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Abstract

We present an interactive animation editor for complex deformable
object animations. Given an existing animation, the artist directly
manipulates the deformable body at any time frame, and the sur-
rounding animation immediately adjusts in response. The auto-
matic adjustments are designed to respect physics, preserve detail
in both the input motion and geometry, respect prescribed bilateral
contact constraints, and controllably and smoothly decay in space-
time. While the utility of interactive editing for rigid body and ar-
ticulated figure animations is widely recognized, a corresponding
approach to deformable bodies has not been technically feasible be-
fore. We achieve interactive rates by combining spacetime model
reduction, rotation-strain coordinate warping, linearized elasticity,
and direct manipulation. This direct editing tool can serve the final
stages of animation production, which often call for detailed, direct
adjustments that are otherwise tedious to realize by re-simulation
or frame-by-frame editing.
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1 Introduction

From a technical perspective, the animation of deformable objects
is often framed as a problem in forward simulation, where dynam-
ical trajectories evolve subject to initial and boundary conditions.
From an artistic perspective, animation is usually framed as a prob-
lem of design, an iterative process of evaluation and revision seek-
ing a balance among multiple competing criteria, both quantitative
(“obeys physical laws”) and qualitative (“a matter of taste that is
hard to put into words, let alone algorithms™).

In an iterative design processes, the cost—in time, effort, and
resources—of making a revision can drastically influence the non-
linear path in design space chosen by the artist. In essence, the
artist is continuously balancing what they want against what they
can achieve, each consideration influencing the other. Forward sim-
ulations on their own are a severely limited tool for revising an an-
imation: the most minor revision requires a complete simulation
run; and it may be tedious or impossible to set the simulation pa-
rameters to obtain exactly the desired revision. At the other end of
the spectrum, direct keyframe editing is also too limited for revis-
ing complex animations, as it affords complete artistic control but
burdens the artist with maintaining physical plausibility.
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Figure 1: Adjusting complex input motion: The bridge motion is
edited interactively (21 fps) to correct unwanted collisions with the
ocean (frame 20) and two groups of scripted seagulls (one visible
on frame 95). Eight vertices were adjusted in an editing session that
lasted 5 minutes. The input motion was computed using a FEM
simulation, and the edits preserve its complexity. Input motion is
shown yellow. Editing is performed on the tetrahedral simulation
mesh; the right view shows the embedded rendering triangle mesh.

What is needed is a tool that provides the immediacy of interaction
of keyframe editing, with the automatic “physical understanding”
that is built into forward simulations. We develop such a tool with
the goal of revising complex deformable object animations at inter-
active rates. Given an input animation, our system enables artists
to select and drag an arbitrary vertex (or set of vertices) at arbitrary
animation frames, while the system automatically adjusts the en-
tire animation to accommodate the edit and keep the animation as
true to the original as possible. As the user drags a vertex, the en-
tire shape at that moment of time, and at previous and future times,
automatically reconfigures in a manner that satisfies several config-
urable criteria, including (a) preservation of detail in the input ani-
mation, likely laboriously created using previous resource-intensive
forward simulations; (b) spatiotemporal smoothness and locality of
any introduced adjustments; (c) introduction of physics-based sec-
ondary motion resulting from the edit (see Figure 2). The feedback
to the user is instant and interactive. To achieve this, we introduce
spacetime Green’s functions that generalize spatial Green’s func-
tions [James 2001] to animations. Such Green’s functions reduce
editing feedback to a simple superposition of a few basis animations
and can be quickly recomputed using incremental solvers each time
the set of user-manipulated vertices changes.

2 Related Work

Animation editing is a “high-dimensional” problem, in that it re-
quires editing of many shapes, one at each instant in time. Witkin
and Popovic¢ [1995] edited animations by applying spline interpola-
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Figure 2: Spacetime Green’s function corresponding to constraining a single mast vertex at frame 60. Secondary motion (e.g., mast
pre-swinging, natural bridge pathway deflections, swinging of the other mast) is clearly visible and appears automatically in the Green’s
Sfunction. User selected the vertex at frame 60 and pulled the vertex handle in the direction perpendicular to the mast; no other effort was
necessary. Bridge example (31, 746 tetrahedra, 1,000 modes, 240 frames), zero input animation, free end boundary condition, 21 fps.

tion and warping to keyframed edits. Gleicher [1997] introduced in-
teractive animation editing for articulated skeletons, a line of work
that has continued even recently [Lee and Shin 1999; Tak et al.
2002; Min et al. 2009; Sok et al. 2010]. Popovi¢ et al. [2000; 2003]
introduced interactive editing for rigid body animations. These
techniques employ incremental updates to enforce constraints at in-
teractive rates, as underscored in the seminal differential manipu-
lation of Gleicher and Witkin [1991]. We build on these methods,
confronting the challenge that the full space of shape evolutions of
a deformable body is intractable for interactive animation editing.

While we focus on interaction as the key to rapid design, ear-
lier methods considered other usage patterns to facilitate anima-
tion design. Tracking solvers [Bergou et al. 2007] begin with a
given coarse simulation and enrich the output with additional phys-
ical detail in an offline simulation. Proportional-derivative con-
trollers [Kondo et al. 2005] use a forward simulation augmented
with forces that guide the object to prescribed temporal keyframes.
For deformable objects with an embedded skeleton, a PD controller
can provide constraints on instantaneous joint accelerations, which
can serve as an intuitive interface for creating animations [Kim
and Pollard 2011b; Kim and Pollard 2011a]. Spacetime con-
straints [Witkin and Kass 1988; Popovi¢ and Witkin 1999; Fang
and Pollard 2003; Wojtan et al. 2006] pose control as an opti-
mization problem, which may be accelerated via coarse-to-fine and
windowing techniques [Cohen 1992; Liu et al. 1994], the adjoint
method [McNamara et al. 2004], and reduced control [Safonova
et al. 2004; Barbi¢ and Popovi¢ 2008; Barbic¢ et al. 2009]. While
previous reduction-based accelerations required that the entire in-
put animation lies in the reduced space, our method asks that the
adjustment to the animation lies in the reduced spacetime, enabling
the editor to preserve input detail. One could perform simple edits
using a real-time tracking optimal controller [Barbi¢ and Popovié
2008], by tuning perturbation forces in spacetime. In our work,
the user can prescribe vertex positions, which provides more direct
control over the animation. Furthermore, with tracking controllers,
one must perform an entire (reduced) simulation run each time a
force is altered, whereas our editing feedback is instant.

The principle of interaction is deeply embedded into techniques for
static shape modeling [Zorin et al. 1997; Alexa et al. 2000; Lip-
man et al. 2004; Botsch et al. 2006; Gal et al. 2009]; some static
modeling tools rely on deformable model simulation [Umetani
et al. 2011]. Animations can be created by interpolating keyframes
obtained using such static techniques, either using spline inter-
polation, or by properly interpolating rotations using as-rigid-as-
possible interpolation [Alexa et al. 2000; Sumner and Popovié
2004; Botsch et al. 2006]. Such geometric techniques, however,
cannot provide dynamics in the edits.

In 2008, Kass and Anderson [2008] introduced wiggly splines:
complex-number-valued 1D modal oscillators that incorporate not
only the usual cubic spline controls but also parameters correspond-
ing to phase, resonance, and damping. Artists can use wiggly

splines to interactively apply dynamic small-deformation adjust-
ments to animations, by tuning individual 1D oscillators. Huang
et al. [2011] employed modal oscillators for dynamic interpolation
of deformations, and introduced rofation-strain warping to avoid
linearization artifacts under large edits. We build on these works:
to support direct vertex manipulation, contact constraints, and ed-
its that are both large and high-dimensional, the oscillators must be
coupled. We demonstrate how to achieve such coupling, at inter-
active rates, by combining our novel spacetime Green’s functions
with spatial model reduction and warping.

3 Manipulation Objective

The input to our system is (i) the rest pose of a deformable ob-
ject represented by a collection of n vertices, (ii) a mass matrix M
and stiffness matrix K associated with this rest pose, and (iii) a se-
quence of object deformations comprising an animation. The mesh
may be anchored (a subset of the vertices is fixed to the rest po-
sition), or unanchored. The mass and stiffness matrices are easily
obtained using standard simulation tools (e.g., FEM, mass-spring
systems, thin shells, cloth solver). Our approach relies on these
three inputs as “black boxes” and does not impose additional phys-
ical structure on the input animation; thus animations produced by
hand (keyframing, skinning, etc.) may also be edited with our tool.

Notation: Denote the sequence of input frames by %o, . . ., U7—1,
likewise the output by uo, . . ., wr—1. Each frame @; € R>" records
vertex displacements relative to a time-invariant rest pose. The dif-
ference ¢; = u; — 4;, between outputs and inputs is the realized
edit. The realized edit observed by the user is not computed directly
by our method; instead, we first internally compute a linearized edit
pi € R®" from which we later compute ¢; € R3" via warping (§6).

Spacetime Objective: We begin by posing a quadratic function
that evaluates the cost of an edit. We postulate that the input an-
imation is “natural:” without user constraints, the input anima-
tion is our output. Our technique supports arbitrary quadratic en-
ergy functions of the linearized edit sequence {p;}. We employ a
function that favors edits that are closest to physical, by minimiz-
ing the residual forces f in linearized elastic equations of motion
Mp" + Dp' + Kp = f (see, e.g., [Shabana 1990], p. 301). After
discretizing p” and p’ in time, we obtain our energy,
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where the hat operator is p; = pi+1 — 2p; + pi—1 and h is the
timestep. We employ Rayleigh damping, D = aM + K, with
tunable parameters « > 0 and 3 > 0. As standard in mechanics, we
weight the forces by M ~'. This energy generalizes the spline en-
ergy proposed by Kass and Anderson [2008] from a single damped
harmonic oscillator to a linearized high-dimensional elastic system.



In control terminology, our energy E corresponds to a fully actu-
ated system (all forces are permitted). Therefore, a solution to the
given user constraints always exists and can be found quickly. We
considered underactuating our edits, say, by restricting forces to
a subset of “muscle” forces. However, one then has to optimize
underactuated systems, which pose a fundamentally more difficult
problem. In the initial stages of our research, we also considered
energy functions where the K p; term is replaced by nonlinear elas-
ticity. Although producing improved large edits, such computation
is very complex: at interactive rates, it did not scale beyond exam-
ples with approximately 20 vertices.

Reduction: We accelerate computation by restricting the lin-
earized edits to a subspace of » modes: we set p; = Uz;, where
the columns of U € R>3™*7 form the reduced basis, and z; € R” is
the coordinate vector of the edit with respect to the reduced basis.
To obtain the reduced basis, we solve the generalized eigenproblem

KZE]' = )\jM:E]'

for the eigenvectors {z;} and corresponding ascending eigenval-
ues {A;}. We truncate the eigenbasis, retaining the first r vibra-
tion modes as columns of U = (z1 ...z, ), and the corresponding
eigenvalues in the diagonal matrix A. We typically retain several
hundred modes (see Figure 3), and our technique scales well with
increasing the number of modes (see Figure 5).

Applying p; = Uz; to (1) yields the reduced coordinates objective

hes, 1 1
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We obtained this simple form by noting that eigenvectors are mass-
orthonormal, UT MU = I, and they diagonalize the stiffness ma-
trix, UT KU = A. The truncated reduction has thus yielded a
system of r damped harmonic oscillators. While they are decou-
pled in (2), we will need to address the fact that they are coupled by
imposed user and contact constraints (§4).

We can now assemble linearized edits p; into a vector p =
[pg;, . p%_l]T € R*'T and reduced coordinates into a vector
z=2,...,24_1]7 € R"T. Then, at p = 0 (input animation),
both E and its gradient with respect to p are zero. We can therefore
succinctly rewrite (2) as the quadratic form

E= %zTHz. (3)

The symmetric positive-definite pentadiagonal Hessian matrix
H = d’E/d2*> € R"™*"7 is given in Appendix A. It is constant
at runtime and precomputed at startup from the undeformed mesh
pose: it only depends on the eigenvalues of the input rest mesh,
damping, the timestep, and the number of frames 7.

Given the user-imposed vertex position constraints, at arbitrary
frames, our system finds linearized edits po, ..., pr—1 that mini-
mize F under those constraints. Because the system is linear, we
precompute the solutions using spacetime Green’s functions when-
ever the set of constrained vertices changes, and then merely super-
impose the Green’s functions as the user drags a vertex. We explain
this process in the next section.

4 Manipulation and Green’s Function

Animation degrees of freedom are ordered pairs (i, j), where ¢ is
the frame index and j is the degree of freedom in the mesh. For-
mally, the set of all animation DOFs is D = {0,1,...,7 — 1} x
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Figure 3: Convergence under an increasing number of modes:
We edited a 256-frame seagull animation, by imposing a detailed
edit that twists the tail. Top: frame 56, from an animation computed
using a varying number of linear modes. Solutions with 200 and
500 modes are visually very similar and identical to a full solution,
respectively. Blue points are user constraints. Middle: the temporal
diagram of absolute values (log,, scale) of modal amplitudes in a
solution computed using a full basis, for first 200 modes. It can be
seen that the output is high-dimensional with modes coupled in a
non-trivial way. Our method automatically provides the coupling.
Bottom: the vertical slice at frame=>56.
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Figure 4: Our user interface: Left part of the window permits the
user to scroll to any frame and add, remove or adjust vertex con-
straints. On the right, the current output animation is continuously
displayed. Seagull example, 500 modes, 255 frames.

{0,1,...,3n — 1}. The user manipulates the animation by select-
ing degrees of freedom (z,y, 2z vertex deformations), at arbitrary
frames, and dragging their positions with the mouse (see Figure 4).
Any degree of freedom can be selected or de-selected, in arbitrary
order. As the user drags a selected degree of freedom, the other se-
lected DOFs keep their prescribed values. Note that there is no need
for the animator to craft entire frames; sparse input in spacetime
is sufficient. Our outputs were typically created by manipulating
about 10-30 degrees of freedom. In our implementation, the user
selects vertices, and we always select all three degrees of freedom



of a vertex simultaneously; we provide a coordinate-axis handle for
easier manipulation (see Figure 4).

Formally, at any moment during the manipulation, the set D con-
sists of two disjoint parts: the set of free DOFs F, and the set of
manipulated DOFs M. Analogously, we can decompose the lin-
earized edit vector p into p™ € R¢ and p? € R3*"T . Positional
constraints imposed by the user are linear constraints, C'z = p™,
where the sparse matrix C' € R°*"7 constrains the corresponding
rows of the modal matrix U, positioned at the frame of the con-
straint. We obtain our reduced coordinate edit z by minimizing (3)
subject to C'z = p™. Applying the method of Lagrange multipliers
to the constrained minimization yields the linear system

H C7 z | _| O
R Y N
In order to accelerate runtime computation, we can precompute the

solution to a unit change of each DOF of M, by solving for the
Green’s functions matrix G € R"7*¢

H C* S 0

R R
Each column of G is a spacetime Green’s function: it gives the
change in the entire animation as a result of displacing the x, y or
z coordinate of a manipulated vertex. Such world-space constraints
automatically produce edits where hundreds of modes activate in
non-trivial patterns (see Figure 3); this distinguishes our method
from earlier approaches that required users to manually tune in-
dividual oscillators. Green’s functions automatically include sec-

ondary motion (see Figure 2); with traditional techniques, such de-
tail would need to be keyframed manually.

Green’s functions are globally supported both in space and time.
If desired, they can be restricted to a submesh by computing the
submesh modes under a fixed interface to the rest of the mesh. Re-
striction in time can be achieved by using a subrange of the input
frames. The (rT 4+ ¢) x (rT + c) system in (5) must be solved each
time (M, F) changes. Because H is constant, symmetric positive-
definite and pentadiagonal, its Cholesky decomposition only has
three non-zero diagonals, and can be computed and stored very ef-
ficiently. At runtime, we can then efficiently solve (5) using Schur’s
complement of H, which we update each time a constraint is added
or removed (Appendix B). Computing G is fast, even for hundreds
of modes (see Figure 5). As the user is dragging a manipulated ver-
tex, due to linearity, we can simply superimpose Green’s functions:

z = Gp™, pi=Uz (fori=0,...,7—1). 6)
Note that we do not need to construct all frames of z at once, but
only z; and p; currently previewed on the screen.

Boundary conditions: Equation 5 is singular because the entire
animation can undergo a constant frame translation without chang-
ing the editing energy. Prior to solving (5), we therefore impose
boundary conditions. We use two forms of boundary conditions:
(1) imposing zero edits at frames 0,1,7 — 2,7 — 1, and (2) im-
posing zero edits at frames 0, 1 only. The conditions are imposed
by removing the corresponding rows and columns from the system
matrix in (5). These conditions effectively set the edits and edit
velocities to zero at the beginning and optionally the end of the an-
imation. Typically, edits are performed in a temporal window, and
condition (1) ensures that any pre-animation and post-animation
blends in smoothly in positions and velocities to the edited seg-
ment. Condition (2) in turn, yields more vibrant edits, as the end
of the animation is free; it is useful, for example, for creating new
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Figure 5: Green’s functions can be computed in under 100
msec for complex meshes, long animations and many manipu-
lated vertices: Top: Bridge example, r = 200 modes, T = 240
frames. The standard method computes Green’s functions by per-
forming Cholesky decomposition on the system matrix of Eq. 5. Our
incremental method uses Schur’s complement of H (Appendix B)
to incrementally update the inverse of the system matrix. Bottom:
Computation time and memory under increasing r, for 20 simulta-
neously constrained vertices. If all modes were used (r = 26,337),
incremental solver takes 24.5 seconds and requires 8.3 Gb of mem-
ory (136x slower and 64x more memory than with 400 modes).

animations, with automatic secondary motion, by editing zero ani-
mations. The zero position and velocity boundary conditions could
be replaced with a different regularization condition, such as adding
an extra energy term that penalizes deviation from input positions
or input velocities. Such terms only affect the main diagonal of H,
and could be easily incorporated into our method.

5 Contact

Our system can edit input animations with contact. The contacts
are preserved by the edits, and are allowed to slide in the contact
plane, under the assumption that the set of contacts itself does not
change. Each contact is given as a triple (¢, v,n), where 4 is the
contact frame, v the contact vertex, and n the contact normal. For
each contact, a scalar constraint is formulated that keeps the contact
vertex in its plane of contact. These one-dimensional constraints are
then simply added to the constraints C' in (5), in an identical way
as the user constraints. Because the contacts never change during
editing, we can compute Schur’s complement of H plus the con-
tact part of C, at startup. Our formulation also supports constraints
on relative motion of two vertices, which can be used to preserve
self-contact. Optionally, vertices can also be pinned to their input
locations, to accommodate, e.g., no-slip contact conditions.

Determining contacts: Physically based simulations can use
any collision detection and contact resolution method. The contacts
should be passed as input to our editor alongside with the frame de-
formations. In some practical scenarios, contact information is not
readily available, e.g., with commercial cloth solvers that do not
explicitly expose contact information. In such cases we determine
the contacts by performing collision detection on our input frames.
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Figure 6: Editing simulations with contact: The user adjusted
the mouth deformation of this dragon tumbling down a staircase.
Sliding contact constraints were used. Bottom row shows the view
from inside the stair, including contacts (red points) as determined
by our clustering algorithm and the contact normals. When con-
tact handling is disabled, large penetrations occur, whereas with
contact handling, contacts are preserved.

Contact clustering: Adjacent contact vertices in space or time
usually represent the same contact site. We remove such redundant
contacts using a spacetime clustering of contacts. First, we form a
graph that consists of 7" replicate copies of the mesh vertices; two
nodes are adjacent if they have the same frame index and are mesh
neighbors, or if they are identical vertices and neighbors in time.
The contacts form a graph subset, and we set our clusters to its con-
nected components. We replace each cluster by a single contact
(i,v,n), where 7 is the nearest frame to the mean cluster time, v
is the nearest mesh vertex to the mean of cluster vertices, and n is
the (normalized) mean cluster normal. Such clustering reduced the
number of contacts from 92,742 to 410 in our dragon example (Fig-
ure 6). Thresholds could be set to avoid excessively large clusters.
More advanced clustering strategies could further reduce the num-
ber of representative contacts. We analyze Green’s function com-
putation time under a progressive number of contacts in Figure 7.
Clustering decreases computation time and improves controllabil-
ity. A small basis may be unable to resolve contact points that are
nearby in space and time, leading to well-known “ringing” artifacts
of modal methods. To some degree, this is alleviated by the pseu-
doinverse in the incremental solver. It is advisable, however, that
model reduction goes hand in hand with contact reduction.
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Figure 7: Contact clustering decreases Green’s function com-
putation time. Dragon example. One manipulated vertex. Solver
runs out of memory with approximately 15,000 contacts.

6 Warping Implementation

The previous sections presented a complete editing system. The
edits, however, would exhibit linearization artifacts when p™ is
large (Figure 8, middle row). We employ the warping proposed
by Huang et al. [2011], providing only a brief summary here, and
pointing out how to handle contact constraints and input animation
efficiently. Because of warping, the Hessian matrix H, computed at
the time-invariant rest shape (Equation 3), is suitable even for large
input deformations; but its expressiveness diminishes under large
edits (where a re-linearization would be beneficial). Effectively,
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editing timestep

frame 30
2x larger
editing timestep

frame 30
normal timestep

frame 150

frame 150 frame 150
view 1 view 2

frame 0

modal warping turned off

Figure 8: Editing cloth simulation: The user adjusted three ver-
tices (one at frame 30, two at 150) to make the cloth swing higher
and flap its corners. Input simulation is shown yellow, output is
shown red. T = 240, r = 200. Input motion was computed using
the cloth simulator of Baraff and Witkin [1998]. Editing timestep
need not match the simulation timestep; top row shows the effect of
adjusting the editing timestep. Edits become spatially more global
with larger editing timesteps. Middle row shows artifacts when
warping is disabled. Bottom row shows selected animation frames.
Secondary motion due to edits at frame 150 are clearly visible on
frames 90 and 210. Frames 0, 1,239, 240 were constrained to zero
edit (§4), so that the initial and final output position and velocity
match the input; thus, the edit can smoothly blend into the input
motion before and after the temporal editing window.

our system is editing deformations around the time-invariant rest
shape, whereas warping properly rotates and deforms them relative
to input deformations. Initially, we attempted to precompute H and
perform warping by linearizing about each input frame rather than
the rest shape, but the long precomputation times and greater mem-
ory requirements made such an approach impractical.

Warping begins by transforming displacements v € R3" (measured
from the rest configuration) to rotation-strain coordinates. In our



work, we will apply warping to v = u; + p;, for all frames i,
but the principle is general. Let G € R%*3™ be the usual dis-
crete gradient operator of tetrahedron j [Huang et al. 2011], i.e.,
the 3 x 3 deformation gradient of tetrahedron j equals I + GIv. We
decompose G’v into symmetric and antisymmetric components,
Gy = (GTv+(G?v)T) /24 (G7v—(G7v)T) /2. Denoting the up-
per triangle of the symmetric part as 3/ € RS, and the skew-vector
corresponding to the antisymmetric part as yJ, € R* we assem-
ble the rotation-strain coordinates [y?,y7)] for all tetrahedra in the
vector y(v) € R?®. Huang et al. computed y by superimposing pre-
computed modal vectors, whereas we directly compute the sparse
product Gv, where G € R%®*3" is the gradient matrix assembled
from all GY. The warped displacements are the minimizers u of the
constrained Poisson reconstruction quadratic objective

SOV + Gu—exp(yl) (T+ 9213 = IVGa— b3, ()

j=1

where Z is the 3 X 3 symmetric matrix corresponding to the upper-
triangle x € R®, exp(w) € R3*3 is the rotation matrix corre-
sponding to the rotation by angle |w| around the axis w, || ||r de-
notes the Frobenius norm, Vj is the volume of tetrahedron j, and
V = diag(v'Vi,V V4, ..., VVe) (each entry repeated 9x). The 9-
block of vector b € R corresponding to tetrahedron j, expressed
as a row-major 3 X 3 matrix, is

by = V/V; (exp(yl) (I + i) — 1). @®)

Our constraints include pinned vertices for objects that are perma-
nently rooted the ground, and contact constraints, but not the user
constraints. For free-flying objects, we add a three-dimensional
constraint that keeps the mesh centroid unmodified. The con-
strained quadratic minimization yields the linear system

L d7 a] [ va)Tb ©)
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where L = GTV?2G is the discrete Laplacian of the mesh, d gives
the constraints and s are values to be met by the constraints. Each
sliding contact constraint contributes one sparse row to d, constrain-
ing the vertex in the plane of contact. Non-sliding contact con-
straints add three sparse rows to d. The centroid constraint also
adds three rows to d, consisting of 3 x 3 diagonal matrices w;I,

where w; is some meaningful weight assigned to vertex 4, such as
w; = 1/m; rows of s give the input frame centroid.

The matrix L only depends on the input mesh geometry, and not
on U or v. The system matrix in (9) is sparse, symmetric and con-
stant, and can be pre-factored, so warping can be performed effi-
ciently at runtime. For simulations with contact, constraints d = d;
are frame-dependent, but do not change at runtime. Because L is
constant, we can efficiently precompute Schur’s complements for
the combined (L, d;) systems of each frame i, at startup. Because
we warp each frame independently of the other frames, temporal
discontinuities could appear at frames where the set of contact ver-
tices changes, especially under large deformations of long objects.
Although not necessary in our examples, temporal smoothness of
large edits with transient contact can be improved by warping such
frames twice: with contacts of the previous frame, and the current
frame; then blending the difference to the neighboring frames.

Incorporating input frames: We combine input frames %; with
linearized edits p; to produce good-looking output frames u; under
large edits, as follows. Frames @; are arbitrary shapes, not necessar-
ily obtained by warping, or low-dimensional. We exploit the prop-
erty that the rotation-strain coordinates form a linear space, there-
fore they are combined simply using addition [Huang et al. 2011].
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Figure 9: Comparison to splines: We used Catmull-Rom splines
to recreate the curtain motion of Figure 8, by using our output
frames 0, 30,60, . ..,240 as keyframes. We plot the change in the
z-coordinate of a selected vertex, relative to input motion. Our
method produces adjustments that are richer in frequency con-
tent, even though the user input consisted of only three vertex con-
straints, whereas splines used 9 keyframes.

At startup, we precompute the rotation-strain coordinates y(@;) for
all input frames, by performing polar decomposition on the input
deformation gradient of every tetrahedron, F' = @S, where Q is a
rotation matrix and S is symmetric, and then taking the log of @ to
construct y(@;). The log is computed by converting () to a quater-
nion, and then extracting the axis and angle of rotation. The compu-
tation of y(@;) is fast (Table 1), and can be done in parallel. To warp
a given linearized edit p; at runtime, we use y = y(p;) + y(@;) as
the rotation-strain coordinates in the Poisson objective. For p; = 0,
such warping will give @;, as intended. To the best of our knowl-
edge, we are the first to demonstrate the retention of fine details in
complex input motions. For triangle meshes, we follow the method
described in [Sumner and Popovi¢ 2004], where each triangle is
converted into a tetrahedron by adding a fourth vertex in a direction
normal to the triangle plane. Free-flying animations are accom-
modated by precomputing (at startup, using polar decomposition)
a global linear translation ¢; and rotation R; that best aligns the
rest configuration to each input frame ¢. Each input frame is trans-
formed by the inverse of this affine transformation, yielding input
frames u; to our system. For free-flying objects undergoing contact,
the contact normals are transformed by R} at startup.

7 Results

Table 1 gives the performance data for our examples. In our first ex-
ample (Figure 1), we readjusted an invertible FEM simulation [Irv-
ing et al. 2004] so that the bridge does not collide with the ocean
and the scripted birds. Automatic secondary motion was shown for
solid FEM simulations (bridge; Figure 2) and cloth computed using
the Baraff-Witkin cloth simulator [Baraff and Witkin 1998] (cur-
tain example; Figure 8). The dragon input motion was computed
using Maya’s Digital Molecular Matter plugin [Parker and O’Brien
2009]; this example (Figure 6) demonstrated that our edits can pre-
serve input contact. In the seagull example (Figures 3, 4), we edited
an artist-keyframed triangle mesh animation. We used modes and
frequencies computed using a FEM model obtained by voxeliz-
ing the rest (non-manifold) seagull triangle mesh. In the seagull
and curtain examples, we used triangle mesh warping [Sumner and
Popovié 2004]. All other examples use solid warping.

Detail in the input motion is preserved in all examples. Figure 3
demonstrates convergence to unreduced linear elasticity with pro-
gressive 7, and non-trivial modal excitation patterns resulting from
world-space vertex constraints. Figures 5 and 7 analyzed Green’s
function computation time and convergence under an increasing
number of modes and constraints. Figure 4 depicts our user inter-
face. Figure 9 demonstrates that our method produces edits richer
in frequency content than spline interpolation. Finally, we note that



model ver-t tri Ver-v e T T input modes | launch | GF | p; =Uz; warp fps
beam solid 208 412 208 75(V) 500 | 360 | zeroanim. | 1.9s | 3.5s | 029s | 7.8E-05s | 0.00046s | 550
bridge solid | 100,759 | 186,218 | 9,244 | 31,746(T) | 1,000 | 240 | 1.3 min 774s | 10.1s | 0.41s | 0.019s 0.028s | 21
seagull || solid 664 1,324 918 432(V) 500 | 255 | artistkeyf. | 26 25s | 022s | 0.0006s | 0.0038s | 350
dragon || solid | 13,367 | 19,040 | 13,367 | 48,010(T) | 500 | 600 | 257min | 383s | 35s | 0.82s| 0.014s 0.057 s 10
curtain || cloth 1,281 2,400 - - 200 | 240 | 0.12min | 7.3s 1.8s | 0.08s | 0.0006s | 0.0080s | 180

Table 1: Simulation statistics for #triangle mesh vertices (ver-t), #triangles (tri), #volumetric mesh vertices (ver-v), #elements (e, V=voxels,
T=tetrahedra), #modes (r), #frames (T'), time to compute input motion (input), linear modes (modes), and Green’s functions (GF; one vertex
constraint), time to launch the editor (launch; including all precomputation), and construct deformations from modal coordinates (p; = U z;),
warping time (warp), and editing frame rate including rendering (fps). Machine specs: Intel Core i7-980X, 6-Core, 3.33 GHz, 24 GB memory.

Figure 10: Limitations: Left: Large edits may introduce self-
collisions (dragon’s mouth). Middle, right: A bottom-central vertex
was pulled up. Warping is on. Under large deformations (right),
quadrilaterals grow in size due to linearization, even with warping.

we also successfully considered an alternative editing energy,

B=2"* i 57 Mp by 'K 10
—ﬁzpi Pz"i‘gZpi - (10)
=1 i=0

This energy seeks a balance between temporal and spatial smooth-
ness of the edits, as controlled by the tunable parameter p > 0. It
does not produce wiggles or oscillations and is useful in situations
where secondary motion is not required.

8 Discussion

We presented a method for interactive editing and design of de-
formable object animations. We have found that minimizing the
force residual objective (2) works well in our system; however, our
acceleration techniques are not specific to this objective, and other
interesting quadratic metrics of the edit cost could be substituted.
We introduced spacetime Green’s functions, which enable instant
editing feedback to the user, even with complex animations. The
method exploits model reduction and linearization for speed, and
incorporates bilateral contact. We found that immediate, real-time,
feedback makes it possible to rapidly explore the design space of
our method, and greatly improves our animation editing process.

Our Green’s functions are real-valued, but could be extended to
complex values to directly control phase and overlap [Kass and An-
derson 2008]. Speed could be increased further using a hierarchical
approach in time [Lee and Shin 1999]. We do not automatically
detect and correct new contacts during editing; this task is currently
left to the user, but could in the future be addressed using real-time
collision detection. Our method aims primarily at moderate ed-
its of existing animations, where it offers direct control and faster
turnaround than rerunning a simulation. We demonstrated large ed-

its when the bird wing and tail fin are bent 45 and 60 degrees, re-
spectively; the beam is twisted 720 degrees; we flap the curtain
cloth corner by 180 degrees, and bend the bridge mast and dragon’s
head and mouth over 45 degrees. Going beyond such edits would
require unilateral constraints, real-time collision detection across all
frames, and arbitrarily nonlinear elastic potentials, aspects we could
not accommodate in realtime; see Figure 10 for a demonstration of
the limitations. Our modes and dynamics are linearized at the rest
configuration of the object. While it is easily possible to “bake-in”
the current edits and re-linearize, direct nonlinear extensions of our
editing energy are left for future work.
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A Hessian of the Editing Energy

As the modes are decoupled in the energy (2), the Hessian of £ con-
sists of 7 independent blocks H; of size T x T, corresponding to
the temporal evolution of each modal oscillator ¢, for¢ = 1,...,r.
The pentadiagonal matrix H; is obtained by “splatting” a tempo-
rally constant 3 x 3 matrix A = aa” /h® down the diagonal of H;,
where a = [1, -2 — d;h + h2Xi, 1+ dih}T, and d;, \; are the en-
tries of diagonal matrices ol 4+ SA and A, respectively. Matrix A
is the energy Hessian of an individual mode and timestep.

B Matrix Inverse Update

Let A € R™*™ be a symmetric matrix with a known inverse A~'.
A BT

Form the matrix
=13 %]

where B € R™*" and C' € R™*™ is symmetric. When m is
small, the inverse can be computed efficiently as
|

Al { A"'+ FDF" -FD
—DF7T D

where D = S™! € R™*™ for S = C — BA™!BT ¢ R™*™ and
F = A7'BT € R"*™. Solving individual systems Az = b can
be done efficiently even if A~ is not known explicitly; the ability
to multiply A~ 'z efficiently is sufficient, e.g., via known Cholesky
factors of A. When (12) is applied to solve the system (5), the com-
putation simplifies to § = —F'D. In order to handle matrices B
that may be rank-deficient, e.g., arising from (near-)redundant con-
straints, we compute D using a SVD-based pseudoinverse: we trun-
cate all singular values smaller than ecq, where € = 10~° and oy
is the largest singular value of .S.

amn

(12)
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