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We demonstrate an interactive method to create heterogeneous continuous
deformable materials on complex three-dimensional meshes. The user spec-
ifies displacements and internal elastic forces at a chosen set of mesh ver-
tices. Our system then rapidly solves an optimization problem to compute
a corresponding heterogeneous spatial distribution of material properties,
using the Finite Element Method (FEM) analysis. We apply our method
to linear and nonlinear isotropic deformable materials. We demonstrate
that solving the problem interactively in the full-dimensional space of in-
dividual tetrahedron material values is not practical. Instead, we propose
a new model reduction method that projects the material space to a low-
dimensional space of material modes. Our model reduction accelerates op-
timization by two orders of magnitude, and makes the convergence much
more robust, making it possible to interactively design material distribu-
tions on complex meshes. We apply our method to precise control of contact
forces and control of pressure over large contact areas between rigid and de-
formable objects for ergonomics. Our tetrahedron-based dithering method
can efficiently convert continuous material distributions into discrete ones
and we demonstrate its precision via FEM simulation. We physically dis-
play our distributions using haptics, as well as demonstrate how haptics can
aid in the material design. The produced heterogeneous material distribu-
tions can also be used in computer animation applications.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—Vir-
tual Reality

General Terms: algorithms, design

Additional Key Words and Phrases: interactive, design, materials, model
reduction, FEM

1. INTRODUCTION

Three-dimensional deformable objects are commonly present in
our world and are highly relevant to many engineering and sci-
ence disciplines, including computer graphics, animation, engi-
neering, physics and medicine. The behavior of a deformable ob-
ject is uniquely determined by the underlying material law link-
ing the object’s displacements (strains) to elastic forces (stresses).
In this work, we propose a new method to design heterogeneous
material distributions on complex three-dimensional meshes. Pre-
vious methods have largely focused on observation or capture of
material properties, and a subsequent simulation or fabrication of
the observed materials; or on non-interactive design. Once the ma-
terials are known, many methods can produce compelling three-
dimensional animations, say, of buildings, botanical systems, mus-
cles, skin or internal organs.

We propose an interactive inverse design method to create continu-
ous heterogeneous material distributions on 3D volumetric meshes
with arbitrary geometry, based on the Finite Element Method anal-
ysis. Our material distributions are designed to conform to pre-
scribed displacements and internal elastic forces at the selected

Fig. 1. Interactive design of materials. Our work makes it possible to
interactively design spatially-varying material distributions that simultane-
ously conform to prescribed forces and displacements, based on the Finite
Element Method analysis. (1) Medical tweezers with a default homoge-
neous material distribution and the pill. (2) Tweezers tetrahedral mesh (re-
alistic size of 8cm) is loaded with forces at A,B, so that the tweezers de-
form and grasp the pill with a normal contact force of 0.43N at C,D. Un-
deformed tweezers are shown dashed. (3) The spatial material distribution
of Young’s moduli is optimized interactively in 27 seconds, using model
reduction of materials (10 modes), so that the displacements at A,B,C,D
remain the same, yet the normal contact force on the pill at C,D decreases
20×, to 0.02N. The spatial distribution is indicated using the colors. Opti-
mization running without reduction is 204× slower. (4) Same as (3), except
that the normal contact force is now made 5× stronger (2.15N). Optimiza-
tion using model reduction takes 13 seconds, whereas optimization running
without reduction is 739× slower, and converged to a suboptimal local min-
imum (produced negative Young’s moduli). In the material legend, 1× cor-
responds to aluminum.

vertices of the three-dimensional mesh (see Figure 1). Such a capa-
bility has numerous applications as many mechanical components,
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structures and mechanisms have to produce predictable displace-
ments under known forces or pressure distributions. With smoothly
varying heterogeneous material distributions, multiple properties
(functions) can be obtained in the same object, and high-stress
regions at the material boundaries can be avoided. Applications
include medical tools that exhibit prescribed forces to the envi-
ronment when subjected to typical human hand forces (Figure 1),
robotic links that bend by prescribed amounts under known contact
or actuation forces, ergonomic shoes that exhibit prescribed pres-
sure distributions against the human foot (Figure 8), or ergonomic
chairs. We also demonstrate how to edit materials using force-
feedback (haptics), and how to use our tool to create heterogeneous
linear or nonlinear (supporting large deformations) material distri-
butions for computer animation.

Our distributions are computed interactively based on sparse user
input of displacements and forces at a set of mesh vertices. In con-
trast to shape editing where the input typically consists of positions
of a set of handles, our input consists both of prescribed positions
and prescribed elastic forces. This provides our system with the ad-
ditional input to infer the spatial material distribution. The material
distribution is computed simultaneously with the shape, combining
both global object geometry and material distribution. We formu-
late and solve an optimization problem to produce smooth material
distributions and shapes, consistent with the displacement-force in-
put. We demonstrate that solving this optimization problem in the
full space of materials where every element’s material is an inde-
pendent degree of freedom is not practical for interactive applica-
tions, due to very long optimization times (hours) and local min-
ima. Instead, we demonstrate how to use model reduction to obtain
a low-dimensional optimization problem that can be solved inter-
actively. Whereas previous work applied model reduction to the
object’s shape, we apply model reduction to the object’s material
distribution and demonstrate that this greatly improves the force
and displacement accuracy. We propose a quality low-dimensional
space of materials, obtained from the eigenmodes of the Laplace
operator, and provide an algorithm to rapidly evaluate the objec-
tive function and its gradient with respect to the reduced material
parameters. The key technical benefit of our reduction is a substan-
tial acceleration (two orders of magnitude) of the computation of
the gradient of the objective function, as well as avoidance of lo-
cal minima. Our model reduction also accelerates convergence and
thus accelerates optimization by two orders of magnitude, render-
ing our system interactive and enabling intuitive editing of material
distributions for complex meshes. To convey the resulting mate-
rial distributions to the user, we either render them using volume
rendering, or realize them in the physical world using a force-
feedback haptic interface. We also propose a tetrahedron-based
dithering method which can efficiently convert our optimized con-
tinuous material distributions into discrete ones. Using FEM simu-
lation, we demonstrate that our method can approximate the force-
displacement properties of the continuous materials very well using
discrete materials. Our contributions include:

—interactive forward design of elastic materials using sparse in-
puts, tolerant to inconsistent user input,

—model reduction in the material space with two orders of magni-
tude speedup,

—user-friendly interface for both linear and nonlinear isotropic ma-
terial design,

—tetrahedron-based dithering method for discretizing continuous
material distributions.

2. RELATED WORK

Material optimization for deformable objects: Deformable ob-
ject simulation is a well-studied problem in computer graphics,
and the Finite Element Method is one of the most popular meth-
ods. For an overview of existing techniques, please refer to [Nealen
et al. 2006; Sifakis and Barbič 2012]. In order to create visually-
appealing simulations, one must select a proper material model
and tune its parameters. To circumvent the complexity of param-
eter tuning, several authors obtain material parameters by measur-
ing real objects. Methods have been proposed to estimate Young’s
modulus and/or Poisson’s ratio [Schnur and Zabaras 1992; Becker
and Teschner 2007; Lee and Lin 2012], cloth stretch and bending
parameters [Wang et al. 2011], facial muscle activations [Sifakis
et al. 2005], viscoelastic properties [Kauer et al. 2002; Gao et al.
2009] or plasticity parameters [Kajberg and Lindkvist 2004].
Bickel et al. [2009] acquired heterogeneous material distributions
of real objects through force and displacement measurements, fol-
lowed by high-dimensional material optimization of Young’s mod-
uli for all the tetrahedra. Bickel et al. [2010], in turn, designed ob-
jects that consist of parallel layers of homogeneous materials, and
that match the measured forces and displacements, with the goal
of replicating real objects. The materials for each layer are selected
using a branch-and-bound discrete optimization from the exponen-
tial space of #materials#layers designs. Unlike our paper, their work
did not demonstrate interactive material editing, and reported run-
ning times on the scale of an hour in examples with five layers and
nine base materials. We can accommodate general 3D geometry as
opposed to a layered structure. Bickel’s method [Bickel et al. 2010]
produces meso-scale materials from micro-scale cells of basic ma-
terials. Our approach is a macro-scale method that optimizes the
material distribution at a large scale, capable of rapidly modeling
high-resolution continuous material distributions on meshes with
thousands of tetrahedra. Our distributions are oriented arbitrarily in
space and exhibit significant local detail (Figure 9). Although fab-
ricating objects with continuous material distributions is still im-
practical nowadays, our tet-based dithering algorithm can convert
continuous distributions into discrete distributions in seconds and
still closely approximate the target mechanical properties. Further-
more, these data-driven approaches assume that the model to be
designed or replicated is already physically available in real life,
and that forces and displacements come from measuring a real ob-
ject. In contrast, the goal of our work is to design new material
distributions, of objects that may or may not be physically avail-
able. Because we design materials based on arbitrary user input,
we have to tackle the situation where no reasonable material distri-
bution can match input constraints, which is less likely to happen
in data-driven approaches.

Instead of fitting material parameters, several methods fit global
deformation response based on measurements on object bound-
aries [Pai et al. 2001; Lang et al. 2002; Schoner et al. 2004]. It
is also possible to control the deformed shape under known force
loads by optimizing the object’s rest shape [Skouras et al. 2012].
Recently, example-based methods were proposed to avoid material
fitting by guiding simulations using target example shapes [Martin
et al. 2011; Schumacher et al. 2012]. Skouras et al. [2013] em-
ployed an offline optimization process to find actuation forces and
discrete material distributions that match given input shapes. In our
work, we assume that forces are prescribed by the user, but opti-
mize continuous material distributions and optionally shapes. We
demonstrate how to apply model reduction to the material distribu-
tion, and present an interactive design process where we are able to
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rapidly iterate many design options and display the resulting shapes
and forces using a haptic multi-modal interface. Material optimiza-
tion for space-time motion editing has also recently been explored
by [Li et al. 2014]. They optimized materials to minimize con-
trol forces under space-time position constraints, whereas in our
method, forces are prescribed as inputs. More importantly, their
method does not output world-space materials, but gives the output
materials implicitly, by changing global linear modes and frequen-
cies. Our method provides Young’s moduli and Poisson’s ratios for
each tetrahedron.

Model reduction is a well-known technique in engineering. In
computer graphics, model reduction has been used for fast sim-
ulation of deformable solids [James and Pai 2002; Hauser et al.
2003; Barbič and James 2005; An et al. 2008; Kim and James 2009;
Hildebrandt et al. 2011] , fluids [Wicke et al. 2009], shape decom-
position [Huang et al. 2009], skinning [Jacobson et al. 2012] and
for fast interactive design of animations [Hildebrandt et al. 2012;
Barbič et al. 2012]. These methods perform model reduction on the
space of deformations of the object, whereas we perform reduction
on the material distribution of the object. Also, these methods as-
sumed that the material distribution is known, whereas our goal is
to design the material distributions from sparse user input. Lee et
al. [2012] estimates elasticity and boundary forces using an itera-
tive optimization framework and accelerates the process with shape
reduction. However, in contrast with material reduction which pre-
serves accuracy, shape reduction introduces undesirable inaccuracy
into the process. Also, instead of requiring the entire target shape
to be specified, our method only requires a sparse user input of dis-
placements and forces on a set of mesh vertices. Starting with an
existing high-resolution material distribution, one can also reduce
it to a coarser mesh [Kharevych et al. 2009; Nesme et al. 2009]. In
addition to requiring known detailed materials, these methods do
not try to match given forces and displacements.

Shape optimization: Many methods exist to compute high-quality
deformation shapes of surfaces and solids, based on user input han-
dles [Igarashi et al. 2005; Botsch et al. 2007; Botsch and Sorkine
2008; Jacobson et al. 2012]. Similarly to one of our examples, Mori
and Igarashi [Mori and Igarashi 2007] used a sketching interface to
manipulate 3D shapes for plush toys. Different from these meth-
ods, we design not just the shape, but augment the handles with
force input to also design the material distribution (stiffness) of the
object.

Physical fabrication: Layer-based additive manufacturing, also
known as 3D printing, is a collection of techniques for manufac-
turing solid objects by sequential delivery of energy and/or ma-
terial to specified locations in space. Some 3D printers are capa-
ble of printing two or more base materials or functionally graded
materials into a single printed part (multi-material printing). Many
multi-material 3D printing methods are available, such as jetting
materials from micro-scale inkjet printing nozzles, stereolithogra-
phy [Han et al. 2010; Zhou et al. 2013], fused decomposition mod-
eling [Khalil et al. 2005], and selective laser sintering [Liew et al.
2002]. These fabrication capabilities enable exciting manufacturing
capabilities that were previously impossible. Heterogeneous object
fabrication with smooth and versatile material distribution is widely
studied [Kou et al. 2006; Huang et al. 2013]. These methods as-
sume that the input material distributions are known; they are typi-
cally designed manually by users. However, in order to achieve de-
sired functionality, intelligent design of multi-material distributions
is required for future products. While many research papers on 3D
printing focused on the fabrication process, we present a method to

design continuous heterogeneous material distributions to conform
to given FEM displacement and force inputs. We are unaware of
any prior work, in graphics or engineering, that optimizes a contin-
uous 3D solid material distribution across the volume of a geomet-
rically complex three-dimensional mesh, to conform to prescribed
FEM displacements and forces. We believe this general problem
will find several applications in the future. Once the continuous
materials are known, each 3D printer’s driver can then decide how
to best realize them given the printer’s technical capabilities. This is
similar to how in computer graphics and vision, we optimize pixel
R,G,B intensities as continuous signals, even though they are later
going to be only displayed at discrete [0-255] levels on a computer
monitor. It would be cumbersome to optimize pixels using discrete
optimization. Instead, continuous optimization often makes most
sense, whereas the discretization task can be left to the specifics of
each display device.

3. MATERIAL GRADIENTS

In this section, we briefly introduce deformable materials and their
gradients with respect to the material parameters. We limit our
discussion to small deformations, linear tetrahedral elements and
linear isotropic materials parameterized by Young’s modulus and
Poisson’s ratio [Shabana 1990]. We later extend our method to
support large deformations (Section 7). For a more extensive in-
troduction to solid deformable object modeling we refer the reader
to [Sifakis and Barbič 2012]. Given a tetrahedral mesh Ω with n
vertices and m elements, the stiffness matrix Ke ∈ R12×12 of ele-
ment e is

Ke =VeBT
e EeBe, (1)

where Ve is volume of element e, Be ∈ R6×12 is a constant matrix
that only depends on the tetrahedron’s rest shape, and the linear
tensor of elasticity Ee ∈ R6×6 is [Shabana 1990]

Ee =
Ee

(1+νe)(1−2νe)

[
E1

e 0
0 E2

e

]
, for (2)

E1
e =

1−νe νe νe
νe 1−νe νe
νe νe 1−νe

 , E2
e = (1−2νe) I3×3. (3)

Here, Ee > 0 is the Young’s modulus defining material elasticity,
while νe ∈ (−1,1/2) is the Poisson’s ratio defining material com-
pressibility. We can assemble all element stiffness matrices into
the global stiffness matrix K ∈ R3n×3n. The internal elastic forces
f ∈ R3n then equal Ku, where u ∈ R3n gives the displacements
of vertices away from the rest configuration. Note that the element
stiffness matrix Ke and global stiffness matrix K are linear functions
of scalar Ee. We can assemble all Ee and νe into vectors E ∈ Rm

and ν ∈ Rm, and can therefore write

K(E,ν) =
m

∑
e=1

∂K
∂Ee

Ee, (4)

where the matrices ∂K/∂Ee depend only on ν but not on E. They
can be obtained by setting Ee to 1 in (2). We assume that the mesh
is anchored (fixed) at a set of vertices F. In our examples, F con-
tains sufficient vertices (three vertices that are not on the same line)
so that the rigid degrees of freedom are removed. We, however, also
demonstrate an unanchored result (|F|= 0, Figure 15). The degrees
of freedom from F are simply removed from the system. For nota-
tional convenience, we relabel all quantities (n,u, f ,K) to refer only
to the remaining degrees of freedom.
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4. MATERIAL DESIGN

We now describe how we optimize the material based on given
forces and displacements. In our work, we only optimize Young’s
moduli. Poisson’s ratio can made heterogeneous using the Laplace-
solve procedure outlined in Section 4.2, but are not optimized in our
work. We assume that the distribution of Poisson’s ratio is known,
and state the design problem for E as follows.

Design Problem: Given user-specified forces f ∈R3n and displace-
ments ū ∈ R3c on vertices from some given set Γ, |Γ|= c≥ 1 (the
position handles), find a smooth (heterogeneous) material distribu-
tion E ∈ Rm such that when the mesh is statically loaded with f ,
the displacements on Γ are ū.

If the user does not specify forces f ∈ R3n on every vertex, we as-
sume the non-specified forces to be zero, or they can be any given
external force such as gravity. For any particular material distribu-
tion E, the mesh displacements u are unique and are obtained by
solving the linear system K(E)u = f . Therefore, for a general E,
the displacements on Γ do not match ū and we need to design a
procedure to discover E. By re-ordering the degrees of freedom so
that set 2 refers to Γ and set 1 to the rest, we have[ K11(E) K12(E)

K21(E) K22(E)

][ û
ū

]
= f =

[ f̂
f̄

]
. (5)

We can now use block-Gaussian elimination to arrive at

K̃(E)ū = f̄ −K21(E)K−1
11 (E) f̂ , for (6)

K̃(E) = K22(E)−K21(E)K−1
11 (E)K12(E), and (7)

û = K−1
11 (E)

(
f̂ −K12(E)ū

)
. (8)

Observe that K̃(E) ∈R3c×3c is a (small) dense matrix that encodes
the relationship between displacements of constrained vertices in
Γ and the resulting internal elastic forces on them. We note that
this procedure is commonly referred to as static condensation [Bro-
Nielsen and Cotin 1996; Cotin et al. 1999; James and Pai 2001].
However, in prior work it has been employed in simulation appli-
cations where E is fixed and known, whereas we will optimize for
E. For smoothness of E, we measure it as ET LE, where L is the
discrete mesh Laplacian for scalar fields that are defined on tetra-
hedra of a mesh (such as our E) [Zhang 2004; Bickel et al. 2009].
The discrete mesh Laplacian is given as

(LE)i =
m

∑
j=1

ωi, j(Ei−E j) (9)

where ωi, j = 1 if tetrahedra i and j share a vertex, and 0 otherwise.
Matrix L is positive semi-definite and rank-deficient; its nullspace
is 1-dimensional and consists of homogeneous distributions. It can
be easily shown that

ET LE = ∑
1≤i< j≤m

ωi, j(Ei−E j)
2, (10)

and therefore our smoothness energy penalizes Young’s modulus
differences in adjacent tets. We now re-cast the Design Problem as

min
E, ũ

1
2

ET LE +
α

2
‖ f̃ (E)− f̄‖2

W +
α β

2
‖ũ− ū‖2, (11)

where f̃ (E) = K̃(E)ũ+K21(E)K−1
11 (E) f̂ ∈ R3c, (12)

and where α,β > 0 are weights that define the importance of
matching forces and displacements on Γ, respectively. Note that

forces outside of Γ (forces f̂ ) are matched automatically, by de-
sign of K̃. In some applications, we omit the last term, i.e., we im-
pose a hard constraint that the handle vertices must meet prescribed
positions exactly, ũ = ū. We also tried replacing the force term
in (11) with a hard constraint, however this resulted in optimiza-
tions that were too severely constrained and not convergent. The
norm on the force term, ||x||2W = xTWx, is weighted with a diagonal
matrix W ∈ R3c×3c where diagonal entries 3i, 3i+ 1, 3i+ 2 equal
f̄ 2
max/‖ f̄i‖2 if ‖ f̄i‖ ≥ ε f̄max and 1/ε2 otherwise, for i = 1, . . . ,c.

Here, f̄max is the maximum value of ‖ f̄i‖ and we use ε = 10−8.
Matrix W is useful when the prescribed forces on the various han-
dles differ by a large amount. Suppose a target force on handle A is
0.5N, but 100N on another handle B. Under an identity W, the op-
timizer would assign equal importance to an error of 1N on either
handle, causing a large relative force error at A. Matrix W elimi-
nates this bias by assigning greater importance to force errors at the
handles where the prescribed force is small.

Observe that E only appears in the first two terms of (11), whereas
ũ only appears in the last two terms. Therefore, we can solve the
optimization problem (11) by alternating the material optimization

min
E

1
2

ET LE +
α

2
‖ f̃ (E)− f̄‖2

W (13)

with the handle position optimization

min
ũ

1
2
‖ f̃ (E)− f̄‖2

W +
β

2
‖ũ− ū‖2. (14)

Material optimization is performed under a fixed ũ obtained during
the last handle position optimization, and handle position optimiza-
tion is performed under a fixed E obtained during the last material
optimization. Note that this technique is commonly referred to as
block coordinate descent, and each of these two optimizations de-
creases (or at least guarantees not to increase) the overall objec-
tive (11). Such a decomposition of the problem into two optimiza-
tions is intuitive because the user can control how often each of
these two steps is performed. It also makes it possible to tune the
weights α and β in isolation.

Material optimization (14) is nonlinear in E because K̃(E) depends
nonlinearly on E, due to inverse of K11(E). Therefore, we solve this
unconstrained optimization problem using the conjugate gradient
optimizer [Press et al. 2007]. The optimizer requires evaluations of
objective functions (13) for arbitrary E, as well as its gradient with
respect to E. The gradient can be obtained using the chain rule and
by differentiating K11(E)K−1

11 (E) = I with respect to E, and equals

LE +α

(d f̃ (E)
dE

)T (
f̃ (E)− f̄

)
, (15)

where
d f̃ (E)

dEe
=
[
K21K−1

11 −I
] dK

dEe

[ K−1
11
(
K12ū− f̂

)
−ū

]
, (16)

for e = 1, . . . ,m. The conjugate gradient optimizer works by form-
ing a search direction obtained by evaluating the gradient and then
properly subtracting previously explored directions. It then per-
forms a line search along this direction. After each iteration, we
update K(E) and K̃(E), and visualize the current E to the user (Fig-
ure 1). Because the optimizer is iterative, the user can interrupt it
any time, for example, when they are visually satisfied with the re-
sult. The ability to visualize and interrupt at any time is also very
useful for parameter tuning, as it makes it possible to quickly abort
a non-convergent optimization and re-tune parameters. We can also
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stop the optimizer once it exceeds the maximal number of iterations
or the material distribution converges.

The handle position optimization function in (14) is quadratic in ũ
and therefore the optimization can be performed by solving a single
dense linear system(

K̃(E)T K̃(E)+β I
)

ũ = K̃(E)T ( f̄ −K21(E)K11(E)−1 f̂ )+β ū.
(17)

Throughout the paper, we report weighted relative force errors εf,
normal force errors εn

f and handle position errors εu as

εf = ‖ f̃ (E)− f̄‖W /‖ f̄‖W , (18)

ε
n
f =

√
c

∑
i=1

wi

(
nT

i
(

f̃i(E)− f̄i
))2

/

√
c

∑
i=1

wi
(
nT

i f̄i
)2
, (19)

εu = ‖ũ− ū‖/‖ū‖, (20)

where wi are the diagonal entries of matrix W (Equation 11). Dis-
placements û depend on E and ū (Equation 8) and are recomputed
each time either of them changes.

We note that the Design Problem can be cast into a mathematical
form in many ways, as there is a choice of hard vs soft constraints
on forces or displacements. In our optimizations (11) and (13), we
have chosen to use a soft penalty force term, i.e., we do not impose
hard force constraints. This is because there are input forces and
displacements for which there is no reasonable material distribu-
tion to match them. Under such inputs, the optimizer will either be
unable to decrease the force term in (11) below a certain value, or,
if the force weight α is increased too much, will produce Young’s
moduli with negative values. Negative Young’s moduli should ob-
viously be avoided and we treat such results as failures. The main
reason for such difficulties is that in isotropic materials, normal
strains εxx,εyy,εzz only cause normal stresses σxx,σyy,σzz (no shear
stress), and therefore elastic forces cannot be arbitrarily rotated.
Consider, for example, a beam loaded with a longitudinal force. It
is not reasonable to command an internal elastic force at, for ex-
ample, an angle of 90 degrees to the displacement (Figure 2, a).
Because our optimization energy treats forces and displacements
as soft constraints, it can still produce plausible outputs (Figure 2,
b), whereas exact displacements (Figure 2, c) require a large er-
ror in force. We also implemented the Design Problem formulation
where forces are met exactly but displacements are soft, presented
in [Bickel et al. 2009; Bickel et al. 2010]. Such force-based meth-
ods work well when measuring real objects, where the forces and
displacements are automatically consistent (modulo measurement
error). For our forward design application where the user input may
be arbitrary, soft penalty force and displacement terms improve ro-
bustness. With exact forces, the optimizer has to adjust materials
so that under the fixed vertical force, the handle moves perpendic-
ularly. No such solution exists and best that the optimizer can do
is make the material very stiff, so that the handle does not move
downwards and further distance itself from the goal (Figure 2, d).

4.1 Choice of Laplacian discretization

The Laplace operator is used to enforce a smooth material distri-
bution. We use the discrete mesh Laplacian (“umbrella operator”)
given by Equation 9, but our method is not specific to any spe-
cific Laplacian discretization. Prior work [Bickel et al. 2009] used
a bi-Laplacian energy ‖LE‖2, which can be obtained by replacing
L with LT L. For meshes with non-uniform tetrahedron sizes, one

Fig. 2. Relaxing both positions and forces is advantageous: (a) Incon-
sistent input where force and displacement form a 90 degree angle. (b) Our
method, with both material (13) and handle position optimization (14). (c)
Our method, with material optimization only. (d) Exact force with a soft
position term [Bickel et al. 2009; Bickel et al. 2010]. Red material color in
(d) is not to scale with (b,c). The output in (d) is nearly homogeneous and
approximately 200× stiffer than in (b,c). Full optimization. Green and red
points are on top of each other in (b,c).

Fig. 3. Comparison of different Laplacian discretizations. Same
force/displacement input. There are only minor differences in the optimiza-
tion results.

could use a local volume-weighted Laplacian Lv, defined as

(LvE)i =
m

∑
j=1

ωi, j(Ei−E j), (21)

where ωi, j =
Vi+Vj

2 if tetrahedra i and j share a vertex, and 0 other-
wise. We compared all of these Laplacian discretizations, and the
results were similar (Figure 3). If needed, one can simply replace L
with LT L or Lv everywhere in our method.

4.2 Initial guess

We considered two initial guesses to our optimization. The first ap-
proach is to start with a homogeneous material with some known
Young’s moduli corresponding to a real material. The second ap-
proach is to prescribe Young’s modulus at a few key vertices, and
then smooth the Young’s modulus across the entire mesh. Given
the Young’s modulus values at the handles, the distribution over
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the mesh is computed by minimizing the optimization problem

min
E

1
2

ET LE

subject to SiE = Ēi, i = 1, . . . ,c,
(22)

where Si is a selection matrix that selects the 1-ring of elements (de-
note their number by mi) around i-th handle vertex, and Ēi ∈Rmi is
the prescribed Young’s modulus at handle i, with the same value
replicated mi times. We solve the linearly constrained quadratic
optimization problem (22) using the standard Lagrange multiplier
approach. Rank-deficiency of L is handled automatically by the
presence of constraints. In our tweezers example, both approaches
worked equally well. In the shoe example, there are many han-
dles attached to each tet, so the first approach was preferable. The
second approach accelerated convergence in our real-time demos
(teddy bear, bunny). In our examples, we prescribe the target forces
f̄ by setting force multiplicators λ with respect to the default forces
under default material. The prescribed Young’s modulus values in
these examples were simply the product of the default Young’s
modulus with the force multiplicators set for that handle by the
user.

5. MODEL REDUCTION

Optimization (13) is high-dimensional as every tetrahedron has an
independent Young’s modulus value. Therefore, optimization takes
a long time (hours for models with a few thousands tetrahedra), and
it is therefore not easily possible for the user to re-tune optimization
parameters. This inhibits the design process, as only a few parame-
ter values or inputs can be pursued. Furthermore, full optimization
tends to progress more slowly per iteration (see Figure 5) and the
optimizer often gets stuck in local minima, frequently producing
negative Young’s moduli (see Table I). We significantly accelerate
optimization (13) by restricting the material distribution to a sub-
space of r material modes. Often, only a handful of material modes
can offer a drastic improvement over a homogeneous distribution
(which is equivalent to r = 1) (Table I). Unlike prior model reduc-
tion methods [James and Pai 2002; Barbič and James 2005; An
et al. 2008; Lee and Lin 2012], we do not perform shape reduction.
In our method, both full and reduced optimization try to minimize
the same energy (13). Therefore our reduced optimization can be
seen as an improved optimizer to solve problem (13). Although we
apply reduction to (13), other Design Problem formulations [Bickel
et al. 2009; Bickel et al. 2010] would also benefit from it.

In choosing the material modes, we pursue a priori model reduc-
tion, i.e., we select material modes without needing any material
data or specializing to any concrete user input. Such a construction
is general, versatile, and easy to use as the user does not need to
prepare data or tweak the subspace. For the material modes, we es-
sentially want smooth scalar functions over the entire mesh which
can progressively build more and more localized material distribu-
tions. A natural choice is to use the eigenvectors of the Laplacian
operator L [Lévy and Zhang 2010; Zhang et al. 2010]. Note that
the continuous Laplacian in 1D is the operator that computes the
second derivative of the function. Its eigenvectors are the constant
function, and then sin and cos functions with progressively larger
frequencies. Similar behavior is observed in the mesh Laplacian:
its first eigenvector is the constant material distribution (eigenvalue
is zero), and then higher modes permit progressively more locality
(see Figure 4). To obtain the material modes, we solve the general-

Fig. 4. Volume-rendered material modes. Teddy bear example. The first
mode is constant across the mesh (homogeneous material), the second mode
varies nearly linearly across the mesh, and higher modes provide increasing
local detail.

Fig. 5. Reduced optimization converges faster than full optimization.
In addition to faster progress per iteration, reduced optimization is also
66× faster computationally per iteration. Tweezers example, 10 material
modes. Log scale. The conjugate gradient optimizer sometimes makes slow
progress (plateaus), followed by a period of rapid progress.

ized eigenproblem

Ly j = µ jV y j, (23)

where V ∈ Rm×m is the diagonal weighting matrix with per-
tetrahedron volumes Ve on the diagonal. We assemble the first r
eigenvectors (y1, . . . ,yr) as columns of the material basis matrix
Φ ∈ Rm,r, where each column is one mode. The spatial material
distribution is expressed as E = Φz, where z ∈ Rr is the reduced
material vector. We note that the entries of Φ may be negative. This
is not a problem because the first mode’s (homogeneous material)
reduced coordinate z1 is initialized to a large value and in practice
remains sufficiently large to prevent negative materials. Although
we use eigenvectors of the Laplace operator for the modes, arbitrary
scalar mesh functions could be used instead. They could be painted
by an artist, or obtained from existing material data. Layered struc-
tures [Bickel et al. 2010] or other homogeneous regions are a spe-
cial case where each mode is 1 on a region and zero elsewhere,
and where L is modified so that changes in the material across the
region boundaries are not penalized in (11).
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Applying E = Φz to optimization (13), the reduced optimization
problem becomes

min
z, ũ

1
2

zT Qz+
α

2
‖ f̃ (z)− f̄‖2 +

α β

2
||ũ− ū||2, (24)

for f̃ (z) = K̃(z)ũ+K21(z)K−1
11 (z) f̂ ∈ R3c, (25)

where Q = ΦT LΦ ∈ Rr×r is the reduced Laplacian matrix. Matrix
Q is diagonal and its entries consist of the eigenvalues µ j. Matrices
that depend on z are evaluated by forming full-space material dis-
tributions. For example, K̃(z) is computed by forming E = Φz and
evaluating K̃(E). The gradient of the objective function (24) with
respect to z is

Qz+α

(d f̃ (z)
dz

)T (
f̃ (z)− f̄

)
, where (26)

d f̃ (z)
dz

=
m

∑
e=1

d f̃
dEe

Φ
e (16)
= H

m

∑
e=1

( dK
dEe

[ K−1
11
(
K12ū− f̂

)
−ū

])
Φ

e =

= HGΦ, for H =
[
K21K−1

11 −I
]
. (27)

Here, Φe is e-th row of Φ, and column e of matrix G∈ R3n×m

equals

dK
dEe

[ K−1
11
(
K12ū− f̂

)
−ū

]
. (28)

Note that all but 12 entries in dK/dEe are zero, and therefore G can
be computed efficiently by forming localized matrices dK/dEe ∈
R12×12, which can be precomputed. In order to compute the gradi-
ent, we need to perform a multiplication with H, i.e., solve a linear
system with K11(E). We do so by computing Cholesky decomposi-
tion of K11(E), and then solve r linear systems for the right hands
in GΦ. The systems can be solved in parallel. Reduction provides
the benefit of only needing to solve r linear systems, as opposed
to m� r systems without reduction (Equation 16), which makes
reduced iterations significantly faster, e.g., 70× speedup with 10
modes compared to unreduced iterations in the tweezers exam-
ple (Table I). The multiplication E = Φz is performed efficiently
once per iteration using Intel MKL library and represents negligi-
ble computational overhead, as the computation time is dominated
by solving linear systems given by K11(E).

6. MATERIAL DISCRETIZATION

In this section, we demonstrate how our continuous distributions
could be converted to discrete material distributions, and analyze
the accuracy of this process using FEM simulation. Such mate-
rial dithering is similar to how continuous pixel color in image
processing can be dithered on displays with a limited number of
colors [Floyd and Steinberg 1976]. The resulting material distri-
butions could be useful with a future 3D manufacturing process.
In contrast to the existing dithering methods [Vidimče et al. 2013;
Liu et al. 2004; Cho et al. 2003] for multi-material printing which
apply dithering to slices or voxels, we give a method to dither
continuously-defined materials on a tetrahedral mesh. This capabil-
ity is important because simulations in computer graphics often use
tetrahedral meshes. Furthermore, existing commercially available
multi-material printers (the Objet Connex family) require each ma-
terial region (potentially irregularly shaped or disconnected) to be
specified by its triangle mesh boundary. Such a triangulated bound-
ary could be computed easily from a tet mesh. We demonstrate how
to dither a single, continuous quantity (Young’s modulus); the same

algorithm could also be applied, say, to dither Poisson’s ratios. We
assume that a library of M ≥ 2 base materials is available. The base
materials must respect the minimum and maximum values of the
target Young’s modulus continuous distribution E, as it is impossi-
ble to generate a continuous material outside of the convex combi-
nation of the available base materials.

Our algorithm spreads the residual quantization error of a tet onto
its neighboring tets, to be processed later. Each tet is assigned a tar-
get continuous Young’s modulus value. At the beginning of the al-
gorithm, this value is the input continuous Young’s modulus value,
obtained, say, using the optimization methods described in this pa-
per. During the algorithm, these values change as the tets spread
their quantization error to their neighbors. We maintain a list of the
tets that have already been dithered, and process the tets using a pri-
ority queue. The queue ensures that the tets are visited in a breadth-
first pattern. Initially, we push a boundary tet into the queue; we
pick the tet whose centroid has the largest y-coordinate. Then we
process the tets one by one, always popping the first tet (call it i)
from the queue. We assign it a discrete material Ēi with the smallest
absolute value of the residual εi = Ei− Ēi, where Ei is the current
target continuous value, and Ēi is the closest discrete material. We
then mark i as dithered and spread the residual εi to the neighbor-
ing (1-ring) tets that have not been dithered yet, as follows. For
each tet j in the 1-ring set of vertex-neighboring, edge-neighboring
and face-neighboring tets of tet i (call them V(i),E(i),F(i), respec-
tively), we add εi

wvVj
χ

,εi
weVj

χ
,εi

w f Vj
χ

to the current target Young’s
moduli values, respectively, where

χ = wv ∑
k∈V(i)

Vk + we ∑
k∈E(i)

Vk + w f ∑
k∈F(i)

Vk. (29)

Here, V j is the volume of element j, and χ was chosen so that
the sum of the distributions is εi. Parameters wv,we,w f are the
weights for error distribution to the three types of neighboring tets.
In our examples, we set wv = 1,we = 2 and w f = 3 to bias dis-
tributing the residual error based on the number of tet shared ver-
tices (vertex-neighbor=1, edge-neighbor=2, face-neighbor=3). No-
tice that the residual error distribution is also weighted by ele-
ment volume V j to accommodate non-uniformly meshed objects.
We push all the undithered neighboring tets onto the queue, in the
order of F(i),E(i),V(i). The process is terminated when all the tets
have been assigned a discrete material, i.e, no more tets are left in
the queue.

Figure 6 shows dithering using two discrete materials. When ap-
plying the same handle displacements on the two material distri-
butions, we only observed 2.5% and 1% force differences (defined
in (18)). The dithering process takes 8 and 7 seconds. We also com-
pare our method to the discrete optimization method of [Bickel
et al. 2010], where we treat each tet as one layer. The layers fol-
low the same sequence as our tet-based dithering method. With-
out applying branch-and-bound and/or clustering, the design space
of [Bickel et al. 2010] is exponential with Mm choices (M = 2, m =
10,046 for the teddy bear and M = 2, m = 9577 for the tweez-
ers in Figure 6), which is intractable. The branch-and-bound algo-
rithm with clustering [Bickel et al. 2010] reduces the complexity
to KM2m, where K is the number of clusters (we use K = 20).
However, the running time is significantly (5,000×) longer, and
the error is 10× larger than in our method (Figure 6, c, f). We
also observe that for the Young’s modulus differences to the op-
timal continuous distribution ‖∑

e
(Ee−Ec

e )‖, our dithering output

is 300× and 296× smaller than the discrete optimization result.
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0.05x

(a) Continuous material distribution
       using continuous optimization

(d) Continuous material distribution
        using continuous optimization

(e) Discrete material distribution
        using tet-based dithering

(f) Discrete material distribution
       using discrete optimization

(b) Discrete material distribution
        using tet-based dithering 

(c) Discrete material distribution
       using discrete optimization

2.9x

1.1x

a b a b

fa = (-0.53, 5.25, 1.90)N
fb = ( 2.83, 7.31, 2.88)N fb = ( 2.73, 7.14, 2.78)N

a b

fa = (-0.80, 5.00, 1.87)N
fb = ( 1.83, 5.33, 2.03)N

fa = (-0.57, 5.33, 1.95)N

nTf = -5.6N

nTf = -5.6N

nTf = -2.15N

nTf = -2.15N

E

E
1.5x

nTf = -2.11N

nTf = -2.83N

nTf = -2.78N

nTf = -0.17N

nTf = -0.13N

nTf = -2.14N

nTf = -5.53N

nTf = -5.57N

Fig. 6. Material dithering and discrete optimization. (a) and (d) Con-
tinuous material distribution optimized using our method. (b) and (e) Dis-
crete material distribution using tet-based dithering using two base materi-
als. For the teddy bear example, E is 1.3× and 2.9× larger than the default
Young’s modulus, respectively. For the tweezers example, E is 0.05× and
1.5× larger than the default Young’s modulus, respectively. Under the same
input handle displacements to (a) vs (b), (d) vs (e), the force error is only
2.5% and 1.0%. The dithering process takes 8 and 7 seconds, respectively.
(c) and (f) Discrete material distribution using discrete optimization [Bickel
et al. 2010]. Same base materials as in (b). Discrete optimization times are
13 and 12 hours, and the force error is 23.9% and 57.3%, respectively.

7. LARGE DEFORMATIONS

In previous sections, we focused on the linear isotropic material,
which is limited to small deformations. However, we notice that
many of the common nonlinear isotropic material models, includ-
ing Saint Venant Kirchhoff material [Bonet and Wood 2008], co-
rotational materials [Müller and Gross 2004] or neo-Hookean ma-
terials [Bonet and Wood 2008], have the property that the stiffness
matrix K(E,u) depends linearly on E. This makes it possible to
extend our optimization framework to accommodate nonlinear ma-
terials under large deformations, and accelerate the process with
material reduction. The objective is exactly the same as in Equa-
tions (11),(24). However, unlike with the linear material model, we
have to solve for the deformation shape u iteratively using New-
ton’s method,[ K(E,u(i)) S̄T

S̄ 0

][
∆u
∆λ̄

]
=−

[ fint(E,u(i))+ S̄T λ̄ (i)− fext
S̄u(i)− ũ

]
,

(30)

u(i+1) = u(i)+∆u, λ̄
(i+1) = λ̄

(i)+∆λ̄ , (31)

where S̄ ∈ Rc×3n selects the handle DOFs, and i denotes the itera-
tion index. We initialize the iteration with λ̄ (0) = 0, and by setting
u(0) to the previous handle deformation. In order to obtain the gra-

Fig. 7. Large deformation material optimization. Editing the deforma-
tions under linear isotropic (a,c) and nonlinear St. Venant-Kirchhoff (b,d)
materials, respectively. In both cases, the two ears are made 4.0× and 1.0×
stiffer. Optimizations took 18 and 24 seconds to converge in (a) and (b),
respectively. When we apply the linearly-optimized material (c) onto non-
linear StVK simulation, the force error is 15.1%. Force error of nonlinearly-
optimized material (d) is significantly smaller, 3.2%.

dient ∂ f̃/∂E, we first need to define a function G ∈ R3n,

G(E, f̂ , f̃ , û, ũ) = fint

([ û
ũ

]
,E
)
−
[ f̂

f̃

]
= 0. (32)

By differentiating with respect to Ee on both sides, we obtain a
linear system

[
∂G
∂ û

∂G
∂ f̃

][ ∂ û
∂Ee
∂ f̃
∂Ee

]
=− ∂G

∂Ee
, (33)

∂G
∂ û

=
[ K11(E,u)

K21(E,u)

]
,

∂G
∂ f̃

=
[ 0
−I

]
, (34)

∂G
∂Ee

=
1

Ee
fint([0 . . .Ee . . .0]T ,u), (35)

where the terms ∂G
∂ ũ

∂ ũ
∂Ee

, ∂G
∂ f̂

∂ f̂
∂Ee

are 0 and excluded from the sys-
tem. Note that we need to solve m linear systems while we only
need to do the Cholesky decomposition once. We apply material
reduction by multiplying ∂G/∂E with Φ. Thus, we now need to
solve r linear systems, where the right hand sides are columns of
∂G
∂E Φ ∈ R3n×r. Figure 7 analyzes the performance and accuracy of
our nonlinear material optimization.

8. RESULTS

We demonstrate four application areas of our method: precise con-
trol of contact forces (tweezers example), control of contact pres-
sure distributions under large contact areas for ergonomics (foot
and shoe), haptic design of heterogeneous soft objects (teddy bear)
and design of material distributions for animation (bunny).
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Table I. Comparison to unreduced optimization
λ = 0.05 λ = 0.1 λ = 0.2 λ = 5

r time error #iter spT spI time error #iter time error #iter spT spI time error #iter spT spI
1 0.6s 67.1% 1 4415 119 0.6s 63% 1 0.6s 55.6% 1 6643 117 0.6s 55% 1 16625 124
2 5.5s 67% 5 482 65 4.4s 62% 4 3.2s 55.3% 3 1246 66 2.5s 54% 3 3990 89
3 6.5s 0.4% 7 408 77 4.9s 0.4% 5 4.89s 0.29% 5 815 72 4.7s 48% 4 2122 63
5 18s 0.49% 28 147 114 12s 0.49% 12 4.84s 0.44% 5 824 72 13.3s 0.37% 16 750 90

10 13s 0.48% 12 204 66 22s 0.5% 20 7.8s 0.5% 8 511 72 13.5s 0.4% 16 739 88
50 27s 0.3% 23 98 61 21.4s 0.4% 19 6.9s 0.4% 6 578 61 12.9s 0.35% 15 773 87
full 2649s 0.47% 37 1 1 1630s 0.47% 22 3986s 0.5% 57 1 1 9975s 1.33% 134(F) 1 1

Tweezers example (Figure 1), optimized under varying contact forces and numbers of material modes r. Time gives the optimization time, #iter is number of conjugate gradient iterations of Equation 13.
spT=total speedup, spI=speedup per iteration, λ is the multiplicative factor of changing the normal contact force on the pill. Error is the achieved relative normal force error (defined in (18)), weighted
with matrix W (13) to ensure the small target forces are actually met and not masked by large forces. For brevity, we omitted speedups for λ = 0.1; they can be computed from the provided data.

8.1 Precise control of contact forces

In our first example, we optimize the Young’s modulus distribution
of a pair of realistically-sized (8cm) tweezers made of aluminum
(3,024 vertices, 9,577 tetrahedra, Figure 1). Our design goal is that
when the human hand applies realistic prescribed normal forces to
the center of each side of the tweezers, both the center and the end
deform by prescribed amounts, and the tweezers pick up a pill with
a prescribed normal contact force. Normal forces can be incorpo-
rated into (11) by replacing forces with the dot product of forces
with a normal n j at each handle vertex j, i.e.,

c

∑
j=1

(
nT

j
(

f̃ j(E)− f̄ j
))2

. (36)

To set up our experiment, we first determined that when we ap-
ply normal forces of 4.9N to the center of each side of the tweez-
ers (in opposite directions on each side; vertices A, B in Figure 1),
the tweezers deform, under a homogeneous aluminium distribution,
just enough to touch the pill with zero contact force. This gives us
3D displacements ūC, ūD (approximately 4mm in the normal direc-
tion) on two vertices (C, D) on each side of the end of the tweezers.
We then increase the applied forces on A, B to 5.6N while keeping
C, D fixed, essentially grasping the pill and causing a contact nor-
mal force of 0.43N to C and D. We record the 3D displacements
ūA, ūB of A, B (approximately 2.2mm in the normal direction). We
then use our method to design a material distribution that meets
both the prescribed displacements ū and prescribed normal forces
on A,B,C,D :

nT
A f̄A = nT

B f̄B = 5.6N, nT
C f̄C = nT

D f̄D = 0.43λN. (37)

We repeat the experiment for several values of λ and numbers
of material modes r (see Table I). We only use material opti-
mization (Equation 13, α = 105; no handle position optimiza-
tion). Initial guess is the initial homogeneous material (aluminium,
E = 70GPa, ν = 0.35). We stopped the optimization when the rel-
ative force error dropped below 0.5%, or, when this did not happen,
at the first iteration that was followed by a long plateau where the
optimizer was unable to reduce the force error further. It can be seen
that our method is able to reach the prescribed forces very closely;
the relative force error εn

f is under 0.5%. It can be also seen that the
number of conjugate gradient iterations generally increases with r.
In this example, approximately five modes are sufficient to solve the
problem reasonably well. For λ = 5, full optimization converged to
a suboptimal minimum (marked with “F” in Table I) where some
tets were assigned negative materials. Our model reduction method
offers substantial benefits over full optimization. Because the re-

Fig. 8. Rigid foot in contact with a deformable shoe. Part (c) shows the
384 contact vertices (in red) and the optimized material distribution that
yields constant normal pressure on the foot.

sults are obtained two orders of magnitude faster, it is easily pos-
sible for the user to iterate parameters. Reduced optimization are
also less prone to producing negative materials. Furthermore, our
results suggest that a search in the full-dimensional material space
is often unnecessary, as the target material distributions are rela-
tively smooth and low-dimensional and can be resolved well using
material model reduction with a small number of modes.

We also optimized the tweezers using three-dimensional force con-
straints as opposed to normal force constraints. Such constraints are
more difficult to enforce than scalar constraints, causing the con-
vergent λ range to be somewhat narrower. The relative force errors
(10 modes) were slightly larger for large force modifications: 3.8%
with λ = 5, but otherwise similar: 0.2% with λ = 0.3.

8.2 Pressure control over large contact areas

In our second example, we apply our method to controlling the
contact pressure distribution between a rigid foot and a deformable
shoe. This example also serves to demonstrate that our method
scales to a large number of vertices with prescribed displacements
and forces (c = 384). Our rigid object is a human foot in contact
with the deformable sole of a shoe (Figure 8). The shoe has re-
alistic geometry (length is 25cm). We optimize the distribution of
Young’s moduli of the shoe so that various pressure criteria are met.
For example, we can make the pressure constant (for ergonomics)
across the entire contact area, or, to demonstrate the ability to con-
trol pressures, impose three-fold higher pressure in the front part of
the foot versus the heel, and vice-versa.
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25cm

(a) Default (b) Uniform
      pressure

E

(c) 3x higher
      pressure
      in heel

(d) 3x higher
      pressure
      in front

Fig. 9. Controlled shoe contact pressures: Top row: volume rendering
of the material distribution E. Bottom row: Contact pressures. Left column
is the input obtained under a homogeneous material distribution. Second,
third and fourth column give results under a target constant pressure dis-
tribution, 3x higher distribution in front and heel, respectively. We used
r = 100 modes. Computation times to steady convergence (approximately
150 iterations) were 4.0 min, 3.9 min, 3.5 min, for (b),(c),(d), respectively.
Relative force and displacement errors were (7.6%,7.3%), (8.0%,7.6%),
(7.5%,8.1%), for (b),(c),(d), respectively.

Fig. 10. Results under an increasing number of material modes (con-
stant pressure experiment). It can be seen that progressive material local
detail is added as r increases. Full optimization diverged. Relative pressure
and position errors are indicated. It can be seen that the errors decrease as
r is increased. Computation times were 3.5 min, 3.5 min, 3.7 min, 4.5min,
for 125 iterations, for (a), (b), (c), (d), respectively.

We start our experiment by positioning the rigid foot triangle mesh
(1,635 vertices, 3,266 faces) in contact with the tetrahedral mesh
(5,095 vertices, 20,954 tetrahedra) of the shoe. In this paragraph,

Fig. 11. Participation of modes: Shoe example, r = 200, constant pres-
sure target. Y-axis values are the absolute-valued components of the reduced
material vector, |zi|. Log scale. The first mode (constant material) has the
strongest participation as it determines the overall strength of the material.

we describe how we determine a set of handles on the shoe mesh,
their displaced positions, and the initial pressure distribution. We
consider these quantities as input to our method and note that they
could be obtained using other means; for example, by using a con-
tact pressure sensor [Yin and Pai 2003], followed by loading a ho-
mogeneous shoe mesh with those pressures. The foot triangle mesh
is a closed manifold mesh. For each vertex of the shoe tetrahedral
mesh, we determine if it is inside or outside of the foot mesh. If in-
side, we then determine the closest location on the foot mesh. For
each vertex of the shoe mesh inside the foot mesh, we declare a con-
tact, place a displacement/force handle, and displace the vertex to
the closest point position on the foot. There were 384 such vertices
in our example. We then automatically load these vertices and their
displacements ū into our application program as displacement-only
handles (force is not prescribed yet). Next, we find a homogeneous
Young’s modulus so that the normal contact forces support a hu-
man with a weight of 80kg (400N on each foot). This is done by
selecting any positive Young’s modulus value, computing and sum-
ming the elastic forces on all handles, and then scaling it so that the
total elastic force is 400N. This distribution forms the initial guess
to our experiments and we plot its normal pressures in Figure 9 (a).
Normal pressure on a vertex (normal traction) is computed as the
ratio of the normal force divided by the surface area belonging to a
vertex (1/3 of the surface area of the 1-ring of triangles).

We now proceed to finding material distributions that (1) make the
pressure on all the 384 contact points equal, (2) give two constant
pressure regions where the pressure is 3× higher in the front part
of the foot than in the heel, and (3) reverse of the previous. In each
case, we compute the target normal contact forces on each handle
so that their sum supports a person with a weight of 80kg. In (1), we
first compute the constant pressure by dividing 400N with the total
foot contact area. We then multiply the pressure with the surface
area of each handle. In (2) and (3), we compute pressures in the
two regions by solving A1 p1 +A2 p2 = 400N, for p2 = 3p1, where
Ai are the areas of the two regions. We then run optimization (11),
optimizing both materials and handle displacements to match ū and
f̄ on the 384 handles. We only perform handle position optimiza-
tion (14) once, at the end of the material optimization. It can be
seen that our optimizer succeeded in making the pressure distribu-
tion uniform across the shoe, or controlling it spatially (Figure 9).

In Figure 10, we tested our method under a progressively increasing
number of modes r. It can be seen that the pressure distribution ex-
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hibits increasing local detail as r is increased. Full optimization was
270× slower per iteration than reduced simulation with r = 200,
and diverged to negative materials after 3.7 hours (27 iterations).
Figure 11 demonstrates the participation of individual modes in our
resulting pressure distribution.

In the shoe example, we found it useful to perform material opti-
mization under an automated weight update mechanism, where the
α weight in (13) is made to increase slowly after every Nup con-
jugate gradient iterations (we used Nup = 5), by a user-adjustable
factor γ (we used γ = 1.2), for a total number of Niter iterations (we
used Niter = 125), after which the weight is kept constant. Although
not strictly necessary, we found that this mechanism is more stable
(less prone to produce negative materials) and more capable to de-
crease the force error than if a constant α was used throughout the
optimization. We observed that under a constant α, the optimizer
often makes good initial progress, but then gets stuck at some force
error level. In order to decrease the force error, one must make
smoothness less important, i.e., increase α. However, one cannot
increase α too aggressively, as otherwise, the distribution “escapes”
to a local minimum with negative materials. Negative materials
could be prevented by forcing E to remain above some threshold
E ≥ Emin, e.g., using a general solver such as SNOPT [Gill et al.
1997]. We pursued this approach, but did not find it convenient be-
cause it requires adding an inequality to the optimization problem.
More importantly, we found that the negativity of E is much like a
run-away reaction. Once it starts (by too high α), Young’s moduli
continually decrease below all limits, regardless of their initial val-
ues. Therefore, blocking the decrease with a constraint E ≥ Emin
merely gives some partially diverged distribution. The best remedy
is to instead decrease α. As a curiosity, we note that negative val-
ues do not always imply unstable results, as the entire shape can
still be statically stable if there are only a few elements or regions
with negative stiffness; but will lead to strange dynamics.

8.3 Haptic design of heterogeneous materials

In this application, we exploit the speed of our optimization for in-
teractive editing of heterogeneous material distributions using hap-
tics (Figure 12). Under any distribution E, and any set of handles,
we form the matrix K̃ (Equation 7). Given the handle displacements
ū, we then compute the handle reaction forces f̄ using Equation 6,
as introduced by [James and Pai 2001]. Note that this approach is
very popular in haptic rendering, where it is commonly used to dis-
play deformable objects. Previous papers, however, did not inter-
actively change or optimize the material distribution, but displayed
a fixed distribution to the user. Our work provides the capability to
design material distributions and feel them with haptics.

We use the Sensable Omni haptic device to display the reaction
forces f̄ to the user. Because K̃ is constant and small (3c× 3c), f̄
can be computed very rapidly, at haptic rates. During handle vertex
manipulation, the user can also change the reaction force on that
vertex, effectively imposing a f̄ constraint. In our user interface,
the user can change the reaction force −SiK(Edefault)u on handle i
by scaling it with a scalar λi > 0,

f̄i =−λiSiK(Edefault)u, (38)

where Si selects the i-th handle degrees of freedoms, and u = [û ū]T
is the object’s deformation. The material optimizer (13) is then
launched in a separate thread. After each conjugate gradient iter-
ation, a new K̃ is computed and communicated to the haptic servo
loop via a mutex. Because the iterations run at interactive rates

Fig. 12. Editing of material distributions using haptics. The output dis-
tribution is shown on the left.

Fig. 13. Haptic force signal after the user decreased (at t = 3s) the target
force on the manipulated handle by 0.5× . Two handles were used (c = 2).
Teddy bear example. Plot shows magnitude of force. The force decreased
to the desired level in a few optimizer iterations. Optimizer iterations are
visible as constant plateaus of the force. Initial guess is computed using
the Laplacian solver (Section 4.2). Signal variation is due to the shaking of
user’s hand.

(∼1.4 second per iteration), the user can feel the force grow/shrink
as requested (see Figure 13), while the current material distribution
is visualized on the screen (Figure 12). It can be seen in Figure 13
that the Laplacian initial guess (Section 4.2) is reasonable, but it
alone does not minimize our problem, and must be refined through
optimization. In a manner of seconds, the new material distribution
converges to a minimum of Equation (24). The user can interrupt
the optimization at any time. Throughout the process, the user can
continue the editing process by adding, removing or re-adjusting
the forces and handles. Such a tool enables the user to rapidly cre-
ate interesting material distributions and feel them using haptics.
For example, we made the ear region and one arm of the teddy bear
(2,690 vertices, 10,046 tetrahedra) 5× and 0.5× stiffer than the rest
of the model.

For large requested changes of reaction forces (typically λ < 1/2
or λi > 2), we found that we can obtain improved results if we
properly rotate the input forces at the handles. This is because a
change in the materials causes the entire object’s shape u to change
at each iteration of material optimization (13). This, in turn, rotates
the elastic force at every handle, causing the original forces f̄i to
be misaligned in direction. Thus, after N′up conjugate gradient iter-
ations of (13) (we use N′up = 3), and after each update of ũ via (14),
we update f̄i according to (38), using the current object shape u.
Such a modification effectively asks for a shape u and material dis-
tribution E with the property that the internal elastic forces at the
handles are λi× the elastic forces in shape u under the default ho-
mogeneous distribution.
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Fig. 14. Interactively edited material distributions for animation. Top
row: animation frames under the homogeneous material. Bottom: our result.
Material distribution is shown on the left. The stiffness of the bunny body
was increased 2.0×, and the ears were made 6.0× and 0.5× stiffer. In the
resulting animation frames, note how the left ear is stiffer and the right ear
is softer.

8.4 Material design for animation

In the bunny example (777 vertices, 2,605 tetrahedra), we demon-
strate interactive material editing with the goal of creating general-
purpose material distributions, say for subsequent physically-
based simulation. The user can specify the forces using our λ -
based interface. Although our distributions are computed un-
der small-displacement assumptions, this example demonstrates
that they can be easily applied to any large-deformation sim-
ulation that is parameterized by Young’s modulus and Pois-
son’s ratio, e.g., the Saint Venant Kirchhoff material [Bonet and
Wood 2008], co-rotational materials [Müller and Gross 2004]
or neo-Hookean materials [Bonet and Wood 2008] (Figure 14).

Fig. 15. Editing
unanchored objects.

Alternatively, we can also directly op-
timize these nonlinear materials un-
der large deformations (Section 7). In
this example, we also demonstrate edit-
ing of unanchored objects (Figure 15).
Unanchored objects only require solv-
ing the K11(E) linear systems with a
solver that can handle singular matri-
ces, such as conjugate gradients that re-
move the nullspace component at ev-
ery iteration (note that the nullspace of
K11 is known). Matrix K11(E) becomes
non-singular when at least 3 handles
are selected by the user, at which point

the special handling is no longer required.

8.5 Comparison to shape reduction

An alternative approach to accelerate the material optimization is
to employ model reduction to the object’s deformations (but not
materials) [Lee and Lin 2012]. The reduced basis of deformations
can be obtained by solving the generalized eigenproblem

K(Edefault)x j = λ jMx j. (39)

We truncate the eigenbasis, retaining the first r′ vibration modes as
columns of U = (x1 . . .xr′) ∈ R3n×r′ . The deformation can then be
approximated as u=Uq, where q∈Rr′ is the reduced displacement

vector. It can be obtained by solving the optimization problem,

min
q

1
2
(Uq)T K(Uq)

subject to S̄Uq = ū,
(40)

which is equivalent to solving a linear system[
UT K(E)U (S̄U)T

S̄U 0

][
q
λ

]
=

[
0
ū

]
. (41)

For computational reasons, it is only practical to compute the
modes once (with the default material). Therefore, when the op-
timizer adjusts E during its iterations, UT K(E)U is not necessar-
ily a diagonal matrix. However, unlike with the method of Sec-
tion 4 that does not employ shape reduction, the resulting force
f (E) = K(E)Uq is not necessarily zero outside of the handles
( f̂ 6= 0). Therefore, we extend our objective function (13) to also
penalize f̂ ,

min
E

1
2

ET LE +
α

2
‖ f (E)−

[
0 f̄

]T ‖2
W . (42)

The gradient of (42) is

LE +α

(d f (E)
dE

)T (
f (E)−

[
0 f̄

]T )
, where (43)

d f (E)
dEe

=
dK(E)

dEe
Uq+K(E)U

dq
dEe

, (44)

for e= 1 . . .m. To obtain dq/dEe, we differentiate Equation 41 with
respect to Ee. This yields a r′× r′ linear system for dq/dEe,[

UT K(E)U (S̄U)T

S̄U 0

][ dq
dEe
dλ

dEe

]
=

[
−UT dK(E)

dEe
U

0

]
. (45)

Shape reduction accelerates the material optimization by reducing
the dimension of linear systems from 3n× 3n to r′× r′, although
the number of linear systems still equals the number of mesh el-
ements (m). However, unlike performing reduction in the mate-
rial space, shape reduction trades force accuracy for performance.
Figure 16 demonstrates that shape reduction requires a substantial
number of modes to reach close to the optimal solution. In this
experiment, we placed one vertex handle on a beam (600 DOFs)
and set λ = 2 as in Section 8.3. The optimal solution is a homo-
geneous material distribution where E has been globally scaled by
2×. Shape reduction produces a heterogeneous material distribu-
tion that only becomes homogeneous for a large number of modes.
Material reduction, in turn, produces a homogeneous material and
matches the target force exactly, all the while accelerating the op-
timization significantly. We also conducted a comparison for a het-
erogeneous material distribution. We specified this distribution by
employing two handles and setting target force multipliers λ as 1×
and 1.5×, respectively. Our material reduction optimization out-
put is as good as full modes optimization, while shape reduction
gives material distributions with at least 200× larger force error
‖ f (E)−

[
0 f̄

]T ‖2
W .

9. CONCLUSION

We presented an interactive method to design material properties
of three-dimensional elastic objects. We demonstrated scalability
to complex examples using material model reduction, where our
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(material reduction only)
1.4x

2.4x
E

Fig. 16. Comparison of shape reduction and material reduction on a
beam model. (a)-(e): Shape reduction with full material modes (r = 450).
(f) Material reduction with full deformation modes (r′ = 600). The singular
spot is the place of the handle.

key insight is that reduction makes it possible to compute the re-
duced gradient two orders of magnitude faster than the full gradi-
ent, which in turns makes the optimization interactive. We used our
method to control pressure distributions of rigid objects in contact
with deformable objects. Our method can be combined with hap-
tics, to give the user both intuitive interactive control and feedback
over the heterogeneous stiffness of the object. Our interactive de-
sign tool is also useful in computer animation. We also present a
tetrahedron-based dithering algorithm that can discretize continu-
ous material distributions into discrete ones.

In this paper, we only optimize Young’s moduli, but Poisson’s ra-
tios could also be optimized, for example, in the 2-dimensional
space of Lamé parameters. We do not edit dynamic properties of
objects such as damping, or design materials where the displace-
ment input is prescribed to vary in time (animation input). We only
optimize material distributions, but do not optimize the geometry
of the object, which is a complementary approach to achieve a de-
sired functionality. We use Laplacian eigenmodes for our basis, but
the material reduced space could be refined further to better opti-
mize the objective. Although we demonstrate the effectiveness of
our dithering method using simulation, our dithering algorithm is
greedy. Much like with Floyd-Steinberg dithering for pixels, a the-
oretical optimality condition is difficult to give, even though results
are good in practice. In the future, we would also like to 3D-print
real objects based on physically available materials.
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