometry. We do so using
exact arithmetic Sutherland-Hodgman clipping and pseudo-normal
tests; which accelerates meshing 30× compared to prior work.

In order to address these intuitive practical goals, one requires a
proper mathematical language to express concepts such as “unglued”
meshes, “meshing” and “embedding” of overlapping spaces, and state

ACM Transactions on Graphics, Vol. 37, No. 4, Article 45. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201327
https://doi.org/10.1145/3197517.3201327
https://doi.org/10.1145/3197517.3201327


45:2 • Yijing Li and Jernej Barbič

Fig. 2. Unglued meshing of self-intersecting lips and mouth cavity:
Column 1: side view of the head and the self-intersecting mouth connected
to an interior cavity. Such self-intersecting modeling of the mouth cavity is
very common in visual effects and games, to add a plausible mouth appear-
ance to characters. The self-intersecting mouth is a common technology
blocker for head simulation algorithms. Column 2: head triangle mesh (top)
and our tetrahedral mesh (bottom). Column 3: zoom to the self-intersecting
lips. Column 4: our tetrahedral mesh “unglued” the input self-intersection,
enabling the simulation to successfully open the mouth.

well-defined algorithms and prove properties about them. This jour-
ney very quickly led us to geometric and algebraic topology, and the
mathematical concept of immersion, which is the natural language
for expressing self-intersections in Rd , for d = 2, 3. Immersions are
continuous maps between geometric shapes (more precisely, topo-
logical spaces) and Rd that are locally (but not necessarily globally)
injective (precise definition is in Supplementary Material 1). We
show that the problem of creating the “un-glued” mesh in Rd is
equivalent to discovering an immersion from a compact d-manifold
onto Rd , such that the restriction of this “volume-immersion” onto
the boundary of thed-manifold is an immersion onto the input mesh.
Such immersions do not always exist (e.g., due to input inversions);
and we give an algorithm that both determines if an immersion
exists, and if yes, constructs the immersion and the underlying “un-
glued” simulationmesh. For both nearly self-intersecting inputs, and
self-intersecting inputs, we also give a method to clone and properly
connect elements containing multiple connected components of the
embedded mesh, and embed them into the cloned copies, to properly
separate those parts during simulation.
Our method improves the robustness of geometry processing

tools, enabling direct tetrahedralization and embedding of 3D self-
intersecting surfaces. Different to prior work on self-intersecting
meshing, our method is general, works both in 2D and 3D, and on
meshes of arbitrary genus (number of handles). We analyze the
input surface directly without needing to deform the mesh. This
makes our approach fast, and allows any complex shape as input,
as long as it has manifold connectivity (no T-junctions or hanging
faces), is orientable (no Klein bottles) and consistently oriented, and
without inversions (no self-intersections poking through the body).
For example, in Figure 3, we generate an un-glued tetrahedral mesh
for a self-intersecting tree triangle mesh. This mesh was generated
using procedural modeling without any regard for intersections
and self-intersections. On our output simulation meshes, one can
compute volumetric weights for skinning and other techniques

Fig. 3. Tetrahedral meshing of self-intersecting procedurally gener-
ated geometry. The triangle mesh for this tree (328,152 triangles; 2,634
branches) was generated using a procedural modeling method without re-
gard for branch intersections and self-intersections. Ourmethod successfully
generated a simulation tet mesh that “unglues” all the branches. Because
our tets can be overlapping, our mesh can be relatively coarse (32,457) for a
model of this complexity, permitting faster FEM simulation. For comparison,
naive meshing glues branches and results in visibly suboptimal tree motion
when simulated using FEM (supplemental video).

Fig. 4. Our method produces topology-aware weights.We computed
bounded biharmonic weights[Jacobson et al. 2011], using the two handles
“A” and “B” indicated; the figure (left) shows the BBW weight function for
handle “A”. BBWs computed on our volumetricmesh (left) reflects the correct
topology of the embedded surface (we re-use the Sacht’s test model [Sacht
et al. 2013] from Figure 24). In contrast, naive voxelization (right) glues the
cylinders together, resulting in unsatisfactory weights.

(Figure 4), calculate geodesic distances, edit shapes with volume
conservation, and apply physically based simulation. The user can
also use our mesh to resolve the self-intersections, for example
by applying contact-resolving physically based simulation [Baraff
et al. 2003; Heidelberger et al. 2004] to our output mesh (Figure 22);
which is better than resolving the self-intersection directly on the
surface mesh due to better volume conservation. Our method can
also help automatic segmentation of 2D shapes for hand-drawn
animations [Huang et al. 2014; Noris et al. 2012] and sketch-based
shape retrieval and placement [Xu et al. 2013].

2 RELATED WORK
Research on detecting and decomposing self-intersecting shapes
dates back to Shor and VanWyk [1989], who gave a polynomial-time
algorithm to find all possible immersions of a 2D shape which comes
from stretching and bending a disk, by finding triangulations of the
input curve. Eppstein [2009] analyzed the complexity of various
immersion and embedding problems and found out that it is NP-
complete to determine several immersion and embedding problems.
Frisch [2010] studied extending immersions of 2D circles into 2D
disks and analyzed existence and uniqueness of the problem. Our
specific problem in 3D was not studied by these prior works. In com-
puter graphics, Mukherjee [2011] described another method to solve
the problem of 2D disk immersion. As acknowledged in the author’s
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Fig. 5. Basic steps of ourmethod are illustrated in this 2D example. Given
the input shape (in this 2D example, a closed polygonal line / curve in R2),
our method extracts the cells, patches and arcs (Section 4), then duplicates
and connects cells to recover the immersion of a two-dimensional disk such
that the disk boundary immerses onto the input shape (Section 5 and 6).
Note that the largest cell self-touches, which we address in Section 4.2.1.
To produce the immersion of the disk, we first triangulate the entire space
covered by the input shape, then create a submesh for each cell (Section 7).
Some triangle vertices are duplicated to avoid gluing parts of the cell to-
gether. For visualization purposes here, a cyan line indicates that the two
triangles joined by it are actually the same triangle. Finally, submeshes for
the cells are merged together according to the cell connectivity recovered
by our algorithm (Section 7).

Fig. 6. A self-overlapping curve with two distinct immersions. Left:
input curve. Middle: decompositions of the two different immersions. Right:
our method is able to run on this 2D example and find both two immersions.
Green dots are handles used to pull out the mesh with ARAP energy.

follow-up work [Mukherjee 2014], the original paper [Mukherjee
et al. 2011] did not provide details. Later, Mukherjee [2012] pre-
sented a way to interpolate boundary curves of disk immersions
based on Shor and Van Wyk’s triangulation. Mukherjee [2014] gave
a new method to solve the same disk immersion problem by cutting
the curve at “crest points”. These papers were limited to 2D. As
noted by Shor [1989], a self-overlapping 2D curve can lead to more
than one distinct immersion (Figure 6). Both methods of Shor and
Mukherjee [2014] search for all possible immersions of a given curve.
When applied to immersions of 2D disks in 2D, our method is able
to find all possible immersions, paralleling these previous results.
Different from previous approaches, our algorithm is applicable
both to 2D and 3D immersions, and finds all possible immersions on
non-disks both in 2D and 3D (e.g., tori), and on multiple-component
inputs (e.g., with a hole in the shape, Figure 7).
There has been further research on 3D immersions in computer

graphics. Li [2011] used Gauss diagrams from knot theory to detect

Fig. 7. Input with multiple connected components in 2D. The input
model consists of two components, forming an egg-shaped hole. Ourmethod
is able to find the correct immersion and construct an “unglued” simulation
triangle mesh, which enables ARAP to pull the model apart.

all distinct embeddings of a circle in 3D sharing the same projec-
tion as the given self-overlapping curve. Weber and Zorin [2014]
introduced a method to map a triangle mesh of disk topology to
arbitrary domain with potentially self-intersecting boundaries. Al-
though operating in a 3D space, these methods have been limited to
immersions onto 1D and 2D manifolds, whereas we study volume
immersions onto 3D manifolds. Several mesh repair methods [At-
tene 2010, 2014; Campen and Kobbelt 2010; Hétroy et al. 2011]
process 3D self-intersecting meshes, by gluing the mesh using a
union-like operation at the self-intersections, or forming the outer
hull of the model. In contrast, we generate meshes that correctly
separate the self-intersecting parts. Sacht’s method [2013] utilized
conformalized mean-curvature flow to resolve self-intersections of
a 3D surface mesh. While their method can be used for both 2D
and 3D immersions, the theory behind it is limited to disk or sphere
topologies (no tori of any number of handles), whereas our method
is designed to process meshes of any genus; we give a comparison
to Sacht’s method in Section 8. Sacht’s work aimed at “unwrapping”
the input self-intersecting surface and did not directly aim to gen-
erate a simulation tet mesh. Although an extension whereby a tet
mesh can be generated in the unwrapped space and then deformed
forward to the world-space is mentioned, such a tet mesh may suffer
from poor quality in case the “unwrapped” mesh is flattened (see
Section 8). In comparison to Sacht, our method generates the tet
mesh in the world space and as such the size and shape of tetrahedra
is better controllable and suitable for subsequent simulation. We
are not aware of any work, in computer graphics or computational
topology or any other field, that has studied our 3D immersion prob-
lem onto volumes bounded by surfaces of arbitrary genus. Recently,
Mitchell [2015] provided a method to create non-manifold level sets
for nearly self-intersecting and self-intersecting meshes. Their work
addresses implicit functions and focuses on self-collision resolution,
whereas we operate on triangle meshes, generating an embedding
into arbitrary user-provided tet meshes.
We note that several methods have utilized a self-intersecting

volumetric mesh to embed an intersection-free surface mesh with
narrow features [Molino et al. 2004; Nesme et al. 2009; Sifakis 2007;
Sifakis et al. 2007; Teran et al. 2005], or for mesh cutting [Sifakis
et al. 2007; Wang et al. 2014]. Our method can also operate on nearly
self-intersecting inputs, producing “un-glued” self-intersecting vol-
umetric meshes for subsequent embedded simulation. To do so, we
follow the general spirit of Sifakis’s method [Sifakis et al. 2007]; but
greatly accelerate it by bettermanaging the usage of exact arithmetic.
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Fig. 8. Examples of self-intersecting curves in R2 and surfaces in R3 which
are not boundaries of immersions.

In such applications, it is critical to employ exact arithmetic for tri-
angle vs tet intersections. Sifakis’s method uses constructive solid
geometry. We demonstrate how to largely avoid the exact queries of
constructive solid geometry, by demonstrating an exact arithmetic
variant of the Sutherland-Hodgman tet vs triangle clipping algo-
rithm [Sutherland and Hodgman 1974]. Tet vs triangle clipping has
previously been used to re-embed triangle meshes into dynamically
subdivided tetrahedral meshes [Wojtan et al. 2009; Wojtan and Turk
2008]. We observe a 30× overall meshing and embedding speedup
compared to the exact Constructive Solid Geometry (CSG) method
of Sifakis in our examples. Teran [2005] explained how to assign
and duplicate the tet vertices to connect the duplicated tets, which
we re-use in our work.

3 TOPOLOGY OF SELF-INTERSECTING MESHES
The input to our method is a self-intersecting orientable triangle
meshM without boundary (in R3), or a self-intersecting polygonal
line M without boundary (i.e., closed) (in R2). By a triangle mesh,
we hereby mean a collection of vertices with positions, and a list of
integer triples specifying the vertex indices for each triangle. While
such a data-structure is common in computer graphics andmay even
be taken for granted, it is important for our proofs to viewM merely
as a set-theoretic ordered pair (V ,T ) of verticesV and trianglesT ;M
is not seen as a geometric object and should not be equated with the
set of positions of all points onM . Our inputsM must havemanifold
connectivity in the usual sense, i.e., every edge must be shared by
exactly two triangles, and the triangles touching a vertex must form
a continuous fan. Informally, our method asks how to determine
and volume-mesh the “interior volume” bounded by M, in a way
that respects self-intersections and does not “glue” self-intersecting
regions. In our work, we properly mathematically formulate this
intuitive question using topology. While it is common in computer
graphics to use the informal term “manifold mesh” to refer to any
triangle mesh with manifold connectivity, self-intersecting meshes
require more precise mathematical treatment; otherwise, it is not
possible to soundly formulate the immersion algorithm or prove
well-defined statements about it. In topology, a manifold without
boundary of dimension s is a topological space where every point
has a neighborhood that is homeomorphic toRs (see Supplementary
Material 1 for precise definitions). Self-intersecting meshes with
manifold connectivity (inputs to our method) are not manifolds
because the intersection points have no such neighborhood.
Given a triangle mesh M with manifold connectivity, we can

form a 2-manifold M̂ which intuitively corresponds to the concept
of seeing M as a “topological mesh”, i.e., forming one continuous
surface whereby any self-intersections are properly ignored. In-
tuitively, M̂ is formed by “gluing” the triangles along the shared
edges. Formally, one can form it by taking a disjoint union (see

Supplementary Material 1) of all triangles, and then applying the
equivalence relation whereby points of the same edge shared by
two triangles are made equivalent. It is easy to verify that M̂ is a
manifold (proof is in Supplementary Material 1). This manifold is
an “abstract” manifold, and, whenM has self-intersections, cannot
be directly equated with some manifold in Rd . For any point x on
any triangle ofM, denote by ρ (x ) the location of x in Rd . It can be
easily seen that the mapping ρ can be augmented to an immersion
ρ̂ of M̂ onto ρ (M ) (Supplementary Material 1). An immersion is a
continuous map between two topological spaces X and Y that is
locally injective, i.e., for any x ∈ X , there exists a neighborhood
of x such that the restriction of the map onto this neighborhood is
injective (i.e., one-to-one).
We further assume that M intersects itself in a general way,

i.e., the intersections are not degenerate. We formally define non-
degeneracy as follows. Define the collision set of x ∈ M̂ as

γ (x ) = {y ∈ M̂ ; ρ̂ (x ) = ρ̂ (y)} ⊂ M̂, (1)

i.e., points that share the same location in Rd with x . The “self-
intersecting set” ofM assembles all points x where there exists at
least one more point with the same location,

Γ = {x ∈ M̂ ; |γ (x ) | ≥ 2} ⊂ M̂ . (2)

We also define the triple set

Γ≥3 = {x ∈ M̂ ; |γ (x ) | ≥ 3} ⊂ M̂ . (3)

For d = 3, we define M to be non-degenerate if Γ is a union of
zero or finite number of 1-dimensional loops and Γ≥3 consists of
zero or more disjoint points. For d = 2, M is defined to be non-
degenerate if Γ consists of zero or more disjoint points and Γ≥3 is
empty. For both d = 2, 3, we also prohibit degenerate inputs where
a surface touches itself at a single point, or along a loop, but does
not penetrate (exact definition is in Supplementary Material 1). For
d = 2, an example of such a degeneracy is a circle touching a square,
and for d = 3, an example is a solid bowl placed upside down on
a solid box. Non-degenerate inputs correspond to the general way
in which surfaces intersect. The set Γ typically consists of pairs of
loops on M̂ . Note that any degenerate input can be perturbed by
an infinitesimal amount to remove the degeneracy. To summarize
the requirements on our input, we define valid input to be a non-
degenerate orientable triangle meshM (for d = 3; and a polygonal
line for d = 2) without boundary and with manifold connectivity.
Given a valid input M, our algorithm determines if the surface

immersion ρ̂ can be extended to a volume immersion for d = 3, and
if the curve immersion ρ̂ can be extended to a surface immersion
for d = 2. Formally, it answers the question of whether there exists
a compact d-manifold Ŝ and an immersion σ̂ from Ŝ into Rd such
that M̂ is the boundary of Ŝ, and the restriction of σ̂ onto M̂ is
ρ̂. Compactness, intuitively, means that Ŝ contains all of its limits
(exact definition is in Supplementary Material 1), and is needed
to avoid immersions from unbounded manifolds, or manifolds Ŝ
where one has artificially removed points from Ŝ ; e.g., to rule out
immersions from punctured disks or similar. We call valid inputsM
for which such a pair (Ŝ, σ̂ ) exists volume-immersible. The algorithm
also explicitly constructs the immersion if it exists. Practically, in 3D,
this means that we can construct a tetrahedral mesh that meshes the
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Fig. 9. Cells, patches and arcs in 2D. Left: input 2D curve. Right: 4 cells
(open disks), 8 patches (open curves; Pi with different colors), four arcs
(isolated points). Cells and their B-patches are as follows: Cell 0: P0, P1, P2*,
P3*; Cell 1: P2, P3, P4, P6; Cell 2: P4*, P5; Cell 3: P6*, P7. Here, * denotes that
the B-patch orientation disagrees with the cell. Arcs and the topological
neighboring patches at those arcs are as follows: Arc 0: (P1,P2), (P1,P3); Arc
1: (P0,P4), (P2,P5); Arc 2: (P0,P6), (P3,P7); Arc 3: (P4,P7), (P5,P6).

Fig. 10. Cells, patches and arcs in 3D.

space “occupied” by M and does not “glue” any self-intersections.
A simple illustration of our method is shown in Figure 5. Note
that not all closed, orientable and non-degenerate triangle meshes
are boundaries of valid immersions. For example, triangle meshes
shown in Figure 8 are not; intuitively, this is because these shapes
require an inversion of the space, which violates local injectivity.
Our algorithm is able to reject such inputs.

4 CELL COMPLEX
A self-intersecting mesh cuts Rd into multiple components, forming
cells, patches and arcs. These components are glued together “nicely”
along their boundaries and form what is known in topology as a cell
complex [Erickson 2009]. We now introduce these concepts. They
play a key role in our immersion algorithm.

4.1 Cells, Patches and Arcs
Cells are the connected components of Rd \ ρ (M ) in Rd , except the
infinite component and the components with winding number 0.
The latter are “interior voids” (cavities) inside objects, and should
not be meshed. We will further discuss winding numbers later in
the paper. Because ρ (M ) is a closed set, cells are open subsets of
Rd . Topologically, cells are d-manifolds without boundary (due to
being open). For connected inputsM for d = 3, they are the interior
of either a topological solid 3-ball, or a topological solid torus with
k ≥ 1 handles. We note that the torus case can occur even if the
input meshM is the boundary of a 3-ball (e.g., Cell 3 in Figure 10 is a
torus with k = 1 hole). For connected inputsM for d = 2, cells are 2-
manifolds that are the interior of a topological 2-disk. Justifications

Fig. 11. Finding patch geometric neighbors on self-touching cells.
Cell 0 in Figure 9 self-touches at Arc 0. We first identify self-touching arcs
(there is only one in this example; bottom-left), then find the two compo-
nents that should be disconnected (bottom-right). We use them to identify
the geometric neighbor pairs at Arc 0 as (P2, P1) and (P1, P3).

of these statements are in Supplementary Material 1. The closure
of a cell in Rd may be “self-touching” (e.g., Cell 0 in Figure 9),
which we will address later. Patches are the connected components
of ρ̂ (M̂ \ Γ) in Rd . Topologically, patches are 2-manifolds without
boundary (i.e., open disks with k ≥ 0 holes) when d = 3, and 1-
manifolds without boundary (i.e., non-intersecting loops, or open
non-intersecting curves) when d = 2. Patches form the boundaries
between cells.Arcs are the connected components of ρ̂ (Γ\Γ≥3). Arcs
are open subsets of Rd . They form the boundaries of the closures
of the patches, and are 1-manifolds without boundary (i.e., open
non-intersecting curves) for d = 3, and isolated points for d = 2.
The cell-patch-arc complex is illustrated in Figures 9 and 10.

We call two patches P1 and P2 topological neighbors if they are
adjacent as per the mesh connectivity ofM ; formally, if ρ̂−1 (P1) ∩
ρ̂−1 (P2) is a 1-manifold (d = 3), or a point (d = 2). Here, X denotes
the topological closure operation (Supplementary Material 1). This
means that topological neighboring patches neighbor each other
in M̂ by a shared arc. For d = 3, this excludes cases where patches
neighbor only in a corner point in M̂ . Figure 9 shows examples of
topological neighbors.

4.2 B-patches
Each cell is surrounded by one or more patches. In our discussions,
we found it convenient to call the patches surrounding a cell the
B-patches (boundary patches) of that cell. We define two cells to be
neighbors if they share a B-patch. Each B-patch has an orientation
induced by the orientation ofM . Ford = 3,we define the orientation
of a B-patch to agree with its cell if its orientation is outward from
the cell, and disagree if inward (Figure 9). The condition for d = 2 is
that the B-patch is oriented so that the cell interior is to the right.

For each cell, we define two B-patches to be geometric neighbors
with respect to that cell, as follows. We first remove any singularities
of self-touching cells (such as Cell 0 in Figure 9 whose B-patches P1,
P2, P3 meet at Arc 0), as described in Section 4.2.1 and illustrated in
Figure 11. Then, two patches are geometric neighbors, by definition,
if they are spatially adjacent in Rd , i.e., there exists an arc A such
that P1 ∩ P2 = A. The purpose of this definition is that if, for a cell,
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one stitches all pairs of geometrically neighboring B-patches along
the common arc, one obtains the complete and manifold boundary
of the cell. Note that without self-touching singularity removal, a
non-manifold boundary would be produced. As seen in Figure 15,
there can be cells with only one B-patch. Our immersion algorithm
has to treat such a B-patch as a geometric neighbor of itself (by
definition).

4.2.1 Geometrically Neighboring B-Patches for Self-Touching Cells.
Self-touching cells are detected as follows. For each arc, observe
how the patches connect to the arc, in some sufficiently small neigh-
borhood of the arc. For valid inputsM, due to non-degeneracy, there
are locally four separate patch connections to the arc; we call them
the “patch junctions” (see Figure 11, top-left). Formally, we define
patch junctions as the connected components of the intersection
of a sufficiently small d-dimensional ball centered at any one arc
point, with the union of all patches. Note that patches and arcs are
open sets by definition; they do not contain their boundaries. Each
of the four patch junctions is a subset of some patch. Some of the
patch junctions may be subsets of the same patch (e.g., two patch
junctions are subsets of P1 in Figure 11). A cell is self-touching at
an arc if all four patch junctions are subsets of B-patches of this
cell. We first describe our algorithm for handling self-touching cells
for d = 2. To define geometric neighbors for a self-touching cell,
we observe that the cell around the arc locally consists of two man-
ifold regions (cyan and yellow in Figure 11, top-right). For each
of the four patch junctions, we identify the last line segment on
it, i.e., the one that touches the arc. Denote these segments by ei ,
for i = 0, 1, 2, 3 (see Figure 11, bottom-left). Let us orient the line
segments so that the interior of the cell is on the right. Pick e0 to be
one of the two line segments whose direction points into the arc. We
then find the line segment e1 among the other three line segments
that has the smallest counterclockwise angle with e0. Then, e0 and
e1 form the boundary of one local manifold region of the cell, and
the remaining two line segments e2 and e3 form the boundary of the
other manifold region (see Figure 11, bottom-right). The B-patches
containing e0 and e1 are thus assigned to be geometric neighbors
at Arc 0; and same for B-patches containing e2 and e3. We note
that our choice of e0 is deterministic, but arbitrary; an alternative
algorithm would be to pick e0 to point away from the arc and search
clockwise. In 3D, an arc is an open curve, so we arbitrarily pick
one line segment on the arc, and find the triangle on each patch
junction that shares the line segment. We then proceed in the same
way as with d = 2, except we use dihedral angles between triangles
as opposed to angles between line segments.

4.3 Computing the Cell Complex
We compute the cells and patches robustly using exact arithmetic [Zhou
et al. 2016] available inside libigl [Jacobson et al. 2013b]. This pro-
cedure produces a “cut” version ofM, where edges are added toM
along its self-intersections. It utilizes the exact arithmetic kernel
of the CGAL library [CGAL 2018]. We also identify all the arcs,
the B-patches of all cells, the four patch junctions at each arc, the
topological and geometric neighbors of each patch, and whether
their orientation agrees with the cells. Patches are stored as triangle
meshes, given by the indices of the triangles of the “cut” version of

Fig. 12. 2D examples of simple and non-simple immersions. Top: a
disk-topology abstract manifold Ŝ is immersed onto 2D. Its boundary M̂ is
immersed ontoM . For cellCi with winding number (WN)w, its pre-image,
σ̂−1 (Ci ) hasw connected components (PI-CC). The restriction of σ̂ to each
connected component in σ̂−1 (Ci ) is a surjective immersion onto Ci , and
the number of sheets for the surjective immersion is 1. Therefore, this is a
simple immersion. Bottom: a ring-topology abstract manifold Ŝ is immersed
onto 2D. Its boundary M̂ is immersed onto a 2D multi-component curve,
which creates three cells. There are two possible immersions (each row,
bottom-right). Both immersions wind the 2D ring twice and connect it back
to itself. Among the three cells, the interesting one is the ring-shaped cell
C1 . In both immersions, C1 has a winding number of 2, but the number of
connected components of its pre-image is only 1 (highlighted in red in the
PI-CC column). The restriction of σ̂ to σ̂−1 (C1) (which has a sole connected
component) is a surjective immersion where the number of sheets is 2
(bottom-left). Intuitively, this means that σ̂ “wraps” σ̂−1 (C1) onto C1 twice.
Therefore, σ̂ is not a simple immersion.

Fig. 13. 3D example of a non-simple immersion. Left: a torus mesh
which winds around the center axis twice, forming a 3D self-connecting
cell. Intersecting mesh faces are colored red. Right: the orange curve is the
skeleton of the torus mesh.

M . Arcs are stored as edges of the “cut” mesh. We also compute the
winding number [Jacobson et al. 2013a] of each cell using libigl.

5 IMMERSION GRAPH
Intuitively, immersions can be formed by “unwrapping” the volume
“occupied” byM . During this process, some cells of our cell complex
(Section 4) will require multiple copies to form the “unwrapped”
d-dimensional manifold Ŝ . The core idea of our algorithm is to
construct the manifold Ŝ by properly gluing together replicated
copies of cells from the cell complex. The information about which
cell copy should be glued to which other cell copy and where (across
which patch) can be naturally encoded into a graph. Our algorithm
will therefore operate on graphs whose nodes are duplicated cells
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of the cell complex ofM, and edges denote “gluing” of cell copies
across shared B-patches (see Figure 5, top-right).

We note that our graph is in general a multigraph, i.e., two nodes
may be joined bymore than one edge. This is because a cell may have
more than one B-patch shared by the same neighboring cell (e.g.,
Cells 0 and 1 share Patches 2 and 3 in Figure 9). Therefore, each graph
edge needs to record which B-patch it crosses. The requirements in
this paragraph define the set of eligible graphs. Additionally, due to
the requirement that the input surface ρ (M ) must be the boundary
of the immersed volume σ̂ (Ŝ ) (i.e., the restriction of σ̂ onto M̂ is ρ̂),
each patch must be on the external geometric boundary of exactly
one node. We say that this node “owns” this patch, and all other
nodes “declined” it. It is the task of our algorithm to form the graph
and find out which node owns each patch.

5.1 Simple immersions
The next question to address is then how many copies of each cell
do we need to make in our immersion graph? This simple question
turned out more difficult to answer than expected. Mukherjee [2011]
hypothesized, without proof and in two dimensions only, that the
number of copies of a cell in Ŝ has to equal its winding number with
respect toM .We observe and prove that this is true for immersed
disks (both for d = 2 and d = 3), but for general inputs (both for
d = 2 and d = 3), it is not true. The issue are self-connecting shapes
(Figure 12,13) that contain a cell whose two (or more) node copies
connect to each other. In the presence of such cells, the winding
number hypothesis no longer holds.
We address self-connecting cells as follows. First, observe that,

if there exists a volume immersion σ̂ from some Ŝ onto Rd whose
boundary is M̂, then the pre-image of each cell σ̂−1 (C) ⊂ Ŝ consists
of a finite number of components (proof in Supplementary Material
1). The restriction of σ̂ to any component S in Ŝ is a surjective
immersion from S onto C, but is not necessarily globally injective.
It can be easily shown (Supplementary Material 1) that that this
surjective immersion is what is known in algebraic topology as a
covering projection of S onto C. It follows that the pre-image of
each individual point x ∈ C has the same finite cardinality for all
x ∈ C, called the “number of sheets” (Supplementary Material 1).
Visually, this means that the immersion wraps S onto C number
of sheet times, e.g., 2× in Figure 12. Guided by our application
of generating unglued tet meshes, we define that the immersion
σ̂ is simple if the number of sheets for each cell C is 1, i.e., all
cell immersions are globally injective and therefore bijective. We
define a valid input to be simply volume-immersible if it is volume-
immersible with a simple immersion. The geometric interpretation
of simple immersions is that they disallow self-connecting cells,
by definition. Because modeling self-connecting cells is rarely the
intent in computer graphics, we think it makes sense to develop our
theory and algorithms for simple immersions. We now state our
first two theorems, establishing that the winding number intuition
holds for simple immersions, and that immersions from disks are
automatically simple, both for d = 2 and d = 3.
Theorem 1: If a valid inputM is simply volume-immersible, then
for each cell C of the cell complex ofM, the number of connected
components of σ̂−1 (C) equals the winding number wind(x ,M ) of

any point x ∈ C with respect toM . Thewinding numberwind(x ,M )
is the same for all points x ∈ C. This holds both for d = 2 and d = 3.
Theorem 2: If a valid input M is the boundary of an immersion
from a disk in Rd , then the immersion is simple. This holds both for
d = 2 and d = 3.

We prove these theorems, using algebraic topology, in Supple-
mentary Material 1. The following Corollary proves Mukherjee’s
intuition for immersions of disks, both for d = 2 and d = 3.
Corollary 3: For a valid inputM that is the boundary of an immer-
sion from a disk in Rd , the number of connected components of
σ̂−1 (C) equals the winding number of C with respect to M . This
holds both for d = 2 and d = 3.
Proof: This follows directly from Theorems 1 and 2. ■

5.2 Rules for Graph Edges
We now proceed to defining a set of rules that further restrict the
edges of eligible graphs, and the specific B-patch ownership assign-
ment, such that the graphs and B-patch ownerships that satisfy them
correspond to volume immersions ofM . The rules are also shown in
Figure 14. We start by the assumption thatM is volume-immersible,
and derive the rules as a necessary consequence of this assumption.
We will later prove the converse, namely that any eligible graph
that satisfies all the rules gives a simple volume-immersion.
Theorem 4: Suppose M is simply volume-immersible. Then, the
following conditions must be satisfied for the cell graph and B-patch
ownership assignment:

(1) A node has at most one edge across each B-patch.
(2) A node cannot have an edge across a B-patch it owns, and

must have an edge across one it declines.
(3) A node from cellC must decline a B-patch whose orientation

does not agree with C .
(4) If nodes c1, c2 from cells C1,C2 are connected across patch q,

and pi is a B-patch of Ci , and geometric neighbor of q, for
i = 1, 2, and p1,p2 are topological neighbors, then either both
ci own pi , or both decline pi . Conversely, if ci owns pi , for
both i = 1, 2, and patches p1,p2 are topological neighbors,
then c1 and c2 must be connected across q.

(5) If a node c from cellC owns a patch p1, and p1 is a geometric
neighbor of p2 on C, then c must decline p2.

(6) If four nodes c,d, e, f surround the same arcA, and x connects
to y across a patch that neighbors A, for (x ,y) equaling (c,d )
and (d, e ) and (e, f ), then c must connect to f across a patch
that neighbors A. This also applies to the case where c and e
are the same node, and/or d and f are the same node. More
details are in Figure 15.

(7) Each patch is owned by exactly one node.
Proof: If Rule 1 was violated, then a B-patch would be shared by
at least three nodes. For any point x on the shared B-patch, its
neighborhood includes a part of interior of all three nodes, which
contradicts local injectivity of σ̂ . Note that Rule 1 implies that a
node from a cell that has k B-patches has at most k edges. Rules 2,
3 and 4 follow from the requirement that M̂ is the boundary of Ŝ,
and the restriction of σ̂ onto M̂ is ρ̂ . Note that Rule 2 establishes
an equivalence between B-patch ownership and the absence of an
edge connection. Rule 5 can be proven similarly to Rule 1. Suppose
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Fig. 14. Immersion graph connectivity rules. Solid black curves denote “owned” patches, dashed black curves denote “declined” patches, cyan lines are
connections between nodes, and blue arrows specify patch orientations. Checkmarks and red crosses denote that a rule is followed or violated, respectively.

Fig. 15. Examples of Rule 6: Top-left: one common case of Rule 6, where
four patches p, q, r, s and four nodes c, d, e, f from four cells join at the
same arc. Bottom-left: a rare case of Rule 6, where c and e are the same node
and p and q are the same patch. Right: examples of such situations. Red
circles denote the four-patch cases. Red rectangles denote the three-patch
cases. Note that the rule does not apply to arcs c0 and c1 highlighted with
blue circles in the bottom-right figure, because they both have a surrounding
empty cell that does not belong to the cell complex of M .

p1 and p2 are both owned by c, then pick a point x at the arc shared
by p1 and p2. Any neighborhood of x includes a part of interior
of p1 and p2. However, as p1 and p2 are B-patches of the same cell
and are geometric neighbors, they cannot be topological neighbors.
This neighborhood of x contradicts local injectivity of σ̂ . Rule 6 is
proved as follows. In Figure 15 (top-left), node c connects to d across
patch p, and d connects to e across q, and e connects to f across r .
If c does not connect to f across patch s, then by Rule 2, c must be
connected to another node f2 at the same cell as f , and the same
for f . Then, since c has declined p, by Rule 4 f2 must decline patch
r and connect to another node e2 from the same cell as e . By Rule 4
again e2 should connect to another node d2 and d2 to c2. Repeating
this process either requires an infinite number of nodes, which is
a contradiction, or requires ck to connect back to f . This last case
implies that we constructed an immersion of a disk into R2, such
that the disk boundary winds around the immersed disk more than
once. This contradicts the total turning number Lemma given in
Supplementary Material 1. Therefore, f must connect to c across s .
Similar reasoning can be applied to the other situations of Rule 6
(e.g., Figure 15, bottom-left). ■

5.3 Valid Graphs Give Immersions
As suggested in Figure 5, finding σ̂ involves replicating cells and
connecting them so that the M̂ is the immersion boundary. We now
prove a theorem that makes it possible to construct an immersion if
the graph rules from Section 5.2 are satisfied.
Theorem 5: Let M be a valid input. Assume that there is a cell
graph and a B-patch ownership assignment that satisfy Rules 1-7
given in Section 5.2. Then,M is simply volume-immersible, and the
graph can be used to construct the immersion.

Our proof of this theorem is very technical. We give the complete
proof in Supplementary Material 1. The key intuition is to employ
disjoint unions of the cells belonging to each graph node, and glue
the cells according to the edges of the immersion graph. One then
uses Rules 1-7 of Section 5.2 to prove that that there is a manifold
neighborhood of every point x . In order to do so, one has to analyze
the different cases for the position of x (interior of cell, on an owned
boundary, on a declined boundary, etc.). We can now state and prove
our final immersion result:
Corollary 6: For a valid inputM,M is simply volume-immersible
if and only if there exists a cell graph and a B-patch ownership
assignment that satisfy Rules 1-7 of Section 5.2.
Proof: This follows directly from Theorems 4 and 5. ■

6 ALGORITHM TO DISCOVER IMMERSIONS
We say that a graphG and patch ownership information are compli-
ant if they satisfy Rules 1-7. Our algorithm (Algorithm 1) searches
the space of eligible graphs and ownership assignments to discover
compliant ones. Figure 16 shows an example of algorithm execution.
Although in principle one could enumerate all eligible graphs and
ownership assignments and test each one, we give an algorithm that
explores the space of all eligible graphs much faster. Our algorithm
builds the graph one edge at a time. At each step, it examines all
cells for possible connections that could be added, and adds it to a
cell where the Rules 1-7 force a single choice. If there is more than
a single choice at each cell, it then makes an arbitrary choice and
pushes the other choices onto a stack for future traversal. In many
cases in practice, Rules 1-7 are powerful enough that there is always
a forced choice to be made. However, in more challenging cases
such as those in Figure 6, there are two or more distinct immersions,
necessitating stack use to discover all immersions.

In addition to the “owned” and “declined” ownership information,
we use a third state during the course of the algorithm, “undecided”.
Initially, all relations are initialized to “undecided”; at the end of the
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Fig. 16. An example of the execution of our algorithm to construct an immersion. The input is the 2D curve shown in the bottom-right of Figure 15.
Red, solid black and dashed black curves denote “undecided”, “owned” and “declined” patches, respectively. At each iteration, a blue line represents the
first valid connection between two nodes, green lines are the subsequent connections made by Rule 6 after the first connection, and cyan lines are previous
connections. This is a complete example showing all 11 iterations of our algorithm to produce the output immersion graph (bottom-right).

algorithm they must all be either “owned” or “declined”. In addition,
a declined B-patch p on node c is tagged as incomplete if there is no
edge from c acrossp.Note that by Rule 2, there cannot be incomplete
patches; hence these states are transient and must disappear by the
end of the algorithm.
We first pick any cell that has at least one B-patch whose orien-

tation agrees with the cell and let the node own that B-patch. At
each iteration, we first check whether the graph is compliant by
checking whether there are incomplete B-patches. If not compliant,
we try to find a node to connect across an incomplete B-patch. For
any candidate, we use the function connectNodes to check whether
the connection satisfies Rules 1-7. This function first updates the
patch ownership of the two nodes, then recursively propagates the
change to other nodes as needed. Whenever any of the Rules be-
comes un-satisfiable during the process, the function returns failure.
If connectNodes returns success on connecting node a to b, and
there is no ambiguity where there is another node that can also
be connected to a successfully to create a different graph, then we
connect a to b .We continue building the graph until encountering
an ambiguity that cannot be avoided. Then, we push the current
graph and patch ownership on a stack, pick one possible connection,
and continue. When done with the algorithm, we pop the graph and
patch ownership from stack, make another choice, and continue.
Theorem 7: For a valid inputM,M is simply volume-immersible if
and only if our algorithm terminates successfully, i.e., discovers a
graph and patch ownership assignment that satisfies all rules. If it
terminates successfully, it also explicitly constructs the immersion.

Proof: Suppose the volume immersion exists. Then, by Corollary
6, there exists a cell graph and patch ownership assignment with
the stated properties. Because at each step, our algorithm considers
all possible steps that do not violate the rules, our algorithm tests
all possible graphs. Therefore, it will discover the compliant cell
graph and patch ownership assignment, i.e., terminate successfully.
By Theorem 5, the graph then gives the immersion. Suppose the
algorithm reports that there is no graph and ownership assignment
satisfying the rules. Then, by Corollary 6,M is not simply volume-
immersible. ■

6.1 Running time
For d = 2, it has been proven by Eppstein and Mumford [2009] that
the problem of determining if the given planar curve is a boundary
of an immersed surface, is NP-complete. The size of the problem is
measured as a number of intersections (arcs in 2D), or equivalently,
patches or cells. In our Supplementary Material 1, we prove that the
problem is NP-complete also for d = 3, and therefore the running
time of our algorithm has to be theoretically non-polynomial (unless
P = NP ). In practice, however, the running time is very small even
for very complex examples with high winding numbers and genus.
It is always dominated by the meshing time (Table 1).

6.2 Extensions
Our algorithm can be extended to non-connected inputs M con-
sisting of multiple connected components. This can be achieved by
running the algorithm as usual. When the algorithm runs out of
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ALGORITHM 1: Test if M is simply volume-immersible; if yes, construct
the immersion graph and patch ownerships.
Function isVolumeImmersible(M)

generate cell complex for M ;
create nodes of graph G at each cell, #nodes = winding number of cell ;
edges(G ) ← ∅ ; pick any node a, make it own any B-patch p ;
S ← geometric neighbors of p on a + available connections;
stack← empty ; push G, patch ownerships P, and S onto stack;
while stack not empty do

pop G, P, S from stack;
while exist incomplete B-patches in S do

for each incompl. B-patch at node n, cell C, B-patch p in S do
connectableNodes← 0 ; D ← cell that neighbors C at p ;
if #isolated nodes of D in S ≥ 1 then

connectableNodes← 1 // always connectable;
nodeToConnectTo← any isolated node of D in S ;

for each non-isolated nodem of D in S do
status = connectNodes(n,m) ;
if status == success then

reset the effect of connectNodes(n,m) ;
connectableNodes ++ ; nodeToConnectTo←m ;

end
ambiguous← ( connectableNodes ≥ 2 ) ;
if ambiguous then continue // next incomplete B-patch;
else break // connect non-ambiguously;

end
if ambiguous then push G, P, dropLastEntry(S ) onto stack;
status = connectNodes(n, nodeToConnectTo) ;
S ← current incomplete B-patches + available connections ;
if status == failure then return failure;

end
end
return G and P // success ;

end
Function connectNodes(a, b , p) // connect nodes a and b across patch p

set a and b to decline p ; updateNode(A) ; updateNode(B) ;
for each non-connected node pair (c, d ) in G do // apply Rule 4

if their owned patches q, r are topological neighbors then
find patch s between c and d that shares arc with q and r ;
connectNodes(c , d , s) ;

end
for each node set c, d, e, f around an arc where Rule 6 applies do

connect c and f by calling connectNodes() ;
if any function called above failed then return failure;
return success;

end
Function updateNode(a) // update patch ownership for a and its neighbors

for each node b connecting to a do
apply Rule 4 to update a’s patch ownership based on b ;

apply Rule 5 to decline patches of a ;
for each owned patch p of a do

for each node b having an undecided patch p do
set b to decline p ; updateNode(b) // apply Rule 7 ;

end
if a’s patch ownership has been updated in this function then

for each node b connecting to a do updateNode(b) // apply Rule 4;
if Rule 3, 4, 5 broken at a, or a function above failed then return failure;
return success;

end

Fig. 17. Resolving the double-loop torus. A cube is added to cut the
self-connecting cell. Left to right column-wise: the model (collided faces
in red) and our tetrahedral mesh, the helper cube pulled away to show
the torus mesh, volumetric ARAP deformation exposing the topology, the
double-loop torus further deformed into a single-loop.

valid connections to make, but there are still undecided patches at
nodes, we then pick one undecided patch and assign it to a node,
and continue the algorithm.

We can also extend our algorithm to handle non-simple-immersions
that have self-connecting cells (Figure 12). Such immersions require
connecting nodes of the graph to nodes that are copies of the same
cell. They have limited applicability in computer graphics practice,
but can introduce an arbitrary complex subgraphs on nodes from
the same cell. Designing an algorithm to connect those nodes is
quite daunting. Instead, we adopt a simple workaround: we cut the
self-connecting cells. We do this by forming a box whereby one of
the six faces intersects the self-connecting cell. We modify the input
to beM plus the box. Note that we did not perform any CSG here;
the input consists of two separate meshes, namelyM and the box.
We then run our algorithm. During the cell complex creation, the
original self-connecting cell will disappear because it was cut by a
box face. The output tet mesh will have two components: one forM
which we keep, and the other for the box mesh which we discard
(see Figure 17). If there are still self-connecting cells remaining, we
can add more boxes for more cuts. We always place the box in such
a way that it intersects the self-connecting cell along its longest
axis. Because our inputs are meshes with a finite number of line
segments or triangles, we will, in a finite number of cuts, reach a
situation where the resulting cells are not self-connecting any more.
Note that by Corollary 3, inputs M that are topologically spheres
are guaranteed not to produce self-connecting cells and do not re-
quire this extension. Even for inputs that are topologically tori with
k ≥ 1 handles, we did not encounter self-connecting cells, unless
we created such an example on purpose.

7 CELL TETRAHEDRALIZATION
The boundary of our volume immersion matches the input triangle
mesh. So far, no tet mesh was needed in our work; building the
cell complex and the immersion algorithm only require the input
triangle mesh. We now address the situation where a given input
tet mesh embeds the input triangle mesh. Arbitrary tet meshes can
be used, as long the volume enclosed by the input triangle mesh
is a subset of the volume covered by the tet mesh. This makes our
method versatile, as it permits to easily adjust the tetmesh resolution.
For example, such a tet mesh can be obtained by voxelizing, or by
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Fig. 18. Building the region graph. Left: input geometry, the steps to build the region graph, and the final region graph with the assigned +,− labels. Blue
arrows are the triangle normals. Black empty circles are region graph nodes. Right: nearly self-intersecting dragon. Naive meshing glues the mouth and back
and produces almost no motion in animation; whereas our method produces good dynamics with a coarse mesh.

Fig. 19. Examples of geometry inside a tetrahedron. Top row: 3 pieces
partition the tet into 4 regions. The embedded trianglemesh is shown dashed.
Blue arrows represent triangle normals. Regions labeled + are outside of the
embedded triangle mesh. Regions labeled − are inside of the triangle mesh,
and are a part of Ω. Note that the left and right image have identical piece
geometry, but opposite +, − labelings, due to the opposite piece orientation.
Bottom row: corresponding region graphs. The nodes of the + and − regions
are denoted by empty blue and solid yellow circles, respectively. Each orange
arrow represents a directed edge corresponding to a piece.

computing a BCC lattice [Molino et al. 2003b] of the input triangle
mesh, and then flood-filling the interior with tets.
We now show how to “unglue” the given tet mesh to respect

the immersion. For each cell c, we generate the submesh Tc of T
containing the tets of T that are intersecting c . To avoid gluing
proximity features on the surface of c, we apply our “virtual tets”
algorithm to Tc (Section 7.1). Next, we assign to each immersion
graph node that is a copy of c a unique copy of Tc . Finally, we
connect the tet meshes based on the edges of the immersion graph,
as follows. Suppose graph nodes a and b are connected by an edge
across a B-patch p. Then, we fuse two identical tets from tet meshes
of a and b if they both embed the same triangle of p. Note that if
the tet mesh covers a larger space than the input triangle mesh, the
immersion will not follow the boundary of the tet mesh.

7.1 Virtual tets
The input to our virtual tets algorithm is a closed manifold self-
intersection-free triangle mesh, and a tet mesh that covers the vol-
ume Ω enclosed by the triangle mesh. We give a novel fast algorithm
to “virtualize” the tet mesh, i.e., duplicate tetrahedra that cover more
than one “local region” ofΩ. Each tet copy knowswhat “local region”
of Ω it is embedding, and we then connect the copied tetrahedra into
one consistent global mesh according to the connectivity of Ω. Our
algorithm is similar in goal to [Sifakis et al. 2007], but is more than
an order of magnitude faster. We note that this idea of “duplicate
and connect” appears twice in our paper: once in finding the volume
immersion, and the second time here. Sifakis used CSG to cut the

triangle mesh with each tet to find out the local regions. However,
the CSG operations are slow, and are the bottleneck of virtualization
for complex examples. Our method uses the Sutherland-Hodgman
tet-triangle clipping algorithm [Sutherland and Hodgman 1974] in
exact arithmetic, and pseudo-normal tests to eliminate CSG, which
boosts performance between 10 − 30× in our examples.

7.1.1 Duplicating Tetrahedra. Weapply the Sutherland-Hodgman
algorithm [Sutherland and Hodgman 1974] to clip triangles against
each tet. The clipped triangles form connected components (we call
them “pieces”) inside each tet. If there are no triangles inside the
tet, then this is an interior tet, and the entire tet volume is one local
region in Ω. Otherwise, the pieces partition the tet volume into
disjoint regions. We label the regions with a + if they are outside of
Ω, and − if inside. We now give an algorithm to label the regions,
and identify the pieces that form the boundary of each region.

Similarly to our immersion graph, we form a region graph, where
each region is a node and each piece corresponds to an edge (Fig-
ure 19) joining two regions that have this piece as their shared
boundary. The region graph is connected and without cycles, i.e., a
tree. The proof is simple: if we incrementally add pieces one by one
into the tet, since each piece is a subset of a manifold triangle mesh,
it always partitions the tet volume into two volumes. Since the mesh
is self-intersection-free, a newly added piece will only subdivide one
region. Therefore, if there are k pieces in a tet, we will form k + 1
regions. Since the triangles in each piece are oriented consistently,
we can direct edges from the inside to the outside region.

The region graph is built incrementally as follows (see also Fig-
ure 18).We initialize it by placing only one piece into the tet, creating
two region nodes and one piece edge. When adding a new piece P ,
we first identify which region will be subdivided by P . This is done
by querying an arbitrary vertexv on P against the boundary surface
of every region, until we discover the one that contains it. In Supple-
mentary Material 2, we prove that we do not need to explicitly form
the region boundary surface (which would require using CSG) to
query this. It is sufficient to only perform inside-outside queries on
the boundary pieces of the region. We first use our region graph to
identify the pieces that bound this region, then we find the closest
site on each piece to v . Next we perform the pseudo-normal test
against the closest site [Bærentzen and Aanæs 2005] to identify if
v is inside or outside each piece. After we find the region ν that
contains v (and therefore P ), we subdivide ν into ν+ and ν−, split
its node in the region graph into two nodes, and connect them to
each other with the piece edge of P . For a piece Q connecting ν
before P is added, we move it to either ν+ or ν− by testing whether
an arbitrary vertex w on Q is outside or inside P , using the same
pseudo-normal test as done on v . Since pieces do not intersect, a
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Fig. 20. Yeahright-on-ground model. Top left: Yeahright dropped on the
ground. Collided faces are in red. Bottom left: generated tetrahedral mesh.
Top right: we deformed the Yeahright-on-ground using volumetric ARAP
on the tetrahedral mesh. Bottom right: closer look on how our method is
able to untangle the intersecting features.

piece cannot be both inside and outside of P . After all the pieces
are added to the region graph, we find all − regions by checking
whether they are inside their boundary pieces, i.e., they have only
outward edges in the region graph. We then duplicate this tet by the
number of − regions and for each region we embed the triangles of
its boundary pieces into the tet for this region.

Fig. 21. Duplication of tet
vertices to embed a comb.

7.1.2 Connecting Duplicated
Tetrahedra. We connect a pair
of neighboring tets if their em-
bedded pieces share points on
the boundary. The boundaries of
each piece are polygonal lines ly-
ing on tet faces. If the shared tet
face between the two tets does
not have piece boundaries from
either tet, and an interior point
on the face is considered inside
for the pieces in both tets (again
by pseudo-normal test), we must also connect those tets. Points on
faces of a tet with no pieces are considered inside in the above test.
Once we know which tets should be connected, the assignment

and duplication of tet vertices is performed as explained in [Teran
et al. 2005], Section 6. In short, each copied tet is initially assigned a
totally unique set of 4 vertices. If two tets are connected, we merge
the three pairs of vertices on the shared tet face. The merging is
done using a disjoint-set data structure. Such tet vertex duplication
produces correct topological connectivity of the tet mesh. This is
illustrated in Figure 21 whereby none of the teeth of the comb are
welded to adjacent teeth.

7.1.3 Details. For more detail and robustness considerations of
our algorithm, please refer to our Supplementary Material 2. The
tetrahedralization algorithm can be easily adapted to 2D to embed
polygonal lines into triangles.

8 RESULTS
We give the statistics of our method in Table 1 (Intel Xeon 2.3GHz
2x6 cores, 32 GB memory). An illustration of the progress of our

Fig. 22. Quintuple Torusmodel. Top-left: side view of theQuintuple Torus.
Collided faces are in red. Bottom-left: top view with holes visible. Top-
middle: Sacht’s implementation became stuck in the reverse flow due to the
complicated collisions, spending 8 hours without progress until we stopped
it. Bottom-middle: our algorithm successfully generated a tetrahedral mesh
to embed the shape. Top-right: we simulate the output mesh using FEM.
Bottom-right: the deformed tetrahedral mesh.

Fig. 23. Intermediate stages of building immersion graphs. The three
rows correspond to the examples of Sacht (small), yeahright-on-ground and
quintuple torus. Leftmost column: the first node added to the immersion
graph. Rightmost column: the final node added.

immersion algorithm is shown in Figure 23. To help with imple-
mentation, we released the source code under a free BSD license
as a part of Vega FEM 4.0 [Barbič et al. 2018]. The released code
includes both self-intersecting meshing (Sections 4, 5, 6) and nearly
self-intersecting meshing (Section 7). The input tet meshes in our ex-
amples are generated by red-green subdivision on tet grids [Molino
et al. 2003a], or voxelization implemented in [Barbič et al. 2018]. We
have tested our method on multiple meshes. The upper and lower
lips in the head model in Figure 2 self-intersect. Our immersion
method was able to generate an overlapping, but separated tetra-
hedral mesh despite the self-intersections, which makes it possible
for FEM simulation to open the mouth. We can achieve this even
with a very coarse mesh that only has 7 tets across the length of
the mouth. We note that prior work [Li et al. 2016] achieved similar
functionality by meshing the head in a deformed intersection-free
configuration. This prior work, however, is tedious in practice be-
cause generating deformed intersection-free configurations cannot
be easily automated, and requires substantial additional work and
book-keeping in a computer animation pipeline. The helix model
(Figure 1) consists of 100 tightly self-overlapping loops. Our method
is able to mesh and animate it correctly. We generated the yeahright-
on-ground model (Figure 20) by modifying the “yeahright” model
from Keenan Crane’s 3D Model Repository [Crane 2017]. Both the
original model and our model have genus 131. The modification is
that we dropped the original model under gravity using a FEM sim-
ulation, and let it come to rest on a plane without any self-collision
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Table 1. Immersion algorithm statistics. t-cell, t-imm, t-mesh: times for generating the cell complex, immersion algorithm and meshing.

Model vertices triangles genus cells patches arcs max winding # output tets t-cell t-imm t-mesh t-total
head 3,020 6,036 0 3 3 2 2 566,515 0.34s 0.0090s 38.0s 38.4s
helix 100,020 200,036 0 3 3 2 2 36,182 56.4s 0.0003s 190s 246s
yeahright-on-ground 94,063 188,646 131 117 263 362 4 83,024 14.2s 0.12s 57.1s 71.4s
quintuple torus 15,211 30,438 5 314 886 1,700 7 84,905 11.6s 4.89s 35.9s 52.4s
tree 163,998 328,152 40 131 259 258 2 32,457 15.9s 0.19s 130s 146s
Sacht (small) 12,448 24,896 1 26 49 48 2 112,554 2.77s 0.0015s 19.7s 22.5s
Sacht (large) 24,160 48,320 1 41 79 78 2 225,338 6.01s 0.0045s 42.2s 48.2s

handling. This resulted in a massively self-intersecting shape of
genus 131. We call this shape the “yeahright-on-ground”, and we
use it as input to our paper. Our method was able to generate an
unglued tetrahedral mesh for this severely self-intersecting shape
(Figure 20), which enabled us to correctly pull it apart using volu-
metric ARAP. The high genus of the model causes zero-area faces in
the forward flow, which causes Sacht’s method to fail, whereas our
method succeeds. In the quintuple torus example, we attached 24
cylinders onto a quintuple torus (genus 5) and collided the cylinders
(Figure 22), forming cells of a high winding number 7. Our method
generated a quality tetrahedral mesh that is capable of separating
all of the collided cylinders. In the tree example (Figure 3), we ap-
ply our method to procedurally generated geometry, and in the
dragon example (Figure 18), we mesh nearly self-intersecting geom-
etry. In addition to direct modeling and animation, our method also
enables topology-aware computation of volumetric weights such
as bounded biharmonic weights [Jacobson et al. 2011] (Figure 4),
suitable for further use in shape deformation and simulation.
In Figure 24, we compare our work to Sacht’s method. We tried

all of the non-inverted inputs of [Sacht et al. 2013] and our method
was successful on all of them. Our work can accommodate non-
spherical inputs (genus ≥ 1), whereas Sacht’s method often fails on
such inputs; for example, it fails to produce any meaningful result
on the yeahright-on-ground and quintuple torus models. We also
tried the torus example that Sacht’s work listed as problematic for
their method (“Sacht large” example in Table 1), and confirmed that
Sacht’s method fails whereas ours produces a good result. We then
decreased the difficulty of the example by removing some vertical
columns (“Sacht small”), upon which Sacht’s work succeeded, but,
due to meshing in the unwrapped configuration, produces a very
suboptimal tet mesh compared to our world-space meshing (Fig-
ure 24, B). Furthermore, because Sacht’s method requires repeated
self-collision detection at each iteration, whereas we only need it
once in building the cell complex and once for tetrahedralization,
our method is more than 100× faster than Sacht’s method.

We compared our tetrahedralization method (Section 7) with the
CSG method of [Sifakis et al. 2007] on the yeahright-on-ground
model (Figure 20). We note that prior work [Sifakis et al. 2007] did
not address self-intersecting inputs (only nearly self-intersecting),
but we hereby use the prior work to replace our tetrahedralization
algorithm. In contrast, the prior work [Sifakis et al. 2007] needed
2,545 seconds total, with more then 98% of the time spent in running
CSG operations to duplicate tetrahedra. We use the same CSG rou-
tines ([Zhou et al. 2016]) when implementing both our method and
the prior work. Our profiling shows that, in prior work, 97% of the
total time is spent in exact-arithmetic mesh booleans. Our method
does not need mesh booleans for tetrahedralization, and requires a

lot fewer exact arithmetic operations (Table 2). We observed similar
speedups also on smaller examples.

Table 2. Timing comparison to Sifakis’s algorithm.We report the total
time spent in four key CGAL exact arithmetic routines when using CSG
operations as in [Sifakis et al. 2007], versus our novel pseudo-normal and
exact arithmetic Sutherland-Hodgman algorithm. Yeah-right-on ground
model. “Meshing total” is the time to generate the tet mesh after the im-
mersion algorithm has generated the graph, including CGAL and other
operations specific to each method. The “grand total” is the total time from
loading mesh M to producing the output tet mesh; it equals the immersion
algorithm time (16 sec; same for both methods), plus the “meshing total”
time. The libigl::mesh_boolean times are for tetrahedralization in Sifakis’s
method; our method does not need it for tetrahedralization. We use it in
the immersion algorithm; where it occupies 12.5 sec of the running time.

Routine Sifakis 2007 [sec] Ours [sec] Speedup
CGAL::Lazy_exact_Add 7.6 0.14 54×
CGAL::Lazy_exact_Sub 2.5 0.34 7.3×
CGAL::Lazy_exact_Mul 7.6 0.14 54×
CGAL::Lazy_rep_2 305 13.6 22.4×
libigl::mesh_boolean 2479 0 ∞

Meshing total 2529 55 50×
Grand total 2545 71 36×

Although our immersion theorems apply to shapes that are free
of self-connecting shapes, we can still accommodate such shapes
(Figure 12) by cutting them with helper cubes (Figure 17). This
increases the number of cells ofM from 5 only to 11, and converts
the input into one without self-connecting shapes. Our method
is then able to produce a valid separating tetrahedral mesh. This
tetrahedral mesh has two connected components: one for the cube
(which we discard), and one for the torus. In Figure 17, right, we
show that we can then use the produced torus tet mesh to deform
the double-loop torus into a self-intersection-free configuration.
Our method is able to find all possible immersions (Figure 6). Unlike
prior work [Mukherjee 2014], our input is not restricted to a single
connected component (see Figure 7), which means that our method
accepts a broader input than the state of the art on 2D immersions.

9 CONCLUSION
We presented an algorithm to create a simple volume-immersion
that matches the input triangle mesh if such an immersion ex-
ists, or reports that it does not exist. We demonstrated how to
efficiently create a topologically-correct tetrahedral mesh for self-
intersecting input triangle meshes in 3D, or polygonal lines in 2D.
Different from previous methods, our method is robust both for 3D
shapes that are topologically spheres and tori of high genus. Our
method cannot handle surfaces that are not boundaries of volume-
immersions, such as the elbow collision shape, or other inverted
surfaces. Topologically-correct tetrahedralization is the most costly
component in our pipeline, and we hope to accelerate it further in
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Fig. 24. Comparison to Sacht’s work: Part (A): Left to right: side and top view of the model from [Sacht et al. 2013] (intersections are in red), Sacht’s method
result (failed in the middle of the process), the tetrahedral mesh generated successfully by our method, and the tetrahedral mesh and its embedded mesh
deformed by volumetric ARAP, demonstrating our correct topology. Part (B): Left to right: side and top view of the “small” input model; Sacht’s method
produces a highly deformed shape that results in a low-quality tetrahedral mesh for the original surface; our method produces a good volumetric mesh.

the future. We described our volumetric meshing process for tetra-
hedral meshes, but the technique can be easily extended to other
elements such as hexahedral meshing. There are several remain-
ing open challenges; namely, how to detect and properly handle
non-simple immersions such as multiple self-connecting tori, im-
mersions where the compactness assumption does not hold, and
non-immersions such as inversions. Challenges also include han-
dling input meshes with boundaries, and constructing immersions
in higher dimensions. The tet meshes we built for this work did not
try to match the input triangle meshes. An interesting future work
is to tetrahedralize a constrained boundary that self-intersects.
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