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Capturing material properties of real-world elastic solids is both challenging
and highly relevant to many applications in computer graphics, robotics and
related fields. We give a non-intrusive, in-situ and inexpensive approach to
measure the nonlinear elastic energy density function of man-madematerials
and biological tissues. We poke the elastic object with 3d-printed rigid
cylinders of known radii, and use a precision force meter to record the
contact force as a function of the indentation depth, which we measure
using a force meter stand, or a novel unconstrained laser setup. We model
the 3D elastic solid using the Finite ElementMethod (FEM), and elastic energy
using a compressible Valanis-Landel material that generalizes Neo-Hookean
materials by permitting arbitrary tensile behavior under large deformations.
We then use optimization to fit the nonlinear isotropic elastic energy so
that the FEM contact forces and indentations match their measured real-
world counterparts. Because we use carefully designed cubic splines, our
materials are accurate in a large range of stretches and robust to inversions,
and are therefore "animation-ready" for computer graphics applications. We
demonstrate how to exploit radial symmetry to convert the 3D elastostatic
contact problem to the mathematically equivalent 2D problem, which vastly
accelerates optimization. We also greatly improve the theory and robustness
of stretch-based elastic materials, by giving a simple and elegant formula to
compute the tangent stiffness matrix, with rigorous proofs and singularity
handling. We also contribute the observation that volume compressibility
can be estimated by poking with rigid cylinders of different radii, which
avoids optical cameras and greatly simplifies experiments. We validate our
method by performing full 3D simulations using the optimized materials
and confirming that they match real-world forces, indentations and real
deformed 3D shapes. We also validate it using a “Shore 00” durometer, a
standard device for measuring material hardness.
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1 INTRODUCTION
Realistic simulation of three-dimensional elastic solids is one of
the key goals in computer animation, with applications in film, vir-
tual reality, medicine, CAD/CAM and material science. In order to
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Fig. 1. Measuring an elastic foam material via poking. Left: Our exper-
imental setup to measure the contact forces and indentations. The force
stand has an LCD screen displaying the vertical translation in millimeters.
The force meter to measure the contact force is mounted into the force
stand. The rigid yellow poking cylinder (radius=4.05mm) and the poked
foam specimen are visible at the bottom. Right: The measured elastic ma-
terial is used for simulation. The bunny is dropped under gravity against
a hard obstacle. The simulation results in the top and bottom image were
obtained by fitting the best “Stable Neo-Hookean Material” (SNH) [Smith
et al. 2018] and our generalized Neo-Hookean Material, respectively, to the
measured foam forces and indentations. Real foam stiffens when stretched
(Figure 17); and our material captures that; this produces less distortion
in rabbit’s legs and hands. We also tried increasing the gravity by 50%,
and our material remained stable whereas the SNH material exploded. We
investigate this stability further in Figure 9. This experiment demonstrates
that our fitted materials not only match the force vs indentation data, but
are also stable and suitable for computer animation applications.

succeed at such realistic simulation, there are a few essential ingre-
dients: good timestepping, constraints and contact modeling, and
accurate materials. While arguably great progress has been made
on aforementioned problems, accurate nonlinear material model-
ing still remains challenging. The difficulty lies in that even in the
arguably simplest nonlinear model, namely the isotropic materials,
materials are modeled by elastic energy density functions that are
symmetric functions of three variables,𝜓 : R3 ↦→ R, and the space
of all such functions is vast and difficult to parameterize, let alone
fit to some real-world observations. The problem is compounded by
the fact that in order to even setup such measurements, the elastic
solid geometry must be known exactly, and the applied forces, their
spatial distributions, and the boundary conditions such as fixed at-
tachments must also be known exactly. These conditions are simply
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not satisfied in most practical scenarios: forces do not apply at point
locations, but spatially distribute in complex patterns; geometric
shape deviates from the computer model already in the rest shape;
and real-world attachments do not apply exactly at the modeled
locations, and may even slide. Many real-world elastic objects also
cannot be extracted from their natural environments without per-
manent damage. The challenge is then how to set up a controlled
experiment so that the isotropic function𝜓 can be recovered from
some easily performed non-destructive measurements.

In our paper, we give such a method to fit𝜓 to real-world observa-
tions, under the assumption that the material is isotropic and locally
homogeneous. Our method stems from the observation that people
have been judging the “stiffness” of objects for centuries by poking
into them with fingers or other tools (“palpation”). We make this in-
tuitive method precise by setting up controlled experiments where
the “poking” and the resulting contact forces are systematically
controlled and measured (Figure 1). In order to make the boundary
conditions and the geometry predictable, we poke thin layers of
material that are positioned on top of a hard rigid surface, and that
have a known finite depth, but that extend large distances (for all
practical purposes “infinitely”) in the other two directions. To con-
trol the contact force distribution, we poke the elastic material with
several rigid cylinders of known small radii. Because the cylinder
radii are small and the deformations are localized, such measure-
ments are reasonably accurate even if the extent is not “infinite” and
even if the surface is not perfectly planar (Figure 21). Our method
is inexpensive to use because it relies only on a force sensor and 1D
indentation (displacement) data, and does not need computer vision
equipment, or capturing surface or volumetric displacement data.
Thanks to our untethered laser-based setup, it also does not require
extracting or damaging the specimen, which is instead investigated
in its natural environment.
The space of all isotropic functions 𝜓 is infinite and must be

somehow parameterized. Multiple standard families have been pro-
posed in literature, such as co-rotational, St.Venant-Kirchhoff and
Neo-Hookean materials [Bonet and Burton 1998]. These materials,
however, only have two parameters, which is insufficient to cap-
ture real materials under large deformations. Instead, we adopt a
stretch-based Valanis-Landel family of materials [Valanis and Lan-
del 1967; Xu et al. 2015] whereby we model arbitrary dependence
of tensile stiffness vs strain using a univariate natural cubic spline,
plus volume compressibility. As such, our materials lessen induc-
tive bias commonly present in material optimizations in literature.
Our material family is a generalization of the Neo-Hookean mate-
rial. It inherits its linearization properties under small deformations
whereby all isotropic materials “collapse” into a 2-dimensional fam-
ily of materials, but, unlike the Neo-Hookean material, permits
controlling stiffness under large deformations. We note that a simi-
lar Valanis-Landel material has been used in engineering literature
to fit rubber-like incompressiblematerials [Sussman and Bathe 2009].
Unlike prior work, our method can estimate volume compressibility
(Poisson’s ratio) and model compressible materials (ranging from
𝜈 = 0 to 𝜈 = 0.495 in our examples), which is important in practice as
many real material are compressible. Our material family contains
the Neo-Hookean material [Bonet and Burton 1998] as as a special
case. It also includes other popular families of materials, such as the

Fig. 2. Overview. The force vs indentation curves are experimentally de-
termined either via a force stand (Figure 1), or a laser (Figure 3); in both
cases paired with a force meter. We propose a new isotropic material family
(Section 6) that subsumes many common materials, and optimize within
it for a material best matching the force vs indentation curves (Section 7).
The optimization employs simulation as an inner loop, and this is made fast
by exploiting rotational symmetry (Section 4.1), and stable by proposing an
improved theory of stretch-based materials (Section 5).

Hencky’s material [Neff et al. 2016], STS material [Pai et al. 2018]
and the Ogden material [Ogden 1972] (these materials are given in
Appendix A). Also note that our method permits estimation of the
familiar Lamé parameters or, equivalently, Young’s modulus and
Poisson’s ratio.

Before we could optimize our Valanis-Landel family, we observed
that existing stretch-based simulation literature [Valanis and Landel
1967; Xu et al. 2015; Zhu 2021] does not address the simulation
singularities that occur when two or three stretches become equal, or
the indefiniteness of the tangent stiffness matrix. We give a solution
to this problem for stretch-based materials, including a method
to project stretch-based materials to positive-definiteness. Stretch-
based materials are materials whereby the elastic energy function is
expressed directly as an isotropic function of the principal stretches
𝜆1, 𝜆2, 𝜆3 of the material, as opposed to via invariants computed
from the principal stretches [Smith et al. 2019]. As observed in prior
work [J.M.Ball 1984; Zhu 2021], the Hessian of the elastic energy
density of a stretch-based materials conveniently diagonalizes in a
properly selected basis. In addition to dealing with singularities, we
give a complete exposition of the diagonalization fact that includes
both an explicit statement of the basis (mirroring [Smith et al. 2019])
and the Hessian diagonal blocks (mirroring [J.M.Ball 1984; Zhu
2021]), as well as proofs that the diagonalization is independent of
the basis choice in case of singularities. Such complete treatment
of stretch-based materials does not appear in any prior reference.
As such, while the focus of our work is material optimization, our
work also has a contribution to stretch-based material simulation.

We note that there exists standardized [International 2021] equip-
ment for measuring the “hardness” of materials (the “Shore” value)
via poking, namely the durometer (Figure 24, d). The durometer,
however, only produces a single value which obviously cannot sub-
sume the entire nonlinear elastic behavior, whereas in our work,
we recover a detailed 𝜓 function. We achieve this by poking the
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elastic material with rigid cylinders and continuously measuring the
indentation and the contact force. We then optimize the univariate
natural cubic spline control points of our𝜓 to match these recorded
indentations and contact forces. Crucially, we poke the material
with several rigid cylinders with different radii, which enables us to
capture volume-preservation material characteristics, in addition to
tensile stiffness. In order to perform the optimization, we model the
elastic object using the Finite Element Method. We found that in
order to meet any reasonable accuracy (e.g., under 10% error), very
detailed computational meshes are required, and this is intractable
if applied naively. Instead, we demonstrate how to exploit the ra-
dial symmetry of the problem to convert 3D FEM simulations into
equivalent 2D FEM simulations that produce identical 3D elastic
energy and elastic forces, but that can be executed orders of mag-
nitude faster. This makes our optimizations tractable and enables
us to produce𝜓 functions that match real-world observations. An
overview of our method is given in Figure 2. We perform an exten-
sive evaluation of our work (Figure 9, Figure 11, Figure 23, Figure 24,
Figure 29, Section 8.5, Section 8.10).

2 RELATED WORK

2.1 Capturing elastic materials
Simulating elastic objects has been an active field of research in
computer graphics for many decades. A diverse range of elastic-
ity models has been used extensively, such as StVK [Bonet and
Burton 1998], linear corotational [Müller and Gross 2004], Neo-
Hookean [Treloar 1944], among others. Recent efforts have focused
on acquiring materials that faithfully replicate the physical proper-
ties of real-world counterparts, while maintaining computational
stability suitable for computer graphics applications.

To obtain a realistic material, one approach is to choose a material
model and then fine-tune the parameters based on empirical data.
Xu et al. [Xu et al. 2015], for instance, introduced a spline-based
material model that allows artists to design materials interactively.
Nevertheless, this process can be extremely tedious and inefficient,
particularly when dealing with a large parameter space. An alterna-
tive approach is to interact with real-world materials, record their
responses, and use the data to estimate the material parameters.
In the 2000s, researchers in medical engineering have determined
Young’s moduli and Poisson’s ratios of soft tissues via indentation
tests. They have either pre-assumed Poisson’s ratio [Zhang et al.
1997], or measured it through a separate experiment [Jurvelin et al.
1997]. Early in computer graphics, [Lang et al. 2002; Pai et al. 2001]
modeled linear elasticity on 3Dmodels using amatrix representation
of Green operators, and fitted the matrix with force and displace-
ment data, where the latter was captured using a trinocular stereo
vision system. Becker et al. [Becker and Teschner 2007] proposed a
method to fit Young’s moduli and Poisson’s ratios, but required dis-
placement data for all vertices. Sussman et al. [Sussman and Bathe
2009] estimated nonlinear incompressible materials via uniaxial
tensile tests, but assumed homogeneity in material deformation,
which is often not the case.

When dealingwithmodels that incorporate nonlinearity, anisotropy,
heterogeneity, or friction, analytical estimation formulas become
infeasible. Instead, data-driven or simulation-driven methods offer

compelling alternatives. These methods typically recast parameter
estimation as an inverse optimization problem. They iteratively sim-
ulate the interactions using FEM to compute mechanical quantities
of interest and update material parameters, until the difference be-
tween measured and simulated quantities is minimized. Volumetric
solids have been measured through indentation tests [Bickel et al.
2010, 2009; Pai et al. 2018], cloth has been measured through biaxial
tensile tests [Miguel et al. 2012, 2013; Wang et al. 2011], and through
video [Bhat et al. 2003; Yang et al. 2017], and dynamic trajectories
have been measured through spacetime optimization [Wang et al.
2020, 2015]. Recently, an approach was proposed to estimate mate-
rial properties of elastic solids using depth sensors [Arnavaz et al.
2023]. They use the Stable Neo-Hookean material [Smith et al. 2018]
(only 2 parameters) to which we compare extensively. These method-
ologies often rely on costly devices, complex measuring systems, or
intricate data processing procedures. Moreover, tensile tests require
the extraction of material samples from their natural environments.
In contrast, we recover nonlinear isotropic material functions of
hyperelastic volumetric solids via indentation tests without any
cameras or vision systems, and do so in-situ, i.e., without damaging
or extracting the physical specimen from its natural environment.
In haptic rendering applications, a hand-held probe device that

canmeasure both contact force and acceleration simultaneously [Pai
and Rizun 2003] was proposed to measure the haptic texture of a
stiff object. Data-driven methods are also widely used in measuring
deformable objects [Sianov and Harders 2013; Yim et al. 2016], by
using devices that can record both positions and forces over time.
Nonlinear elastic properties have also been captured [Bickel et al.
2009; Pai et al. 2018]. However, these previous applications fitted
nonlinear materials that are described by a small number of parame-
ters. Our materials use an arbitrary number of parameters to model
complex nonlinear materials under large deformations.

2.2 Boussinesq contact approximations
In contact mechanics, Boussinesq approximations [Sneddon 1946]
are a popular approach to modeling the relationship between the de-
formations and stresses that occur when a halfspace made of elastic
material is poked with a rigid indenter. Boussinesq approximations
assume that the material is linear and deformations small, and then
analytically solve the Naviér elasticity equations for certain simpli-
fied geometric setups. For example, the relationship between the
deformation of an infinite-width infinite-depth 3D half-space and
the contact force distribution against a point contact or circular con-
tact has an analytical solution [Johnson and Johnson 1987], and this
has been exploited in previous work [Harmon and Zorin 2013; Pauly
et al. 2004]. For infinite width but finite depth, the relation between
the deformation of a circular contact area and its contact force is
also known to have a numerical solution [La Ragione et al. 2008].
The distribution of stress and deformation have also been modeled
for composite materials [Peutz et al. 1968]. All of these methods
assume both material linearity and small deformations, whereas
in our work we model nonlinear materials and large deformations.
Because there are no analytical solutions to the nonlinear PDEs
of elasticity, we use FEM to model our deformations and contact
forces.
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2.3 Nonlinear material modeling
One of the major challenges of simulation-driven methods lies in
selecting an appropriate material model. In terms of nonlinear ma-
terial models, Pai et al. [Pai et al. 2018] used a 3-parameter model.
Stress-strain relationships were interpolated using radial basis func-
tions [Bickel et al. 2010, 2009; Wang et al. 2020]. Problematically, the
resulting interpolated elastic forces were non-conservative. Miguel
et al. [Miguel et al. 2016] suggested a model that interpolates the
elastic energy density function𝜓 . Enforcing the convexity condition
for their material proved challenging, and their parameter fitting
suffered from local minima [Miguel et al. 2016]. Our optimizer dif-
fers from that of [Miguel et al. 2016] in that we employ a “Fit 𝐸”
step that optimizes for the overall materials at the beginning of each
iteration, and this is shown to significantly accelerate convergence
(Section 7).

An ideal material model needs to be expressive enough to accom-
modate a variety of behaviors while excluding redundant and unsta-
ble materials. Numerous nonlinear models written in terms of invari-
ants are available [Wex et al. 2015], such as Mooney-Rivlin [Mooney
1940; Rivlin 1948], Yeoh [Yeoh 1990, 1993], Fung-Demiary [Demi-
ray 1972; Fung 1967], Veronda-Westmann [Veronda and Westmann
1970], Gent [Gent 1996] and Arruda-Boyce [Arruda and Boyce
1993] materials, and have been used in [Kauer et al. 2002; Kim
and Srinivasan 2005; Schumacher et al. 2020]. Nevertheless, they
either have too few parameters, or their convexity conditions are
difficult to enforce. Stretch-based material models, such as Ogden
materials [Clyde et al. 2017; Ogden 1972] and Valanis-Landel ma-
terials [Valanis and Landel 1967], offer some promise to ensure
convexity. Clyde et al. [Clyde et al. 2017] introduced an Ogden-
like separable energy for fabrics and cloth based on orthotropic
strain components, but did not discuss convexity conditions. Valanis-
Landel model offers a simple, easy to enforce convexity condition,
and has been used to fit incompressible materials [Sussman and
Bathe 2009]. Xu et al. [Xu et al. 2015] proposed a compressible
Valanis-Landel model, with three univariate functions for control,
and all of them being convex yields polyconvexity of the material
itself, which is easy to enforce. In our work, we use a simplified
version of this compressible Valanis-Landel material model, in order
to circumvent ambiguities and overly large parameter spaces. How-
ever, convexity alone may not be sufficient; the linear corotational
material is convex with respect to any combination of stretches (in-
cluding negative ones), yet it has proven unstable [Stomakhin et al.
2012], in that elements can readily invert and fail to recover. The
ability for elements to recover from inversions is crucial, as inver-
sions are common, sometimes even inevitable, in computer graphics
due to discretization and numerical instabilities [Stomakhin et al.
2012]. We demonstrate in our paper that our fitted generalized Neo-
Hookean materials have good invertibility properties (Figure 9).
The stabilization of existing materials is another intriguing re-

search area. For instance, Smith et al. [Smith et al. 2018] proposed a
stabilized Neo-Hookean material, while [Stomakhin et al. 2012] sta-
bilized randommaterial functions through extrapolation. In material
fitting, it is very important to accommodate stretches or strains that
are outside the experimental region, but very few works dealt with
this. Clyde et al. [Clyde et al. 2017] extended their fabric material

model to region outside of experimental strain space via C2 extrap-
olation, but because they relied on the Ogden material, they did
not have stability guarantees. Our material model is designed using
carefully crafted cubic splines that inherently stabilize the material.
We prove stability via stress tests (Figure 9), ensuring that any of
our fitted materials are directly applicable for computer graphics
applications.

2.4 Block-diagonal structure of element stiffness matrix
Another limiting factor in simulation-driven methods is the sim-
ulation process itself. Once a material model is established, it is
necessary to robustly and efficiently simulate any material instance
from the model to thoroughly explore the material space. Recently,
many publications have focused on developing differentiable simu-
lators [Geilinger et al. 2020; Jatavallabhula et al. 2021; Le Lidec et al.
2021; Liang et al. 2019], facilitating inverse optimization of more
complicated dynamic systems [Hahn et al. 2019; Kandukuri et al.
2020; Sengupta et al. 2020; Song and Boularias 2020].
Our focus is on elastostatic FEM simulations, which typically

involve computing force and the tangent stiffness matrix. Early
works in medical engineering [Choi and Zheng 2005; Kim and Srini-
vasan 2005; Zhang et al. 1997] relied on FEM software from indus-
try. Many previous works in computer graphics [Bickel et al. 2010,
2009; Wang et al. 2015] relied on linear corotational FEM, which
is unsuitable for simulating general nonlinear materials. Miguel et
al. [Miguel et al. 2016] calculates force and stiffness matrix through
finite-differencing, which demands substantial computational effort.
For isotropic materials, forces can be readily calculated through
the first Piola-Kirchhoff tensor [Irving et al. 2004]. However, the
tangent stiffness matrix requires more effort. This involves com-
puting the Hessian of the energy density function with respect to
deformation gradients, followed by projection to the semi-positive
definite (SPD) space. Such SPD matrices also play a critical role in
geometric optimization, enabling the derivation of a second-order
solver to optimize distortion energies with Newton-type conver-
gence, with applications across numerous problems including mesh
parameterization [Chen and Weber 2017; Fu and Liu 2016; Fu et al.
2015; Liu et al. 2018; Shtengel et al. 2017; Smith et al. 2019; Smith
and Schaefer 2015; Zhu 2021]. To compute the tangent stiffness
matrix, [Teran et al. 2005] unveiled a block-diagonal structure in the
element stiffnessmatrix of upper invariants-based energies, compris-
ing one 3x3 block and three 2x2 blocks. This formula was extended
by [Stomakhin et al. 2012] to accommodate stretch-based energies.
A different method for stretch-based energy, through differentiating
the singular value decomposition (SVD), was introduced by [Xu et al.
2015]. Smith et al. [Smith et al. 2019] focused on lower invariant-
based energies, discovering that the block-diagonal structure can
be further simplified to one 3x3 block and 6 diagonal entries, with
all 9 eigenvalues extractable for some energies. The basis was also
presented in a simple form. Later, Zhu [Zhu 2021] derived the same
structure for stretch-based energies and expressed the basis as a
product of several matrices, resulting in the same basis as [Smith
et al. 2019]. Generally, stretch-based energy models present simpler
eigenvalue forms compared to invariants based energies, but often
encounter singularities when two stretches are nearly equal. Xu
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et al. [Xu et al. 2015] suggested a workaround by perturbing the
stretches to increase their difference, but this approach is imperfect.
Instead, we demonstrate that all singularities are removable and
give a method for removing them using Taylor series (Appendix C
and Appendix D). This contribution makes stretch-based materials
suitable for general robust use in computer graphics.

3 CAPTURING CONTACT FORCES AND
INDENTATIONS

We systematically poke the elastic object with rigid cylinder of vari-
ous radii, measuring the relationship between indentation and the
total contact force. By “indentation”, we mean the vertical distance
between the contact site at the bottom of the cylinder, and the undis-
turbed height of the elastic object far from the contact site (depicted
as 𝑑 in Figure 4). We measure the total contact force using a force
meter “PCE-DFG N 10” from PCE Instruments (resolution is 0.005N;
Figure 1). The 3d-printed rigid hard-plastic cylinder is attached to
the forcemeter’s tip usingM6 screwswith 3d-printed holes for screw
threads. The radii for our cylinders vary from approximately 1mm
to 5mm. The acquisition of force values is automatic via connecting
the force meter’s digital output to a DAQ card.

We use two methods to measure indentation. For objects that are
small and unattached (or can be manufactured as such, as is the
case with chemistry-based manufacturing of foams and silicons), we
put the force meter into a force stand (also from PCE Instruments;
Figure 1), and position the specimen to be examined at the bottom of
the stand. We then slowly and precisely lower the force meter using
the precision wheel and thus acquire the indentation and forces.
The vertical position of the force meter can be read on the force
stand LCD screen; resolution is 10𝜇m.

The limitation of the force stand is that it is heavy and not portable.
For objects that cannot be practically cut into layers and positioned
into the force stand, such as a chair cushion or human body parts,
we propose a novel laser-based instrument (Figure 3). This permits
us to perform in-vivo measurements of the human tissue. We use
the Optex-CD22-100 laser distance measurement sensor with a reso-
lution of 20𝜇m. The acquisition of laser distance values is automatic
via connecting the laser’s digital output to the DAQ card. We mount
both the force meter and the laser onto a 3d-printed plastic (Tough
PLA) frame, in a manner where the laser’s optical axis is parallel to
the force meter axis. The parallelism of the two axes can be achieved
via a calibration step whereby one attaches the laser frame into the
force stand, rotate the force stand wheel, and compares the distance
values of the laser to those read on the force stand’s LCD display.
The angle of the laser can then be adjusted via a pivot joint on the
laser frame until both the force stand and laser report equal trans-
lations. Our crucial observation is that laser must be mounted in a
manner whereby the parallel distance between the force meter axis
and the laser axis is sufficiently large so that the point illuminated
by the laser does not deform (Figure 4). This (perhaps somewhat
surprisingly) makes it possible to measure indentation, as the laser
is now effectively directly measuring the global world-coordinate
vertical translation of the force meter housing. Because the force
meter internally operates as a force sensor (without any springs),
the rigid cylinder mounted onto the force meter moves rigidly with

the force meter housing. This means that the indentation equals
the difference of the laser distance at the first onset of contact, and
the current laser distance (Figure 4, middle). Our laser frame has a
translational joint to adjust the distance of the laser and force meter
axes to ensure that the parallel distance is sufficiently large; but
we rarely needed to adjust it in practice beyond the initial setting.
We are not aware of anyone proposing such a one-dimensional
laser-based force vs indentation measuring device, and we think
our idea is applicable broadly in applications such as haptics. Note
that for untethered styluses in haptics, existing designs [Zamani
and Culbertson 2022] typically employ a magnetic sensor to sense
positions, which is at least an order of magnitude less precise as our
laser-based instrument.

Regardless of the distance tech employed (force stand or laser), we
poked each examined material with rigid cylinders of various radii.
The deepest indentation was approximately 20% of the total depth of
the material layer, which is deeply in the nonlinear material region.
The zero indentation is determined to be the moment when the force
meter first registers a non-zero value, i.e., at the onset of contact.
We typically acquire ∼10 (indentation, force) data pairs, with the
maximum force typically at around ∼ 5𝑁 (maximum force of our
force meter is 10𝑁 ). We apply a smoothing filter to all acquired
signals. To increase the contact force accuracy, we repeat the entire
poking sequence 3 times, and use the average contact force at each
indentation. Our experimental setup is relatively inexpensive, as
our laser and force meter only cost $750 and $800, respectively. Note
that our setup gives very high positional accuracy, but does not
require any optical cameras or mocap markers, which alone can
cost more than $10,000 for comparable accuracy; as such, our system
is a relatively inexpensive approach to acquiring isotropic materials.

4 ELASTOSTATIC SIMULATION
In order to fit the isotropic elastic energy density function Ψ to
the poking data captured in Section 3, we need to build a digital
twin of our elastic material layer. We do this using FEM simulation,
augmented with constraint handling to accommodate contact with
the rigid cylinder. We assume an isotropic strain-stress law in the
material, and model it using a symmetric elastic energy density
function Ψ(𝜆1, 𝜆2, 𝜆3) : R3 → R, where 𝜆𝑖 are the three singular
values (the “principle stretches”) of the 3× 3 deformation gradient 𝐹
of the elastic deformation [Irving et al. 2004]. Symmetry here means
that Ψ(𝜆1, 𝜆2, 𝜆3) = Ψ(𝜆2, 𝜆1, 𝜆3) = Ψ(𝜆1, 𝜆3, 𝜆2) = Ψ(𝜆3, 𝜆2, 𝜆1).
We will further restrict our Ψ later in Section 6; but the discussion
in this Section 4 is generic with respect to any isotropic Ψ.

4.1 Cylindrical Coordinates and Axial Symmetry
We first attempted to model the elastic layer using a 3D mesh and
3D FEM simulation; but this turned out to be orders of magnitude
too slow to perform our optimization. To accelerate the simulation
and the material optimization, we invented a technique to replace
3D simulation with a 2D simulation that produces mathematically
identical results (modulo numerical errors). We assume that the
object deforms locally in response to the poking; therefore, we can
approximate the elastic layer as quasi-infinite in tangential direc-
tions, and having a certain constant finite depth. We do not assume

ACM Trans. Graph., Vol. 42, No. 6, Article 223. Publication date: December 2023.



223:6 • Huanyu Chen, Danyong Zhao, and Jernej Barbič

Fig. 3. Laser and force meter for measuring indentation and contact forces. (a,b) Front and back of the laser instrument, showing the laser, force meter
and the plastic frame with joints for adjusting laser vs force meter axis parallelism and axis parallel distance. The large black circular object is a counter-weight
for easier balance against the weight of the laser. (c) The instrument in action when measuring the material of a chair seat. The red laser light is visible, and is
positioned far from the contact site, as required. Although others have poked soft tissues before in computer graphics [Bickel et al. 2009], they typically paired
a force sensor with a vision system. The novelty of our system is to pair a force sensor with a 1D laser system, which is both significantly more precise and
cheaper than a vision-based deformation capture rig (precision down to a few micrometers for under $1000).

Fig. 4. Using a laser to measure indentation. Left: we store the laser distance 𝐿0 at onset of contact, i.e., the moment of time when the force meter changes
from zero force to non-zero force. It does not matter if the laser is shining on a bump or a slope, as long as laser is sufficiently far away to not shine on
the contact deformation region. The entire device should be kept orthogonal to the surface for accurate data collection. Middle: the indentation 𝑑 can be
calculated from 𝐿 as 𝑑 = 𝐿0 −𝐿. Right: laser and force meter axes must be parallel. Any non-parallelism introduces no indentation error at the onset of contact;
namely, due to 𝐿 = 𝐿0, we correctly detect 𝑑 = 0. Suppose the laser is shining at an angle 𝜃 close to 90◦, but not exactly 90◦ . Then, the relative error in the
measured indentation 𝑑 = 𝐿0 − 𝐿 is 1 − 𝑠𝑖𝑛 (𝜃 ) . At 𝜃 = 80◦ (i.e., 10◦ error), this is only 1.5%, and at 𝜃 = 85◦ (i.e., 5◦ error), this is only 0.4%.

small deformations; and actually, it is necessary to excite the mate-
rial to large deformations to recover the nonlinear elastic material.
We poke the elastic material with a rigid cylinder in a normal di-
rection. We assume that the material is locally homogeneous close
to the poking site. Under these assumptions, the deformation and
the contact force are axis-symmetric and there is no deformation in
the angular direction, which we can exploit for simulation speed, as
follows. We use a cylindrical coordinate system (𝑟, 𝜑, 𝑧); the defor-
mation and contact force are independent on 𝜑 . Figure 5 illustrates
how we can substitute a 3D cylinder mesh for a 3D rectangle grid,
by exploiting symmetry. The total 3D elastic energy can be written

as

E =

∫
Ω
Ψ(𝜆1 (𝐹 ), 𝜆2 (𝐹 ), 𝜆3 (𝐹 ))𝑑𝑉

=

∫ 2𝜋

0
𝑑𝜑

∫ ℎ

0

∫ 𝑅

0
Ψ(𝜆1 (𝐹 ), 𝜆2 (𝐹 ), 𝜆3 (𝐹 ))𝑟 𝑑𝑟 𝑑𝑧

= 2𝜋
∫ ℎ

0

∫ 𝑅

0
Ψ(𝜆1 (𝐹 ), 𝜆2 (𝐹 ), 𝜆3 (𝐹 ))𝑟 𝑑𝑟 𝑑𝑧. (1)

Although cylindrical coordinates are standard in FEM simulation [Com-
sol 2023], our contribution here is to demonstrate how to apply cylin-
drical symmetry to 3D force-indentation-based large-deformation
FEM material optimization problems.
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Fig. 5. Simulation setup and radial symmetry: Top: cylindrical coor-
dinate system and the cylindrical 3D simulation mesh. Deformations are
independent of 𝜑. Bottom three pictures: 2D rectangular mesh, correspond-
ing to a single (𝑟, 𝑧) slice; we run our 2D FEM simulations on this mesh,
using an elastic energy that exactly matches the 3D energy. We use Dirichlet
displacement conditions under the cylinder (red; contact vertices), and at
the bottom of the elastic material (blue; affixed to the ground). Simulations
are quasi-static: we always find the static equilibrium of the deformable
mesh under the given rigid cylinder indentation. In practice, we repeat
the poking with cylinders of several different radii, which greatly helps
with determining the material (analyzed further in Figure 11). The unde-
formed mesh is generated procedurally, based on parameters controlling the
number of radial divisions under the rigid cylinder (typically 20 across the
diameter). Vertical divisions are chosen so that elements under contact are
squares (typically 30). Past a distance of radius away from contact, elements
progressively lengthen based on a geometric series as the deformations
become progressively more “boring” away from contact, requiring lesser
precision. There are typically 60 elements across the mesh radial diameter.

4.2 GaussQuadrature Points
Observe that the integration on 𝜑 has disappeared in the last line of
Equation 1. Therefore, we can numerically evaluate the integral us-
ing a 2D rectangular mesh in the (𝑟, 𝑧) space. To efficiently compute
the elastic energy, its gradient and Hessian with respect to vertex po-
sitions (the elastic force and tangent stiffness matrix), we use Gauss
points [Wriggers and Laursen 2006] to approximate the integral
of the elastic energy. Inside each rectangular element, we sample
3x3=9 Gauss quadrature points. We experimented with schemes of
other orders, and found the 3x3 lattice to be a good compromise
between accuracy and computational speed. For example, when
using 5x5=25 Gauss quadrature points, the output difference was
negligible (relative output change of 1e-5). The integral of the elastic
energy can be approximated as

E = 2𝜋𝑤𝑘

∑︁
𝑘

Ψ(𝜆(𝐹𝑘 )) 𝑟𝑘 , (2)

where𝑤𝑘 is the weight of the Gauss quadrature point, and 𝑟𝑘 is the
radial coordinate of that point. The weights and positions are given
in Appendix B.

4.3 2D Finite Element Method for the 3D Elastic Energy
Before we derive the elastic forces and tangent stiffness matrix, we
need to first calculate the deformation gradient 𝐹𝑘 at the Gauss
points. For any location in the 3D solid cylinder, the deformation
can be expanded in cylindrical coordinates as

𝑢 (𝑟, 𝜑, 𝑧) =
∑︁
𝑖

(𝑢𝑟𝑖 · 𝑒𝑟 + 𝑢
𝑧
𝑖 · 𝑒𝑧)𝜙𝑖 (𝑟, 𝑧), (3)

where (𝑢𝑟
𝑖
, 𝑢𝑧

𝑖
) is the 3D deformation in any𝜑 plane; 𝑒𝑟 = (cos𝜑, sin𝜑, 0)

and 𝑒𝑧 = (0, 0, 1) are cylindrical basis vectors; 𝜙𝑖 (𝑟, 𝑧) is the value
of 𝑖-th FEM basis function at (𝑟, 𝑧); and summation is over all FEM
basis functions. We use bilinear interpolation to define shape func-
tions 𝜙𝑖 ; there is one shape function per vertex of the 2D mesh. Note
that due to symmetry, shape functions 𝜙𝑖 are independent of 𝜑, and
𝑢 has no 𝑒𝜑 component. Now, we can calculate the deformation
gradient as

𝐹 (𝑥,𝑦, 𝑧) = 𝐼3×3 +
𝜕𝑢 (𝑥,𝑦, 𝑧)
𝜕(𝑥,𝑦, 𝑧) =

= 𝐼3×3 +
∑︁
𝑖

𝜕
(
(𝑢𝑟

𝑖
· 𝑒𝑟 + 𝑢𝑧

𝑖
· 𝑒𝑧)𝜙𝑖

)
𝜕(𝑟, 𝜑, 𝑧)

( 𝜕(𝑥,𝑦, 𝑧)
𝜕(𝑟, 𝜑, 𝑧)

)−1
. (4)

Due to symmetry, we can set 𝜑 = 0, and therefore simplify

F𝑘 (𝑟𝑘 , 𝑧𝑘 ) = 𝐼3×3 +
∑︁
𝑖


𝑢𝑟
𝑖

𝜕𝜙𝑖

𝜕𝑟
0 𝑢𝑟

𝑖

𝜕𝜙𝑖

𝜕𝑧

0 𝑢𝑟
𝑖

𝜙𝑖

𝑟𝑘
0

𝑢𝑧
𝑖

𝜕𝜙𝑖

𝜕𝑟
0 𝑢𝑧

𝑖

𝜕𝜙𝑖

𝜕𝑧


. (5)

Observe that F𝑘 can be divided into a 2 × 2 and a 1 × 1 submatrices.
Thus, when computing the SVD of 𝐹𝑘 , 𝜆3 is the matrix central
element; and we only need to actually perform a 2 × 2 SVD to get
𝜆1 and 𝜆2 .We can now compute the elastic force on a mesh vertex,

𝑓 =
𝜕E
𝜕𝑢

= 2𝜋
∑︁
𝑘

𝜔𝑘𝑟𝑘
𝜕Ψ

𝜕𝑢
= 2𝜋

∑︁
𝑘

𝜔𝑘𝑟𝑘
𝜕Ψ

𝜕𝐹 |𝐹=𝐹𝑘

𝜕𝐹𝑘

𝜕𝑢
. (6)
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Fig. 6. First and second derivative of𝜓 with respect to F. Quantities 𝑢𝑖 and 𝑣𝑖 are columns of𝑈 and𝑉 , respectively.

From Equation 5, we derive

𝜕𝐹𝑘

𝜕𝑢𝑖

𝑇

=
𝜕𝐹𝑘

𝜕𝑢𝑖 (𝑟, 𝜙, 𝑧)
𝜕(𝑟, 𝜙, 𝑧)
𝜕(𝑥,𝑦, 𝑧)

=


𝜕𝜙𝑖

𝜕𝑟
0

𝜕𝜙𝑖

𝜕𝑧
0

𝜙𝑖

𝑟𝑘
0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
𝜕𝜙𝑖

𝜕𝑟
0

𝜕𝜙𝑖

𝜕𝑧


( 𝜕(𝑥,𝑦, 𝑧)
𝜕(𝑟, 𝜙, 𝑧)

)−1
.

(7)

The tangent stiffness matrix is

𝐾 =
𝜕2E
𝜕𝑢2

= 2𝜋
∑︁
𝑘

𝜔𝑘𝑟𝑘
𝜕2Ψ

𝜕𝑢2
= 2𝜋

∑︁
𝑘

𝜔𝑘𝑟𝑘 (
𝜕F𝑘
𝜕𝑢

)𝑇 𝜕
2Ψ

𝜕𝐹 2 |𝐹=𝐹𝑘

𝜕𝐹𝑘

𝜕𝑢
.

(8)

4.4 Contact
We poke the object in a normal direction, and assume that friction
is sufficiently large to prevent the elastic material under the circular
contact to undergo a tangential sliding deformation during such
poking. This assumption is reasonable because our specimens (sili-
con, foam, human tissue, rigid plastic) are dry non-slippery objects
and we additionally apply magnesium climbing chalk powder to
increase friction. Contact between the rigid cylinder and the elastic
material is conforming; it forms due to our deep indentations to
excite material nonlinearities. Therefore, if we know the indenta-
tion, we know the positions of all the contact vertices. We divide
all mesh vertices into three groups: free vertices 𝐹, contact vertices
𝐶, and attached vertices 𝐴; the corresponding vertex displacements
are denoted by 𝑢𝐹 , 𝑢𝐶 , 𝑢𝐴 . The contact vertices are in contact with
the rigid cylinder, and the attached vertices are fixing the elastic
object to the ground at the bottom of the layer. Since 𝑢𝐶 is known,
we can solve for 𝑢𝐹 using constrained optimization that minimizes
the total elastic energy

min
𝑢𝐹

E(𝑢𝐹 , 𝑢𝐶 , 𝑢𝐴) . (9)

The gradient and Hessian of the elastic energy have been derived
above. We use Newton-Raphson iteration with a line search to solve
the optimization problem. After 𝑢𝐹 is computed, we can compute
the total simulated contact force 𝑓 𝑆 as the sum of contact forces on
all the vertices in 𝐶.We note that this sum equals the area integral
of the normal pressure (i.e., no area-weighting is needed). This is
because in FEM, discrete vertex forces already are area-weighted,
even if mesh is non-uniform. The goal of our material optimization
will then be for 𝑓 𝑆 to match the experimentally measured total
contact force. We note that matching the contact force distribution

is not feasible because the distribution is not known (only the total
force is measured), but our experiments (Figure 11) demonstrate
that we can still recover the material.

5 NUMERICALLY STABLE STRETCH-BASED MATERIALS
In order to evaluate Equations 6 and 8, we need to be able to robustly
evaluate 𝜕Ψ/𝜕𝐹 and 𝜕2Ψ/𝜕𝐹 2 for an arbitrary 3× 3 deformation gra-
dient 𝐹 .We note that for isotropic elastic materials, there are two
high-level approaches for modeling the elastic energy density Ψ :
the invariant-based approach [Smith et al. 2019; Teran et al. 2005]
and stretch-based approach [Xu et al. 2015]. The invariant-based
approach models Ψ as a function of invariants, which are low-order
polynomials of 𝜆𝑖 .We first attempted to model our experimentally
fitted Ψ using invariants, but it was difficult to set a meaningful
range for the invariants and adequately sample the invariants’ 3D
space; we were not able to reliably produce isotropic materials that
match our real-world force/indentation curves using this approach.
For example, the rest values of lower invariants 𝑖1, 𝑖2, 𝑖3 [Smith et al.
2019] are 3, 3 and 1, respectively, and so on what intervals should
they be sampled? Should the sampling region be a box, or some
curved shape? Instead, we use stretch-based materials, whereby Ψ
is modeled directly as a symmetric function of 𝜆𝑖 . Stretch-based
materials are intuitive in the sense that Ψ directly models how the
elastic energy varies when the material undergoes stretching and
compression; we were able to reliably produce isotropic materials
that match both synthetic experiments and real-world data. Com-
pared to invariant-based material modeling, stretch-based material
“force” curves are in our experience more easily interpreted by a
human. This is because 𝑓 , 𝑔 and ℎ are response due to changing
“length”, “area” and “volume”, respectively. Furthermore, stretch-
based materials decouple into separable Valanis-Landel [Xu et al.
2015] functions 𝑓 , 𝑔, ℎ for many common materials (Appendix A).
In contrast, many common materials are not separable in terms of
lower invariants 𝑖, 𝑖𝑖, 𝑖𝑖𝑖, including STS, Hencky, StVK and Ogden
material. And so one would need to sample 2D functions 𝑓 (𝑖, 𝑖𝑖),
not 1D functions 𝑓 (𝑖), 𝑔(𝑖𝑖), ℎ(𝑖𝑖𝑖) . Doing so is more difficult than
our approach of modeling 1D Valanis-Landel functions 𝑓 , 𝑔, ℎ of
stretch-based materials (Section 6).
All that said, stretch-based materials as presented in [Xu et al.

2015] suffer from an important numerical weakness: there are singu-
larities in the 𝜕Ψ/𝜕𝐹 and 𝜕2Ψ/𝜕𝐹 2 formulas when two (or all three)
principal stretches become equal. If left unaddressed, this introduces
simulation and optimization instabilities (Figure 7). We therefore
contribute a solution to the singularity problem: we derive stable
formulas for 𝜕Ψ/𝜕𝐹 and 𝜕2Ψ/𝜕𝐹 2, rigorously mathematically prove
that the formulas are independent of the (infinite) choice of the
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Fig. 7. Our singularity-handling stabilizes simulations of stretch-
based isotropic materials. Top: simulation produced using the stretch-
based method of [Xu et al. 2015]. Bottom: our method numerically stabilizes
stretch-based materials, by dealing with division-by-zero-inducing remov-
able singularities, and projecting the elastic energy Hessian to be SPD.

SVD singular factors 𝑈 and 𝑉 , and give a method to project our
Hessian 𝜕2Ψ/𝜕𝐹 2 to be SPD. We demonstrate that the Hessian takes
on a very elegant block-diagonal form, paralleling those observed
for invariant-based materials [Smith et al. 2019; Teran et al. 2005].
Figure 6 gives our final result; and the proofs are in Appendix C
and Appendix D. We note that these results are independent of our
material optimization focus, and apply generally to 3D stretch-based
material simulation; but our motivation to use stretch-based mate-
rials stems from real-world material optimization. We would like
to carefully delineate our contribution in relation to previous work.
The existence of the block-diagonal form of the Hessian of isotropic
functions has been known for a long-time [J.M.Ball 1984], and our
basis in which the Hessian block-diagonalizes is the same as that for
invariant-based materials in [Smith et al. 2019]. Recently, Zhu [Zhu
2021] also observed the Hessian block-diagonalization, and used
it for 3D geometric shape modeling using stretch-based materials.
However, the basis was expressed as a product of matrices and not
given directly as in [Smith et al. 2019]. No prior work has stated
the energy Hessian and its basis in such a clean and complete man-
ner, or given mathematical proofs that, for stretch-based materials,
𝜕Ψ/𝜕𝐹 and 𝜕2Ψ/𝜕𝐹 2 are invariant to the choice of 𝑈 and 𝑉 in the
presence of equal principal stretches; or given a strategy for how
to numerically address the singularities; or projected the resulting
Hessian to SPD. We contribute all of those important components
(Appendix C and Appendix D).

6 GENERALIZED NEO-HOOKEAN MATERIAL
Stretch-based materials are convenient for material optimization
because they directly model 𝜓 as a function of material principal
stretches 𝜆𝑖 , which is intuitive to understand and permits one to
focus the analysis to certain practically relevant intervals 𝜆min ≤

𝜆 ≤ 𝜆max with 𝜆min < 1 < 𝜆max .We note that computer animation
research often analyzed cases where material inverts [Irving et al.
2004]. In our work, we analyze real materials, where the span of
𝜆s is more “modest”, typically in the 0.5 − 1.5 range. That said, our
fitted materials are stable even outside of this range, and even under
inversions (Figure 9), making them suitable for computer anima-
tion applications. The key challenge of modeling general isotropic
materials is that the space of isotropic functions 𝜓 (𝜆1, 𝜆2, 𝜆3) is
infinite-dimensional and not easily parameterized. The most general
parameterization that we are aware of, which still only expresses a
strict subset of all isotropic functions, is the general Valanis-Landel
family proposed in [Xu et al. 2015],

Ψ = 𝑓 (𝜆1) + 𝑓 (𝜆2) + 𝑓 (𝜆3) + 𝑔(𝜆1𝜆2) (10)
+𝑔(𝜆2𝜆3) + 𝑔(𝜆3𝜆1) + ℎ(𝜆1𝜆2𝜆3),

where 𝑓 , 𝑔, ℎ are univariate functions. Note that this family is still
infinite-dimensional because the space of univariate functions is
infinite-dimensional. The rationale behind Valanis-Landel materials
is that functions 𝑓 , 𝑔, ℎ model the elastic energy due to changing
the length (of an infinitesimally small cube of material), surface
area, and volume, respectively. Modeling isotropic spaces broader
than Equation 10 is very hard because nobody has proposed any
approach or equation for how such a broader space may be math-
ematically tackled. We initially attempted to model our materials
using Equation 10, whereby we modeled 𝑓 , 𝑔, ℎ using univariate
splines [Xu et al. 2015]. However, the resulting optimization was
too indeterminate and did not consistently converge to the same
𝑓 , 𝑔, ℎ functions when presented the same force/indentation data.
Therefore, we abandoned the 𝑓 , 𝑔, ℎ family and narrowed it to the
family whereby 𝑓 is modeled using a spline, 𝑔 = 0 and ℎ is modeled
as a quadratic function of the log of the volume.We note thatℎ could
alternatively be modeled as a quadratic function of the volume (with-
out the log) without any particular difficulty, but the presence of log
is convenient because it allows our family to contain several well-
known material families (below). This particular choice of modeling
𝑓 , 𝑔, ℎ is motivated by the fact that ℎ is a volume-preservation term,
and so it is natural to treat it separately; 𝑓 generalizes a well-known
material family (Neo-Hookean); and if 𝑔 is not zero, it interferes
with volume preservation under small deformations.

We note that all engineering applications of fitting stretch-based
materials to date made the same 𝑔 = 0 assumption, and actually,
they made an even stricter assumption that the material is incom-
pressible [Sussman and Bathe 2009; Valanis and Landel 1967], which
meant that only 𝑓 was modeled. We aim to model both compressible
(foam) and nearly-incompressible (silicone, human tissue) mate-
rials. Our material family is richer than in the above references
because we permit volume compressibility, controlled by our func-
tion ℎ, in addition to 𝑓 . Every nonlinear isotropic material has a
linearization around the rest-shape; the space of such linearizations
is two-dimensional, and can be parameterized with familiar Lamé
parameters 𝜆Lamé, 𝜇Lamé . These parameters, as well as familiar quan-
tities such as Young’s modulus and Poisson’s ratio, can be easily
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Fig. 8. Distribution of the 𝜆 values: Left: histogram of {𝜆1,𝜆2,𝜆3} values. Middle: histogram of {𝜆1𝜆2, 𝜆2𝜆3, 𝜆3𝜆1} values. Right: histogram of {𝜆1𝜆2𝜆3} values.
All 𝜆 values were computed using our FEM simulation, for a representative material.

Fig. 9. Test of stability of materials.We subject the “Stable Neo-Hookean” (SNH) [Smith et al. 2018] material and our generalized Neo-Hookean to six
stability tests. In “line”, the cube is projected to a line. In “line random”, the vertices are further randomized after the projection; this is a more difficult test.
Analogous for “plane”. Our material recovers in all cases, whereas SNH has difficulties when the geometry has collapsed to a point or to a line.

calculated from our parameters as follows

𝜇Lamé =
1
2
𝑓 ′′(1), 𝜆Lamé is a direct parameter, (11)

𝐸 =
𝜇Lamé (3𝜆Lamé + 2𝜇Lamé)

𝜆Lamé + 𝜇Lamé
, 𝜈 =

𝜆Lamé
2(𝜆Lamé + 𝜇Lamé)

. (12)

After some trial and error, we determined that it is advantageous
to model 𝑓 as a natural cubic spline. In a typical natural cubic spline,
one has 𝑓 ′′ = 0 for very small and large arguments, which leads to
indefinite Hessians and simulation instabilities. In order to model

stable energies 𝑓 that grow quadratically for small and large values
of 𝜆, we instead set 𝑓 ′′ = 𝐶small and 𝑓 ′′ = 𝐶large, for very small
and very large 𝜆, respectively (where 𝐶small > 0 and 𝐶large > 0
are subject to our optimization). Note that adding a constant to 𝑓
only adds a constant offset to Ψ, and therefore we can set 𝑓 (1) = 0
without a loss of generality. We set 𝑓 ′(1) = 0, which imposes that
the material is in elastic equilibrium when all 𝜆𝑖 equal 1, i.e., rest
shape. This is because for a general Valanis-Landel material, the
equilibrium condition is 𝑓 ′(1) + 2𝑔′(1) + ℎ′(1) = 0, and the latter
two terms are zero in our material family. The choice of natural
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cubic splines for 𝑓 means that 𝑓 ′′ are piecewise-linear functions.
We model these piecewise-linear functions using a set of control
points (𝑥𝑘 , 𝑦𝑘 ), where 𝑥1 < 𝑥2 < . . . 𝑥𝑛 .Wemodel our compressible
materials as ℎ = 0.5𝜆Lamélog2 (𝜆1𝜆2𝜆3), where 𝜆Lamé plays the same
role as the familiar “lambda” Lamé parameter.
For 𝑓 , stability of our material can be enforced by requiring

𝑓 ′′ > 0 [Xu et al. 2015]. For ℎ, note that the above expression in-
cludes a log term, which is in principle unstable when 𝑥 → 0 [Smith
et al. 2018]. However, we achieve stability by replacing ℎ with a
function ℎspline modeled using our cubic splines that avoid the sin-
gularity in the log when the volume collapses to zero. This is done
by evaluating (𝑑2/𝑑𝑥2)0.5𝜆Lamélog2 (𝑥) at several (∼ 20) logarith-
mically uniformly distributed samples on the [1/𝑒, 𝑒] interval, and
setting those values as control nodes for our natural cubic spline
ℎspline, i.e., those values represent (𝑑2/𝑑𝑥2)ℎspline . In this manner,
ℎspline closely matches ℎ on [1/𝑒, 𝑒], and extrapolates quadratically
outside of this interval. Thus, we can achieve the favorable log be-
havior in the typical small/moderate deformation regime, and avoid
the log singularity when the material collapses or inverts. Observe
that this construction preserves the favorable property that the ma-
terial is a linear function of 𝜆Lamé; this is because the control node
values of ℎspline are linear in 𝜆Lamé .

Our family includes several well-known materials that have been
demonstrated suitable for modeling rubber-like materials, including
the Neo-Hookean material, Hencky’s material [Neff et al. 2016],
STS material [Pai et al. 2018] and the Ogden material [Ogden 1972].
Of these families, all are parameterized with at most 3 parameters
(lacking degrees of freedom to express complex material behavior),
except Ogden which, like our family, permits an arbitrary large num-
ber of parameters. However, the key difference between our family
and Ogden is that we can trivially express the stability condition
𝑓 ′′ > 0 because the values of 𝑓 ′′ are given by the control nodes of
our natural cubic spline. In contrast, the same condition expressed
for Ogden materials amounts to imposing that a univariate high-
order polynomial, based on its coefficients, is strictly positive for all
𝑥 ≥ 0; this condition is mathematically very difficult/impossible to
enforce in practice.

We note that there are many existing methods to capture material
properties under small (linear) deformations, but we aim to capture
the nonlinear behavior in 𝑓 .We observe that even under relatively
shallow poking (20% of the total sample depth), the deformation is
large enough that the material behaves very non-linearly. Figure 8
shows the distribution of the principle stretches 𝜆 (computed using
our simulation), when the poking depth is 20% of the total sample
depth. Due to deformation effects at the cylinder boundary and
due to volume preservation, this produces principal stretches as
small as 0.55 and as large 1.5. This experiment establishes the range
of 𝜆 where it is meaningful to fit our Ψ function, as Ψ cannot be
determined for values of 𝜆 that do not appear in the actual deformed
object. It also establishes that poking, despite being uni-directional,
substantially excites not just individual values of 𝜆, but also the
product of all three 𝜆s, providing data to fit both 𝑓 and ℎ. In our
work, a typical 𝜆𝑚𝑖𝑛 is ∼0.5 and a typical 𝜆𝑚𝑎𝑥 is ∼1.5 (Figure 8). By
optimizing 𝑦𝑘 , we can control the spline and the material. Similarly,
the 𝑥𝑘 are sampled log-uniformly in the range observed in Figure 8.

Fig. 10. Convergence comparison: We compare our Gauss-Newton opti-
mizer to BFGS and L-BFGS, with and without our “Fit 𝐸” strategy. It can
be seen that “Fit 𝐸” substantially accelerates convergence, and that the
Gauss-Newton optimizer has the fastest convergence on our problem.

In particular, we use 𝑥𝑘 = 𝑒 (𝑘−(𝑛+1)/2)Δ𝑠 , for 𝑘 = 1, . . . , 𝑛,where 𝑛 is
an odd integer, and Δ𝑠 is some suitable step size; in our work, it takes
values 0.05, 0.1 or 0.2. Note that for 𝑘 = (𝑛 + 1)/2, we obtain 𝑥𝑘 = 1,
i.e., the rest shape is always a sample. Half of the remaining samples
is less than 1 (compression) and half is more than one (extension).

In Figure 9, we systematically compare our material to an estab-
lished industry “Stable Neo-Hookean” (SNH) material [Smith et al.
2018]. Both materials can recover from severely scrambled initial
states. That said, unlike SNH, our material can recover even when
the object is flattened to a line or to a point (see Figure 9). In this
case, two (or three) principal stretches are zero. In the SNH material,
when two principal stretches are zero, the material is pulled to a
point, at which point all principal stretches are zero and the elastic
force vanishes. There is no such stationary point in our material; it
continues restoring the shape. As such, our material can be consid-
ered “animation-ready” and suitable for general-purpose soft body
use in computer animation.

7 OPTIMIZATION
The goal of our optimization is to find the values 𝑦𝑘 = 𝑓 ′′(𝑥𝑘 ), and
𝜆Lamé forℎ (collected into a material vector 𝜇), so that the differences
between the simulated contact forces and the captured contact forces
are minimized. We measure the deviation of the simulated forces
𝑓 𝑆
𝑖

from the experimentally measured contact forces 𝑓 𝐸
𝑖

as

𝜁 (𝜇) =
∑︁
𝑖

| |𝑓 𝑆𝑖
(
𝜇,𝑢𝐹𝑖 (𝜇)

)
− 𝑓 𝐸𝑖 | |22, (13)

where 𝑖 runs over all the poking samples. The gradient and Hessian
of 𝜁 with respect to material parameters 𝜇 are (derivation is in
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Appendix E)

𝑑𝜁

𝑑𝜇
=

∑︁
𝑖

2
(
𝑓 𝑆𝑖 − 𝑓 𝐸𝑖

)𝑇 ( 𝜕𝑓 𝑆𝑖
𝜕𝜇

+ 𝐾𝐶𝐹
𝑖

𝜕𝑢𝐹
𝑖

𝜕𝜇

)
, (14)

𝑑2𝜁

𝑑2𝜇
= 2

∑︁
𝑖

©­«
(
𝜕𝑓 𝑆
𝑖

𝜕𝜇
+ 𝐾𝐶𝐹

𝑖

𝜕𝑢𝐹
𝑖

𝜕𝜇

)𝑇 (
𝜕𝑓 𝑆
𝑖

𝜕𝜇
+ 𝐾𝐶𝐹

𝑖

𝜕𝑢𝐹
𝑖

𝜕𝜇

)
+

+
(
𝑓 𝑆𝑖 − 𝑓 𝐸𝑖

) (
2
𝜕𝐾𝐶𝐹

𝑖

𝜕𝜇

𝜕𝑢𝐹
𝑖

𝜕𝜇
+ 𝐾𝐶𝐹

𝑖

𝜕2𝑢𝐹
𝑖

𝜕𝜇2

))
, (15)

𝜕𝑢𝐹

𝜕𝜇
= −

(
𝐾𝐹𝐹

)−1 𝜕𝑓 𝐹
𝜕𝜇

, (16)

𝜕2𝑢𝐹

𝜕𝜇2
= 2

(
𝐾𝐹𝐹

)−1 𝜕𝐾𝐹𝐹

𝜕𝜇

(
𝐾𝐹𝐹

)−1 𝜕𝑓 𝐹
𝜕𝜇

. (17)

We now define our loss function

ℓ (𝜇) = 𝜁 (𝜇) + 𝛽

2
𝜇𝑇 𝐿𝜇, (18)

where the quadratic form in the last term penalizes non-smoothness
of 𝑓 ′′, and 𝛽 ≥ 0 controls the smoothness. The “Laplacian” matrix 𝐿
is computed by numerically approximating

∫ 𝜆max
𝜆min

𝑓 ′′(𝑥)2𝑑𝑥, using
the usual numerical approximations, i.e., numerical integration and
the familiar second-order approximation of the second derivative,
resulting in the quadratic form 𝐿. Note that 𝜆Lamé does not partic-
ipate in this smoothness term. We found that a small amount of
smoothness (𝛽 ≈ 10−14) is needed when fitting real materials to
prevent 𝑓 ′′ from overfitting to data. This regularizes the solution
to exclude infeasible materials whose material curves are noisy or
have high "jerk" (Figure 15, bottom). We enforce our 𝑓 ′′ > 0 stability
condition by clamping 𝑓 ′′ to a small value (we use 1Pa; note that
the unit for 𝑓 ′′ is the same as for Lamé constants and the Young’s
modulus (Pa)). The presence of the 𝛽 term substantially helps here,
as it generally enables one to avoid clamping altogether.
Because we can compute the first and second derivative of ℓ

with respect to 𝜇, we used Newton’s method (with a line search)
to perform the optimization for 𝜇.We note that we initially tried
avoiding the Hessian by using nonlinear conjugate gradient opti-
mization [Press et al. 2007], but the optimization was converging
more slowly or in some cases did not converge.
During our optimization, we exploit the following observation,

which substantially accelerated convergence (Figure 10; cutting the
number of required Newton iterations by ∼2×). If we scale the elas-
tic energy by a scalar 𝜅 > 0, then the static equilibrium mesh shape
under poking remains the same, but the contact forces multiply by
𝜅. The effect of this operation on 𝜇 is that all entries of 𝜇 simply
multiply by 𝜅. After every iteration, we find the optimal scalar 𝜅
to minimize ℓ (𝜅𝜇) where 𝜇 is treated as constant. This can be done
very easily and quickly as ℓ (𝜅𝜇) is a scalar quadratic function of
𝜅; we then update 𝜇 to 𝜅𝜇. Equation 12 shows that multiplying all
entries of 𝜇 with 𝜅 multiplies Young’s modulus by 𝜅. Therefore,
this operation can be understood as adjusting the overall material
stiffness (i.e., Young’s modulus) to match the experimental data; and
therefore we refer to it as “Fit 𝐸” in Figure 10. In Figure 10, we also
compare our Gauss-Newton optimizer to optimizers used in previ-
ous work. It can be seen that our optimizer converges faster than

that BFGS used in [Clyde et al. 2017], even when neither is using the
“Fit 𝐸” strategy. Our “Fit 𝐸” strategy is not used in prior work, and
forms one of our contributions; it substantially accelerates optimiza-
tion. Figure 10 demonstrates that methods that do not use the “Fit 𝐸”
strategy [Miguel et al. 2016] have a slower convergence. Our “Fit 𝐸”
strategy is possible in our work because our material function is lin-
ear in the material parameters; this also enables the Gauss-Newton
method to be a better approximator to the optimization objective
Hessian than BFGS (see Figure 10). This is another difference to the
method of [Clyde et al. 2017] whereby their material model is not a
linear function of the material parameters, rendering BFGS a better
choice for their optimization.
A special case of the “Fit 𝐸” idea is very useful at the begin-

ning of our optimization, as it establishes a robust initial guess for
𝜇, by finding good linear material parameters 𝐸 and 𝜈 (or equiv-
alently, 𝜆Lamé and 𝜇Lamé) to match the poking indentations and
contact forces. This is done by assuming that 𝑓 ′′ is constant (i.e.,
𝑓 (𝑥) = 1/2𝑓 ′′(1) (𝑥 − 1)2), and restricting our 𝜇 to only contain
𝑓 ′′(1) and 𝜆Lamé, i.e., use a two-dimensional material family. Then,
Equations 11 and 12 express (𝜆Lamé, 𝑓

′′(1)) in terms of (𝐸, 𝜈) and
vice versa. For each 𝜈,we can therefore compute the optimal 𝐸 using
the “Fit 𝐸” procedure, and therefore evaluate ℓ (𝜈) at this optimal
𝐸 = 𝐸 (𝜈) . This in turn enables us to perform 1D minimization on 𝜈,
i.e., we can use this procedure to discover linear material parameters
𝐸 and 𝜈. We then expand the optimization to the full 𝜇, whereby
these “pre-optimized” 𝑓 ′′(1) and 𝜆Lamé serve as a good initial guess.
In order to test the robustness of our optimizer, we performed

the following synthetic experiment. We generated several “random”
materials 𝜇, by modeling a “random” 𝑓 ′′ and 𝜆Lamé using 1D Perlin
noise. For each such material, we then created synthetic poking
forces/indentations by running our poking FEM simulation. We
then discarded 𝜇 and performed optimization to re-discover 𝜇, based
on the poking forces/indentations. Our optimizer was successful
in each of the five such random tests, i.e., robustly recovered the
correct 𝜇. A representative test is shown in Figure 11. We note that,
as a consequence of re-discovering 𝜇, our optimizer also recovered
the correct linear material properties, i.e., Young’s modulus and Pois-
son’s ratio. The success of this experiment has three implications.
(1) It is possible to estimate volume preservation by poking with
multiple radii. (2) Our material model is robust against local minima.
(3) Our optimizer is able to recover the material without knowing
surface or volumetric displacement data, enabling our technique to
work without vision sensors.

8 RESULTS AND VALIDATION
Wemeasured the𝜓 function of three two man-made materials: foam
(“Soma Foama 15”), silicone (“Dragon Skin FX Pro”) and a chair
cushion. We manufactured the foam and silicone materials using
the chemical ingredients purchased at “SmoothOn Inc.” [SmoothOn
2020]. We validated the optimized materials by poking them with
shapes that were not used in the optimization, and then comparing
the predicted simulated contact forces and the real measured contact
forces. We also validated the optimized materials on a 3D mesh,
poked with a rigid object with a square profile. Our validations also
include a pulling test, as well as a durometer-based validation. We
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Fig. 11. Test of robustness of our optimizer: The optimizer re-discovers a material 𝜇 simply from the synthetic poking force/indentation data created from
a FEM simulation using 𝜇. The ground truth “generator” material 𝜇 and the re-discovered material are shown as green and red curves, respectively. Diagrams
also show the histogram of 𝜆 values generated by a poking FEM simulation under the current material; dark blue lines show the minimum and maximum 𝜆

appearing anywhere in the simulation data, whereas light blue lines show the 99.9% and 0.01% percentiles. The optimizer cannot discover 𝜇 for principal
stretches 𝜆 that are outside of the histogram, because there is no 𝜆 deformation data to base 𝑓 (𝜆) on. Initial guess is a constant material. At the end, our
optimizer discovers 𝜇 everywhere where there is data for 𝜆. RMS force error is decreased to a very small value, and the discovered Young’s modulus 10357
Pa and Poisson’s ratio 0.243 closely match the true values of 10356 Pa and 0.243. The left-most three images show the optimization that uses poking data
under five cylinder radii. For comparison, the right-most image shows the optimization that uses a single radii (the match to ground truth is worse). This
demonstrates that poking with multiple radii is advantageous as it better captures the material nonlinearity. Prior work [Pai et al. 2018] used a single radius.

Table 1. Optimization performance: Initial and final objective function
𝜁 , number of optimizing iterations, and optimization time.

Material name initial 𝜁 final 𝜁 #iter time
Foam 0.011 0.002 10 17 mins
Silicone 0.181 0.038 14 34 mins

Chair cushion 0.202 0.002 54 73 mins
Human upper arm 1.82 · 10−4 5.56 · 10−7 10 5 mins

also show that our method can estimate the depth of the material
layer, if it is unknown. All examples were computed on a 3.00 GHz
Intel Xeon i7 CPU E5-2687W v4 processor with 48 cores. Table 1
shows the change of 𝜁 (Equation 13) during our optimizations, and
the time spent for optimization.

Fig. 12. Man-made materials: Left: foam (𝜈 = 0.21). Right: silicone (𝜈 =

0.495).

8.1 Silicone
We manufactured a 10cm x 10cm x 0.5cm silicone material layer
using the “Dragon Skin FX Pro” silicone material [SmoothOn 2020]
(Figure 12, right). We used two cylinder radii to fit Ψ, whereas the
other radii were used for validation only. Figure 14 indicates that
our fitted material approximates the captured forces well, under
different contact area sizes. In Figure 15, we give 𝑓 ′′ for the opti-
mized silicone material. The value of

√︁
𝜁 was reduced by 89%, from

2.192 to 0.237. Figure 15 also gives an example failure case when

Fig. 13. Silicone dragon simulated using our acquired material. The
dragon is sized to be 10m in length. Rayleigh stiffness damping (0.002).

not using optimization regularization (i.e., 𝛽 = 0). Figure 13 shows
a FEM simulation of a dragon using the fitted silicone material.

8.2 Foam
We manufactured a 10cm x 10cm x 1cm foam material layer using
the “Soma Foama 15” foam material [SmoothOn 2020] (Figure 12,
left). Foam is softer than the silicone discussed above and has a
lower Poisson’s ratio. We poked the foam with cylinders with radii
of 1.03mm, 2.06mm, 3.01mm, 4.05mm and 5.06mm, and used this
data to fit the material (Figure 17). The value of

√︁
𝜁 was reduced by

58%, from 0.104 to 0.044. In Figure 16, we simulated a turtle model
(courtesy of [Barbič et al. 2012]) using our optimized material, and
compared it to the best Neo-Hookeanmaterial optimized to the same
data (also seen in Figure 17). Ourmethodmakes it possible to transfer
materials acquired from real objects into plausible digital/virtual
computer animations of such materials.

8.3 Chair Cushion
We used our portable laser device to measure the material of a chair
cushion (Figure 3, c). Our generalized Neo-Hookean material is ca-
pable of fitting the laser measurements to a good extent (Figure 18).
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Fig. 14. Fitting and validation for the Dragon Skin FX Pro silicone
material:We used the cylinders with 3.01mm and 5.06mm radii to fit Ψ.
Top: the captured and simulated force-indentation curves for the initial
guess material. Bottom: the force-indentation curves for the optimized
material. The optimized material is shown in Figure 15.

8.4 Human upper arm
In this experiment, we measured the nonlinear material of a human
upper arm, using our laser and force meter. We first used ultrasound
to measure the distance from the skin to the humerus bone (3cm),
and then poked the skin with our untethered laser setup (Figure 19).
We note that this experiment makes several simplifying assump-
tions: the upper arm is not an infinite object and has curvature;
the material in the arm is not locally homogeneous in the normal
direction (but is reasonably tangentially homogeneous), because
there are at least two layers with significant depth (subcutaneous
fat and muscle), in addition to the dermis and epidermis. We pro-
vide a systematic analysis on the effect of such simplifications to
the measured material properties in Figures 20, 21, 22. Despite the
simplifying assumptions, our model qualitatively captures the re-
lationship between real indentations and forces (e.g., it reports a
Young’s modulus consistent with the generally accepted values for
human fat, which are in the 1000-3000 Pa range). Our model is an
example of a phenomenological model (see [Pai et al. 2018] for an
excellent exposition on this topic). In science and technology, vari-
ous models are often applied outside of their initial range of validity.

Fig. 15. Dragon Skin FX Pro silicone material curves. Top: the success-
fully optimized silicone material, using regularization 𝛽 = 10−15 . Bottom:
failed material optimization when not using regularization (𝛽 = 0).

Fig. 16. Our fitted material vs fitted Neo-Hookean material:We use
the same poking data to fit both materials. Neo-Hookean material is too
soft under large deformations, whereas our material stiffens under large
deformations, similar to real foam.

Even though “incorrect”, the models are still useful, especially when
more precise models are not available. For humans, our method
subsumes the different layers (fat, muscle, etc.) with a single model,
which could be useful for modeling contact between the external
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Fig. 17. Fitting of the Soma Foama 15 material:We used five cylinder
radii to fit Ψ. Top: the captured and optimized force-indentation curves.
Bottom: our optimized material (

√︁
𝜁 = 0.044). Also shown is the best opti-

mized Neo-Hookean material, which is substantially different to ours and
has a worse score (

√︁
𝜁 = 0.076).

Fig. 18. Measuring the material of a chair cushion: We obtained the
force-indentation relations on a chair cushion with our portable laser device
and then fitted our material. The simulated forces match the measured ones
well. The radius of 3.01mm was used for the training data; the other radii
are used for testing.

objects and the human skin. This experiment was performed under
a proper IRB permission of our institution.

Fig. 19. Measuring the material of the human arm:We used our laser
and force meter to capture the forces and indentations on a human upper
arm (c). We did so twice, once with a relaxed bicep (a), and then with
a fired bicep (b). Note that this particular spot on the arm is quite soft,
with a substantial subcutaneous fat above the muscle. Image (d) shows
the experimentally measured forces and indentations (𝑟 = 3.01𝑚𝑚) as
well as their simulated counterparts obtained with the fitted materials;
note that the relaxed measured and simulated curves are on top of each
other. Image (e) shows the fitted materials for the relaxed and fired bicep.
In this example, we used a known Poissons’ ratio 𝜈 = 0.49, which is a
value cited in medical literature [Payne et al. 2015] for human muscles,
and therefore we poked with just one radius. As can be seen in (d), under
small displacements, the relaxed and fired biceps have similar stiffness; this
is because for small displacements, the plastic cylinder is still primarily
pushing into the subcutaneous fat. Consequently, the measured relaxed and
fired Young’s modulus were relatively similar, namely 1908 Pa and 2190 Pa,
respectively. Eventually, under a deeper poke, muscle starts participating
more in the contact stiffens in the case of the fired muscle. As expected,
it can be seen in (e) that the fired bicep material is generally stiffer under
large deformations, but both materials are similar at around 𝑥 = 1, i.e., for
small deformations; this is consistent with (d). Note that while 𝑓 ′′ reaches 0
in this example for large lambdas, i.e., tensile stiffens becomes progressively
weaker under large stretches, the material also has the volume-preserving
ℎ term to remain stable.

8.5 Validation of orthogonality, planarity and
homogeneity

In our paper, we assume that the poking indenter is orthogonal to the
investigated elastic surface. We also assume that when undeformed,
the elastic surface is planar, and that it has homogeneous material
properties in the vicinity of contact. In practice, it is not possible to
ensure that these properties are perfectly satisfied. In this subsection,
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Fig. 20. Error in forces when the indenter is not orthogonal to the
elastic surface. The contact force vs indentation curves were obtained via
3D FEM simulation (i.e., not using our 2D technique, as in this experiment
the setting is not radially symmetric).

Fig. 21. Error in forces when the elastic surface is not planar. The
contact force vs indentation curves were obtained via 3D FEM simulation.

Fig. 22. Error in forces when the elastic material is not locally homo-
geneous. The contact force vs indentation curves were obtained via 3D FEM
simulation. The poking radius (radius of indenter) is 3mm, and the radius
of the poked elastic cylinder is 15mm. We vary the Young’s modulus in the
𝑥-direction; Young’s modulus is constant in 𝑦 and 𝑧 (top-right subfigure).
The “Young’s modulus profile” subfigure shows how the Young’s modulus
varies in 𝑥 (we use the sigmoid function); the “slope” is the curve slope
at 𝑥 = 0 and the “Young’s modulus ratio” refers to the ratio between the
Young’s modulus at 𝑥 and that at 𝑥 = 0. Higher slopes produce a more
drastically varying local Young’s modulus distribution. Such a sigmoid gra-
dient profile of Young’s modulus was selected so that we never generate
zero values of Young’s modulus, and so that there is substantial variability
in the Young’s modulus; we first tried linear profiles, but those were not
sufficiently variable, producing even smaller relative contact force errors.

we quantitatively analyze the error in optimized materials if these
assumptions are violated.
Figure 20 analyzes the error in optimized materials when the

poking angle deviates from 90 degrees. Even at an angle of 85 degrees
and when poking the material at 2mm (20% of the total material
depth of 10mm, i.e., very nonlinear poking), the maximum relative
error in the contact force is approximately 10%, which would cause
the same error in the measured Young’s modulus. Observe that an
angle of 85 degrees is clearly visible to the human eye (Figure 20),
and therefore can be guarded against during the untethered poking
with our laser device. The error is smaller at angles closer to 90
degrees. When using the force stand, the angle can be made much
more precise by adjusting the force meter housing screws, easily
down to 1 degree or better, at which point the error is under 3%.
Such errors are reasonable given the imperfection of measuring
equipment, especially given the simplicity of our setup. In computer
graphics applications, one usually does not need exact materials, but
needs reasonably accurate materials that qualitatively reproduce
the elastic behavior (Figure 27).
Figure 21 analyzes the error in optimized materials when the

elastic surface is not planar, but is instead the surface of a sphere,
under several radii. Even when the sphere radius is very small (5cm;
comparable to curvatures in the human body), the relative error
in the contact force and estimated Young’s modulus is still only
about 10%. Note that state-of-the-art prior work [Pai et al. 2018]
also simulated the human body as locally flat, in their case as elastic
cylinders of a finite radius.
Figure 22 analyzes the error in optimized materials when the

investigated elastic material is not homogeneous, but instead its
Young’s modulus varies as a gradient from one side of the poked
cylindrical elastic object to the other side. Largest relative error in
the contact force and estimated Young’s modulus is 9%, for a very
drastically changing Young’s modulus distribution across the elastic
specimen.

8.6 Validation via pulling
The materials in this paper are determined based on poking the ob-
ject. Perhaps counter-intuitively, during poking, material undergoes
both compression and stretching. Therefore, while poking causes
more compression than stretching, both are substantially present in
the poking data (see Figure 8; there are even stretches with 𝜆 > 1.5
present in the data). As shown in our experiment (Figure 11), such
poking data, obtained under multiple poking radii, is sufficient to
recover the material. Our setup therefore does not require displace-
ment objectives or biaxial tests to recover material properties; this
is one of our contributions. Still, we performed a validation on how
well our materials that were fitted by poking perform under stretch-
ing (Figure 23). Our material matches the ground truth forces well,
better than Neo-Hookean materials (Figure 23).

8.7 Validation with a durometer
We validated our materials against a standard durometer (Figure 24)
of the “Shore 00” type; this type is suitable for measuring soft elas-
tic objects such as silicone and the human skin. A durometer only
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Fig. 23. Validation via pulling. We first used force vs indentations poking data (Figure 14) to fit the silicone nonlinear material, as described in Sections 3-7.
Next, we measured real stretching forces (“Measured Silicone”) using the setup shown on the right, similar to the one used in [Wang et al. 2011] to measure
cloth material properties. We sandwiched the silicone slab in between wooden planks at top and bottom. At the bottom, the planks are fixed to the base of the
force meter. By turning the wheel of the force stand, we stretched the silicone “slab” (15cm x 15cm x 1cm), and measured the total stretching force (via force
meter) and the extension (via the force stand displacement display). We stretched the silicone by 12%, which is in the nonlinear region (see the linear curve for
comparison). We incorporated gravity into the experiment by measuring the mass density of silicone. Finally, we ran FEM simulations under those fitted
materials, comparing them to “Measured Silicone”. Our material matches the “Measured Silicone” well, and more closely than the best Neo-Hookean materials.

Fig. 24. Validation with a durometer. (a), (b): the “Shore 00” indentation and contact force from the durometer ASTM D2240-15 standard. (c): The indentation
corresponding to the “Shore 00” value is the intersection of the two curves. (d): Real durometer value (51.0) is close to value predicted by our experiments (54.2).

measures a single indentation point that cannot be directly pre-
scribed by the user, namely the one that places the durometer’s
pin in static equilibrium against the contact forces. There is a 1:1
mapping between the translation of the durometer pin away from
its neutral position, the Shore 00 value and the force in the durome-
ter. These relationships are standardized [International 2021], and
are the same for all durometers of the same type (Figure 24, (a),
(b)). The indentation equals the length of the exposed pin when not
in contact (standardized to 2.5mm) minus the upwards translation
of the pin. On the diagram where 𝑥-axis is indentation and 𝑦-axis
is contact force, we plot the measured data from our poking, and
the standardized durometer data (Figure 24, (c)). The intersection
of these two curves gives the actual indentation, from which the
“Shore 00” value can be recovered using the durometer standard (Fig-
ure 24, (a)). We performed such an experiment for the silicone, and
measured “Shore 00” value to be 54.2. A real durometer measured
51.0 (Figure 24, (d)). The discrepancy, while small given that we
are predicting real materials, occurs because it is difficult to place
the real durometer’s casing into the position of the exact onset of
contact; this can easily introduce a 5-10% experimental error. We

found that real durometers, despite the standard, generally all suffer
from this limitation.

8.8 Convergence under mesh refinement
To validate our 2D simulation, we compare the contact force com-
puted using 2D simulation to 3D tetrahedral FEM simulation, under
identical poking conditions. Figure 25 shows that as the number
of mesh divisions increases, the 2D and 3D forces converge to the
same value, validating our 2D simulation approach.

8.9 Extension: Estimating the depth of the material layer
In some applications, material depth is not known, and so we here
demonstrate that our method can also be used to estimate the mate-
rial depth.We do so by running optimizations under different depths,
and then select the depth that produces the smallest converged 𝜁 .
Such an approach could be suitable, for example, for in-vivo human
tissue measurements. In Figure 26 we ran such an experiment on
the silicone material with a true depth of 5mm; with guesses for the
depth ranging from 3mm to 9mm. The lowest 𝜁 is achieved for 5mm;
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Fig. 25. Validation of our 2D simulation method: Contact forces com-
puted using our 2Dmethod converge to forces computed using a 3Dmethod.
“Divisions” is the mesh radial resolution under contact (see Figure 5).

i.e., the ground-truth value, validating that our method produces Ψ
that matches the real-world material behavior.

Fig. 26. Discovering material depth through optimization: We show
how 𝜁 decreases vs optimizing iterations, for several guesses of the depth.
We successfully recover the ground truth (5mm) as the depth that produces
the lowest converged 𝜁 value (orange curve). Silicone material.

8.10 Validation against a real object of the same material
In Figure 27, we performed a validation whereby we measured a real
object (both geometry and material properties), and then created
a virtual replica, which we subject to identical squeezing as the
real counterpart. We then compared the simulation result to the
photograph, observing that our material + simulation produce a
result that closely matches the photograph. In Figure 27, we also
compared our best fitted material to [Smith et al. 2018], and demon-
strated that our material is more stable and capable of matching the
photographs, whereas [Smith et al. 2018] produces artefacts.

8.11 Validation via 3D simulation on a complex elastic
shape

We also tested our fitted material in a challenging scenario where
the object assumes a general 3D shape and the contact setup is not

axially symmetric. We first manufactured a thin layer of silicone
material, and measured Ψ for it using our 2D simulation method
and optimization. We then manufactured a silicone Stanford bunny
from the same material. We then pushed a cube against the bunny,
and measured the real contact force profile vs real indentation, using
our force meter and force stand. We then built a digital twin of this
setup, by employing 3D FEM simulation on a bunny 3D tetrahedral
mesh that used our optimized Ψ material. The computed simulated
forces are close to the captured forces (Figure 28), validating our
material acquisition process. Note that the cube has a square pro-
file, whereas the poking objects to determine the material were
round, and therefore this provides an additional validation that our
materials work correctly even if the indenting object has different
geometry than during material capture.

8.12 Comparison to the STS material
In this section, we compare our generalized Neo-Hookean materials
to the “STS material” used in [Pai et al. 2018] (formulas for STS are in
Appendix A). Because our material family includes the STS material,
we can reasonably expect for our optimizer to find a material that
better fits the captured data than any STS material. To prove this,
we need to compare them in a quantitative way. We optimized
both our spline-based generalized Neo-Hookean material and the
STS material against the Foam-15 force data at a poking radius of
3mm. Next, we test the resulting material on 3 radii (1mm, 3mm,
5mm), by comparing the simulated forces to the captured forces.
Our material fits the captured forces better than the STS material,
especially in the 5mm radius case (Figure 30). Note that the STS
material contains the Neo-Hookean material as a special case, and
therefore this “material ablation” study also establishes that our
materials better fit experimental data than Neo-Hookean materials.

8.13 Performance speedup due to our mathematically
equivalent 2D simulation

We also performed a timing comparison experiment. In [Pai et al.
2018], they optimize materials using a 3D mesh simulation, which is
expected to be a lot slower than our mathematically equivalent 2D
simulation. Indeed, our experiment confirms this. We procedurally
generated our 2D simulation mesh at several subdivision levels. At
each subdivision level, we then generated a corresponding hexa-
hedral mesh by rotating the 2D simulation mesh 360◦ around the
vertical axis, whereby the number of angular sectors was chosen so
that the “angular” size of the resulting hex cells is approximately
equal to the “radial” and “height” sizes. We then divided the hex
cells into tets for simulation. In this manner, at each subdivision
level, the precision of the 3D simulation is approximately equal to
the precision of the 2D simulation, as they both employ the same
discretization in the radial and height directions. Note that strictly
speaking, at the same subdivision level in this experiment the 2D
simulation precision is always higher because the angular integral is
computed analytically vs approximated in sectors as in the 3D sim-
ulation. Therefore, this experiment is slightly unfair to our method
(2D simulation); we neglect this effect here. We measured the com-
putation time of one simulation timestep of the 2D and 3D FEM
simulation. As expected, the 2D simulation takes much less time
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Fig. 27. Validation against a real object made of the same material: (a) We start with a familiar object (car sponge). We measure the sponge material
using the poking techniques of our paper. Because the sponge has interior voids, one can readily observe in the real world that it does not preserve volume; we
use Poisson’s ratio of 0.0. (b) In the real world, we squeeze the sponge in between two vertical rigid cylinders and take a photo. (c) We simulate the sponge
using our fitted material, squeezing it against the same vertical rigid cylinders. We observe that the shape closely matches (b). (d) We manufacture a foam
sponge of the same shape, by creating a 3D-printed mold (not shown) and casting the foam into it; we measure the foam material using the poking techniques
of our paper. We optimize 𝜈 = 0.21 as the best fitting 𝜈 to the poking data. We squeeze the foam in the real world in the same manner as the sponge, and take
a photo. (e) We simulate the foam using our fitted material, squeezing it against the same vertical rigid cylinders. We observe that the shape closely matches
(d). (f,h) Detail of our simulation result on the sponge and foam (our optimized material), respectively. (g,i) The simulation result obtained by optimizing the
stable Neo-Hookean material to the sponge and foam poking data [Smith et al. 2018], respectively. The material produces shape artefacts along the rim of the
indentation; we tried several simulator/integrator settings and could not remove the artefacts.

Fig. 28. Validation using 3D simulation on the Stanford bunny: The
simulated contact forces computed using 3D FEM on a tetrahedral mesh,
using the material optimized using our 2D method, closely match real
contact forces under real indentations. Silicone material.

than the 3D simulation, and this difference grows larger with the
number of subdivision levels (Figure 31). Note that simulation is the
core computational operation performed inside each optimization
iteration. In our experiments, the resolution level is typically set to 5

Fig. 29. Stanford bunny experiment: We poke the bunny using a rigid
object with a square profile. Two camera views are shown. Silicone material.

(i.e., the number of elements across the indenting cylinder’s diame-
ter is 10), at which point our 2D simulation is 30× faster than equally
precise 3D simulation. Therefore, this difference in simulation speed
is very significant for our optimization.
9 CONCLUSION
We proposed an isotropic material model that generalizes Neo-
Hookean materials to be able to model nonlinear tensile stiffness.
This is achieved by modeling the 𝑓 function of a Valanis-Landel
stretch-based material using splines. The resulting material can fit
the hyper-elastic isotropic behavior of man-made materials such as
foam and silicone, and can also serve as a phenomenological model
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Fig. 30. Comparison to STS material: We used the foam-15
force/displacement data at a radius 3mm to fit both our spline-based gen-
eralized Neo-Hookean material, and the STS material. We then tested
the resulting materials on other radii. Our material fits the captured
force/displacement data better.

Fig. 31. 2D vs 3D simulation time:We measured the time for one simu-
lation step for our 2D simulation and compared it to a 3D simulation that
uses the same mesh accuracy. The 2D simulation time scales much better
as the resolution increases.

for human tissue. We also developed a systematic poking proce-
dure to capture the force-indentation profile and an optimization
method to fit the material properties. For large objects that cannot
be put into a force stand, we propose an inexpensive laser-based
instrument to simultaneously measure forces and indentations. We
also substantially improve the numerics of general stretch-based
isotropic materials, by creating a technique to deal with division-
by-zero-induced removable singularities that previously impeded
applications of stretch-based materials, and by analyzing the eigen-
values of the Hessian of the elastic energy and projecting it to SPD.
We compare our generalized Neo-Hookean materials to state-of-
the-art Neo-Hookean materials [Smith et al. 2018], and demonstrate
improved stability of our materials; as such, our materials can also

be used for general-purpose soft-body simulation work in com-
puter animation. We also demonstrate how to exploit the rotational
symmetry of the poking problem to simplify the simulation to a
mathematically identical 2D simulation, which accelerates the opti-
mization 30 × .
Accurate simulation that matches real objects is a key goal of

physically based simulation. In order to benefit from our accurate
materials, one needs a precise (offline) soft-body solver and a rea-
sonably detailed mesh, which typically precludes direct real-time
simulation. There are, however, techniques to accelerate such simu-
lations for real-time applications, such as model reduction [Sifakis
and Barbič 2012]. Furthermore, precise offline simulation can pro-
duce training data for machine learning, which can then be used to
replicate the highly precise outputs in real-time [Bailey et al. 2020].
We extensively validated our method through various experi-

ments, including 2D to 3D simulation comparisons, an ablation
study where we fitted the experimental data using a less “powerful”
material (STS), a validation against photographs of deformed real
objects, a pulling validation, a validation with a durometer, poking
a general 3D object (bunny) made of our acquired material, and
comparing real forces to simulated forces. Our optimizer has been
validated by generating a random synthetic material and then re-
discovering this material based on the poking data generated from
it in a simulation, and by comparing several optimization strategies
(Gauss-Newton, BFGS and L-BFGS). Our material family includes
several popular materials as special cases, but is significantly broader
and can help explore new, unforeseen materials. In this perspective,
we took a step towards understanding elastic materials with a lesser
inductive bias. Our optimization process along with our acceler-
ation techniques enable us to rapidly obtain a material that best
matches experimental measurements, and this is done via easy and
non-destructive poking actions. The STL files for our rigid cylin-
ders, as well as the force and indentation poking data used in our
experiments are released on our project website.
One limitation of our work is that the depth of the material is

assumed to be known for optimization. We did demonstrate (Fig-
ure 26) that the correct depth can be discovered by trying different
depths, and picking the one that produces the best optimization
function value. However, such a process can be time-consuming. Es-
pecially for human tissue, it is better to use medical imaging (e.g., a
non-invasive technique such as ultrasound) to determine the depth.
Our poking method assumes that the object under the poking site
is homogeneous. Because the musculoskeletal tissues in the human
body are quite diverse (fat, muscles, skin, tendons, etc.) and their
material properties vary spatially (e.g., they are layered), our poking
method is less precise for human tissues. In the future, we would
like to combine medical imaging with our systematic poking to
more correctly resolve the material layers (skin, fat, muscles) in
the human body. Our force data consists of a single total contact
force reading; in the future, it may be possible to insert a pressure
sensor under the rigid cylinder to measure and optimize a pressure
distribution. That said, the presence of such sensors may somewhat
alter the contact and therefore interfere with the pressure readings,
or the sensors may be expensive due to their small size. Our poking
is designed to recover the isotropic material and does not model
friction and sliding behavior of objects. Whereas previous work
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in engineering acquired incompressible Valanis-Landel materials,
we model compressible materials as many objects of interest in
computer graphics are compressible. While our method is able to
acquire nearly incompressible materials, as demonstrated in our sili-
cone example where the Poissons’ ratio is 0.495, we do not optimize
exactly incompressible materials; this is left for future work and
could benefit from Mixed FEM recently proposed by [Frâncu et al.
2021]. We model material compressibility using a single parameter
(𝜆Lamé) because our poking deformation data is not rich enough
to resolve more complex volume compressibility effects, i.e., more
complicated functions ℎ. A general Valanis-Landel material also has
the 𝑔 function, in addition to 𝑓 and ℎ. No work, including ours, has
succeeded in optimizing 𝑔 to the data in addition to 𝑓 and ℎ. Beyond
Valanis-Landel lies the full horizon of arbitrary isotropic materials,
for which new theory and experiments will need to be invented for
their acquisition.
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A MATERIALS
All materials in this section are special cases of our material, i.e.,
expressible in our generalized Neo-Hookean Valanis-Landel family
(i.e., 𝑔 = 0, and ℎ is quadratic in log of volume).

A.1 Neo-Hookean Material
The energy density function is [Bonet and Burton 1998]

Ψ =
𝜇

2
(𝜆21 + 𝜆

2
2 + 𝜆

2
3 − 3) − 𝜇log(𝜆1𝜆2𝜆3) +

𝜆

2
log2 (𝜆1𝜆2𝜆3), (19)

𝑓 (𝑥) = 𝜇

2
(𝑥2 − 1) − 𝜇log(𝑥), (20)

𝑔(𝑥) = 0, ℎ(𝑥) = 𝜆

2
log2 (𝑥). (21)

A.2 Hencky Material
The energy density function is [Neff et al. 2016]

Ψ = 𝜇 (log2 (𝜆1) + log2 (𝜆2) + log2 (𝜆3)) +
𝜆

2
(𝜆1𝜆2𝜆3), (22)

𝑓 (𝑥) = 𝜇log2 (𝑥), 𝑔(𝑥) = 0, ℎ(𝑥) = 𝜆

2
log2 (𝑥) . (23)

A.3 Ogden Material
The energy density function is [Ogden 1972]

Ψ =

𝑁∑︁
𝑝=1

𝜇𝑝

𝛼𝑝

(
𝜆
𝛼𝑝

1 + 𝜆𝛼𝑝

2 + 𝜆𝛼𝑝

3 − 3
)
, (24)

𝑓 (𝑥) =
𝑁∑︁
𝑝=1

𝜇𝑝

𝛼𝑝
(𝑥𝛼𝑝 − 1), 𝑔(𝑥) = 0, ℎ(𝑥) = 0. (25)

A.4 STS Material
The energy density function is [Pai et al. 2018]
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Point X Y Weight
1 −

√︁
3/5

√︁
3/5 25/81

2 0
√︁
3/5 40/81

3
√︁
3/5

√︁
3/5 25/81

4 −
√︁
3/5 0 40/81

5 0 0 64/81
6 −

√︁
3/5 0 40/81

7 −
√︁
3/5 −

√︁
3/5 25/81

8 0 −
√︁
3/5 40/81

9
√︁
3/5 −

√︁
3/5 25/81

Fig. 32. Positions and weights of Gauss points: Left: The 9 Gauss points
positioned in one 2D mesh rectangle. Right: Positions and weights of the
Gauss points.

Ψ𝑆𝑇𝑆 =
𝜇

2
(
tr(𝐶 − 𝐼 ) − 2 log(𝐽 )

)
+ 𝜇4

8
tr

(
(𝐶 − 𝐼 )4

)
+ 𝜆
2
log2 (𝐽 ) =

(26)

=
𝜇

2
(
𝜆21 + 𝜆

2
2 + 𝜆

2
3 − 3 − 2 log(𝜆1𝜆2𝜆3)

)
+ (27)

+ 𝜇4
8
((𝜆21 − 1)4 + (𝜆22 − 1)4 + (𝜆23 − 1)4) + 𝜆

2
log2 (𝜆1𝜆2𝜆3), (28)

𝑓 (𝑥) = 𝜇
( 1
2
(𝑥2 − 1) − log(𝑥)

)
+ 𝜇4

8
(𝑥2 − 1)4, (29)

𝑔(𝑥) = 0, ℎ(𝑥) = 𝜆

2
log2 (𝑥). (30)

B POSITIONS AND WEIGHTS OF GAUSS POINTS
As explained in Section 4.2, we use Gauss points (see Figure 32)
to numerically integrate the 2D integral, giving us our 3D elastic
energy.

C GRADIENT OF ISOTROPIC ENERGY
Given an elastic energy density function Ψ (𝜆1 (𝐹 ), 𝜆2 (𝐹 ), 𝜆3 (𝐹 )),
it is important to compute the gradients and Hessians of Ψ with
respect to the entries 𝐹ij of the deformation gradient 𝐹 ; the gradients
and Hessians are then used to calculate the internal forces and
stiffness matrix, respectively. However, singularities occur in the
computation of 𝜕Ψ/𝜕𝜆𝑖 when two singular values 𝜆𝑖 and 𝜆 𝑗 become
the same. We show that the issue can be avoided by “chaining” the
derivatives through the lower invariants

𝐼1 = tr(𝑆) = 𝜆1 + 𝜆2 + 𝜆3, (31)

𝐼2 = ∥𝐹 ∥2 = 𝜆21 + 𝜆
2
2 + 𝜆

2
3, (32)

𝐼3 = det 𝐹 = 𝜆1𝜆2𝜆3, (33)

where 𝐹 = 𝑅𝑆 is the polar decomposition, i.e., 𝑅 is an orthogonal
matrix, and 𝑆 is a symmetric matrix. Note that the derivatives of
the lower invariants with respect to the entries of 𝐹 can be easily
calculated, and do not suffer from any singularities. We can use the
chain rule to compute the derivatives of Ψ w.r.t. 𝐹 ,

𝜕Ψ

𝜕𝐹
=

𝜕Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝐼1, 𝐼2, 𝐼3)

𝜕𝐹
, (34)

where

𝜕Ψ

𝜕 (𝜆1, 𝜆2, 𝜆3)
=

𝜕Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝜆1, 𝜆2, 𝜆3)

, i.e. (35)

(𝜕1Ψ, 𝜕2Ψ, 𝜕3Ψ) =
(
𝜕Ψ

𝜕𝐼1
,
𝜕Ψ

𝜕𝐼2
,
𝜕Ψ

𝜕𝐼3

)
Ξ, (36)

where we denoted 𝜕𝑖Ψ = 𝜕Ψ
𝜕𝜆𝑖

and

Ξ =
©­«

1 1 1
2𝜆1 2𝜆2 2𝜆3
𝜆2𝜆3 𝜆3𝜆1 𝜆1𝜆2

ª®¬ . (37)

Suppose the SVD of 𝐹 is

𝐹 = 𝑈 diag (𝜆1, 𝜆2, 𝜆3) 𝑉𝑇 = 𝜆1u1v𝑇1 + 𝜆2u2v𝑇2 + 𝜆3u3v𝑇3 ,

where𝑈 = (u1, u2, u3) and𝑉 = (v1, v2, v3). Then, we have (Equa-
tions 10, 15 and 19 in [Smith et al. 2019], respectively)

𝜕𝐼1
𝜕𝐹

= 𝑈𝑉𝑇 = u1v𝑇1 + u2v𝑇2 + u3v𝑇3
𝜕𝐼2
𝜕𝐹

= 2𝐹 = 2𝜆1u1v𝑇1 + 2𝜆2u2v𝑇2 + 2𝜆3u3v𝑇3
𝜕𝐼3
𝜕𝐹

= 𝜆2𝜆3u1v𝑇1 + 𝜆3𝜆1u2v𝑇2 + 𝜆1𝜆2u3v𝑇3

.

The above equations can be rewritten as

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕𝐹

= Ξ
©­«
u1v𝑇1
u2v𝑇2
u3v𝑇3

ª®¬ . Therefore,

𝜕Ψ

𝜕𝐹
=

𝜕Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝐼1, 𝐼2, 𝐼3)

𝜕𝐹
=

= (𝜕1Ψ, 𝜕2Ψ, 𝜕3Ψ) Ξ−1Ξ
©­«
u1v𝑇1
u2v𝑇2
u3v𝑇3

ª®¬ =

= 𝜕1Ψu1v𝑇1 + 𝜕2Ψu2v𝑇2 + 𝜕3Ψu3v𝑇3 = 𝑈 diag (𝜕1Ψ, 𝜕2Ψ, 𝜕3Ψ) 𝑉𝑇 .

This even holds when two singular values are the same, say 𝜆1 =

𝜆2 = 𝜆, since we have

Ψ (𝜆1, 𝜆2, 𝜆3) = Ψ (𝜆2, 𝜆1, 𝜆3) ⇒ 𝜕1Ψ (𝜆1, 𝜆2, 𝜆3) = 𝜕2Ψ (𝜆2, 𝜆1, 𝜆3) ,

which implies

𝜕Ψ

𝜕𝐹

����
𝜆1=𝜆2=𝜆

= 𝜕1Ψ (𝜆, 𝜆, 𝜆3)
(
u1v𝑇1 + u2v𝑇2

)
+𝜕3Ψ (𝜆, 𝜆, 𝜆3) u3v𝑇3 .

C.1 Singularity Analysis
When two singular values are the same, there is an infinite number
of choices for𝑈 and 𝑉 , differing by a rotation:

𝑈 = (ũ1, ũ2, ũ3) = 𝑈
©­«
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

ª®¬ ,
𝑉 = (ṽ1, ṽ2, ṽ3) = 𝑉

©­«
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

ª®¬ .
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It follows that

ũ1ṽ1𝑇 + ũ2ṽ2𝑇 = (ũ1, ũ2)
(
ṽ1𝑇

ṽ2𝑇

)
=

= (u1, u2)
(
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

) (
cos𝜃 sin𝜃
− sin𝜃 cos𝜃

) (
v𝑇1
v𝑇2

)
=

= (u1, u2)
(
v𝑇1
v𝑇2

)
= u1v𝑇1 + u2v𝑇2 .

Thus, the expression for 𝜕Ψ
𝜕𝐹

remains the samewhen using a different
pair of𝑈 , 𝑉 .
Similarly, when all three singular values are the same, i.e. 𝜆1 =

𝜆2 = 𝜆3, we have

𝜕Ψ

𝜕𝐹

����
𝜆1=𝜆2=𝜆3=𝜆

= 𝜕1Ψ(𝜆, 𝜆, 𝜆)
(
u1v𝑇1 + u2v𝑇2 + u3v𝑇3

)
,

which is independent of the choice of 𝑈 , 𝑉 since different 𝑈 , 𝑉
differ by the same orthogonal matrix.

D HESSIAN OF ISOTROPIC ENERGY
For second derivatives, differentiate the following expression:

𝜕Ψ

𝜕𝐹
=

𝜕Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝐼1, 𝐼2, 𝐼3)

𝜕𝐹
,

⇒ 𝜕2Ψ

𝜕𝐹 2
=

(
𝜕 (𝐼1, 𝐼2, 𝐼3)

𝜕𝐹

)𝑇
𝜕2Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)2
𝜕 (𝐼1, 𝐼2, 𝐼3)

𝜕𝐹
+

+ 𝜕Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕2 (𝐼1, 𝐼2, 𝐼3)

𝜕𝐹 2
,

where all of the terms are already known except 𝜕2Ψ/𝜕 (𝐼1, 𝐼2, 𝐼3)2.
Note that

𝜕2Ψ

𝜕 (𝜆1, 𝜆2, 𝜆3)2
=

(
𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝜆1, 𝜆2, 𝜆3)

)𝑇
𝜕2Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)2
𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝜆1, 𝜆2, 𝜆3)

+

𝜕Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕2 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝜆1, 𝜆2, 𝜆3)2

, thus

𝜕2Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)2
=

(
𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝜆1, 𝜆2, 𝜆3)

)−𝑇 ( 𝜕2Ψ

𝜕 (𝜆1, 𝜆2, 𝜆3)2
−

𝜕Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕2 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝜆1, 𝜆2, 𝜆3)2

) (
𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝜆1, 𝜆2, 𝜆3)

)−1
.

Since we also have

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕𝐹

=

(
𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝜆1, 𝜆2, 𝜆3)

) ©­«
u1v𝑇1
u2v𝑇2
u3v𝑇3

ª®¬ ,
it follows that

𝜕2Ψ

𝜕𝐹 2
=

(
u1v𝑇1 , u2v

𝑇
2 , u3v

𝑇
3

)
𝐾

©­«
u1v𝑇1
u2v𝑇2
u3v𝑇3

ª®¬+ 𝜕Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕2 (𝐼1, 𝐼2, 𝐼3)

𝜕𝐹 2
,

where

𝐾 =
𝜕2Ψ

𝜕 (𝜆1, 𝜆2, 𝜆3)2
− 𝜕Ψ

𝜕 (𝐼1, 𝐼2, 𝐼3)
𝜕2 (𝐼1, 𝐼2, 𝐼3)
𝜕 (𝜆1, 𝜆2, 𝜆3)2

=

=
𝜕2Ψ

𝜕 (𝜆1, 𝜆2, 𝜆3)2
− 2𝐼

𝜕Ψ

𝜕𝐼2
−𝑄 𝜕Ψ

𝜕𝐼3
,

𝑄 =
𝜕2𝐼3

𝜕 (𝜆1, 𝜆2, 𝜆3)2
=

©­«
0 𝜆3 𝜆2
𝜆3 0 𝜆1
𝜆2 𝜆1 0

ª®¬ .
For the second term in 𝜕2Ψ

𝜕𝐹 2 , we need Hessians of 𝐼1, 𝐼2, 𝐼3 with
respect to 𝐹 . Suppose we have a function to unroll a 3 × 3 matrix
into a 9-dim vector; call it 𝑣𝑒𝑐 : R3×3 → R9. Then, the following
nine vectors constitute an orthonormal basis of R9:

d1 = vec
(
u1v𝑇1

)
d2 = vec

(
u2v𝑇2

)
d3 = vec

(
u3v𝑇3

) ,
t1 =

vec(u3v𝑇2 −u2v𝑇3 )√
2

t2 =
vec(u1v𝑇3 −u3v𝑇1 )√

2

t3 =
vec(u2v𝑇1 −u1v𝑇2 )√

2

,

l1 =
vec(u3v𝑇2 +u2v𝑇3 )√

2

l2 =
vec(u1v𝑇3 +u3v𝑇1 )√

2

l3 =
vec(u2v𝑇1 +u1v𝑇2 )√

2

.

Then 𝜕2 (𝐼1, 𝐼2, 𝐼3)
𝜕𝐹 2 can be simply expressed in this basis [Smith et al.

2019]

𝜕2𝐼1
𝜕𝐹 2

= (t1, t2, t3)𝐴
©­«
t𝑇1
t𝑇2
t𝑇3

ª®¬ , 𝜕2𝐼2
𝜕𝐹 2

= 2𝐼 ,

𝜕2𝐼3
𝜕𝐹 2

= (d1, d2, d3)𝑄
©­«
d𝑇1
d𝑇2
d𝑇3

ª®¬+(t1, t2, t3) Λ ©­«
t𝑇1
t𝑇2
t𝑇3

ª®¬−(l1, l2, l3) Λ
©­«
l𝑇1
l𝑇2
l𝑇3

ª®¬ ,
where

𝐴 = diag
(

2
𝜆2 + 𝜆3

,
2

𝜆3 + 𝜆1
,

2
𝜆1 + 𝜆2

)
, Λ = 𝑑𝑖𝑎𝑔 (𝜆1, 𝜆2, 𝜆3) .

Therefore, the Hessian of Ψ can be simply represented as follows:

𝜕2Ψ

𝜕𝐹 2
= 𝐵

©­«
𝐻1 0 0
0 𝐻2 0
0 0 𝐻3

ª®¬𝐵𝑇 , where

𝐵 = (d1, d2, d3, t1, t2, t3, l1, l2, l3) ,

𝐻1 = 𝐾 + 2𝐼
𝜕Ψ

𝜕𝐼2
+𝑄 𝜕Ψ

𝜕𝐼3
=

𝜕2Ψ

𝜕 (𝜆1, 𝜆2, 𝜆3)2
,

𝐻2 = 𝐴
𝜕Ψ

𝜕𝐼1
+ 2𝐼

𝜕Ψ

𝜕𝐼2
+ Λ

𝜕Ψ

𝜕𝐼3
=

= (𝐸11, 𝐸22, 𝐸33)
©­­«

2
𝜆2+𝜆3 2 𝜆1

2
𝜆3+𝜆1 2 𝜆2
2

𝜆1+𝜆2 2 𝜆3

ª®®¬
©­«
1 2𝜆1 𝜆2𝜆3
1 2𝜆2 𝜆3𝜆1
1 2𝜆3 𝜆1𝜆2

ª®¬
−1 ©­«

𝜕1Ψ
𝜕2Ψ
𝜕3Ψ

ª®¬ =

= diag
(
𝜕2Ψ + 𝜕3Ψ
𝜆2 + 𝜆3

,
𝜕3Ψ + 𝜕1Ψ
𝜆3 + 𝜆1

,
𝜕1Ψ + 𝜕2Ψ
𝜆1 + 𝜆2

)
,

𝐻3 = 2𝐼
𝜕Ψ

𝜕𝐼2
− Λ

𝜕Ψ

𝜕𝐼3
=

= (𝐸11, 𝐸22, 𝐸33)
©­«
0 2 −𝜆1
0 2 −𝜆2
0 2 −𝜆3

ª®¬ ©­«
1 2𝜆1 𝜆2𝜆3
1 2𝜆2 𝜆3𝜆1
1 2𝜆3 𝜆1𝜆2

ª®¬
−1 ©­«

𝜕1Ψ
𝜕2Ψ
𝜕3Ψ

ª®¬ =

= diag
(
𝜕2Ψ − 𝜕3Ψ
𝜆2 − 𝜆3

,
𝜕3Ψ − 𝜕1Ψ
𝜆3 − 𝜆1

,
𝜕1Ψ − 𝜕2Ψ
𝜆1 − 𝜆2

)
.
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Here, 𝐸𝑖 𝑗 refers to the 3 × 3 matrix where the (𝑖, 𝑗) entry is 1 and
others are 0. In conclusion, in basis 𝐵, the Hessian is a 9 × 9 block-
diagonal matrix with one block of size 3 × 3 and six blocks of size
1 × 1 (also shown in Figure 6)

𝜕2Ψ

𝜕𝐹 2
= 𝐵 diag

( ©­«
𝜕11Ψ 𝜕12Ψ 𝜕13Ψ
𝜕12Ψ 𝜕22Ψ 𝜕23Ψ
𝜕13Ψ 𝜕23Ψ 𝜕33Ψ

ª®¬ ,
𝜕2Ψ + 𝜕3Ψ
𝜆2 + 𝜆3

,
𝜕3Ψ + 𝜕1Ψ
𝜆3 + 𝜆1

,
𝜕1Ψ + 𝜕2Ψ
𝜆1 + 𝜆2

,

𝜕2Ψ − 𝜕3Ψ
𝜆2 − 𝜆3

,
𝜕3Ψ − 𝜕1Ψ
𝜆3 − 𝜆1

,
𝜕1Ψ − 𝜕2Ψ
𝜆1 − 𝜆2

)
𝐵𝑇 =

= (d1, d2, d3)
𝜕2Ψ

𝜕 (𝜆1, 𝜆2, 𝜆3)2
©­«
d𝑇1
d𝑇2
d𝑇3

ª®¬ + 𝜕2Ψ + 𝜕3Ψ
𝜆2 + 𝜆3

t1t𝑇1 +

+ 𝜕3Ψ + 𝜕1Ψ
𝜆3 + 𝜆1

t2t𝑇2 + 𝜕1Ψ + 𝜕2Ψ
𝜆1 + 𝜆2

t3t𝑇3 + 𝜕2Ψ − 𝜕3Ψ
𝜆2 − 𝜆3

l1l𝑇1 +

+ 𝜕3Ψ − 𝜕1Ψ
𝜆3 − 𝜆1

l2l𝑇2 + 𝜕1Ψ − 𝜕2Ψ
𝜆1 − 𝜆2

l3l𝑇3 .

Projection to SPD is now readily available. The upper-left 3 × 3
block can be projected by performing an eigendecomposition and
clamping the eigenvalues to non-negative values (or small positive
values). The other Hessian blocks are all scalars and can be trivially
projected to non-negativity (or small positivity). However, divisions
by zero may appear in the Hessian diagonal blocks when two or
three singular values are the same. These are removable singularities,
and we show how to handle them next.

D.1 Singularity Analysis
When the energy is isotropic and two eigenvalues become very
close, say 𝜆1 and 𝜆2, all of the above termsworkwell except 𝜕1Ψ−𝜕2Ψ

𝜆1−𝜆2 ,
which can be expanded using a Taylor series for fixed 𝜆2, 𝜆3 in terms
of 𝜆1, around 𝜆1 = 𝜆2 :

𝜕1Ψ − 𝜕2Ψ
𝜆1 − 𝜆2

=
1

𝜆1 − 𝜆2

+∞∑︁
𝑘=0

(𝜆1 − 𝜆2)𝑘
𝑘!

𝜕𝑘1 (𝜕1 − 𝜕2) Ψ (𝜆2, 𝜆2, 𝜆3) =

=

+∞∑︁
𝑘=0

(𝜆1 − 𝜆2)𝑘
(𝑘 + 1)! 𝜕𝑘+11 (𝜕1 − 𝜕2) Ψ (𝜆2, 𝜆2, 𝜆3) .

The last equality holds because the constant term in the above expan-
sion is zero, due to the symmetry 𝜕1Ψ (𝜆2, 𝜆2, 𝜆3) = 𝜕2Ψ (𝜆2, 𝜆2, 𝜆3) .
In other words, the singularity is removable. When 𝜆1 = 𝜆2, we have:

𝜕1Ψ = 𝜕2Ψ, 𝜕11Ψ = 𝜕22Ψ, 𝜕13Ψ = 𝜕23Ψ, as well as

lim
𝜆1→𝜆2

𝜕1Ψ − 𝜕2Ψ
𝜆1 − 𝜆2

= 𝜕11Ψ − 𝜕12Ψ.

Therefore, when 𝜆1 = 𝜆2, the Hessian can be expressed using the
following formula, which is free of singularities:

𝜕2Ψ

𝜕𝐹 2
= 𝜕11Ψ

(
d1d𝑇1 + d2d𝑇2 + l3l𝑇3

)
+ 𝜕12Ψ

(
d1d𝑇2 + d2d𝑇1 − l3l𝑇3

)
+

+𝜕33Ψd3d𝑇3 +
1
𝜆1
𝜕1Ψ t3t𝑇3 + 𝜕13Ψ

(
(d1 + d2) d𝑇3 + d3

(
d𝑇1 + d𝑇2

))
+

+ 𝜕1Ψ + 𝜕3Ψ
𝜆1 + 𝜆3

(
t1t𝑇1 + t2t𝑇2

)
+ 𝜕1Ψ − 𝜕3Ψ

𝜆1 − 𝜆3

(
l1l𝑇1 + l2l𝑇2

)
.

We activate the above formula if two singular values (but not all
three) are within 10−4 of each other. Such an absolute threshold
works because singular values are principal stretches, and for real
materials in our experiments, they do not deviate away from 1 by
orders magnitude, e.g., they stay on the [1/2, 3/2] interval.
We will now show that the above formula is independent of the

choice of𝑈 and 𝑉 . Suppose we choose a different pair of𝑈 , 𝑉 :

𝑈 = (ũ1, ũ2, ũ3) = 𝑈
©­«
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

ª®¬ ,
𝑉 = (ṽ1, ṽ2, ṽ3) = 𝑉

©­«
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

ª®¬ .
Then, we have

d̃1 = d1 cos2 𝜃 + d2 sin2 𝜃 +
√
2l3 sin𝜃 cos𝜃

d̃2 = d1 sin2𝜃 + d2 cos2 𝜃 −
√
2l3 sin𝜃 cos𝜃

d̃3 = d3

t̃1 = t1 cos𝜃 − t2 sin𝜃

t̃2 = t1 sin𝜃 + t2 cos𝜃

t̃3 = t3

l̃1 = l1 cos𝜃 − l2 sin𝜃

l̃2 = l1 sin𝜃 + l2 cos𝜃

l̃3 =
√
2 (d2 − d1) sin𝜃 cos𝜃 + l3

(
cos2 𝜃 − sin2 𝜃

)
.

Therefore, we derive that

d̃1 + d̃2 = d1 + d2, d̃3d̃3
𝑇
= d3d𝑇3 , t̃3 t̃3

𝑇
= t3t𝑇3 ,

t̃1 t̃1
𝑇 + t̃2 t̃2

𝑇
= t1t𝑇1 + t2t𝑇2 , l̃1 l̃1

𝑇 + l̃2 l̃2
𝑇
= l1l𝑇1 + l2l𝑇2 ,

d̃1d̃1
𝑇 + d̃2d̃2

𝑇 + l̃3 l̃3
𝑇
= d1d𝑇1 + d2d𝑇2 + l3l𝑇3 ,

d̃1d̃2
𝑇 + d̃2d̃1

𝑇 − l̃3 l̃3
𝑇
= d1d𝑇2 + d2d𝑇1 − l3l𝑇3 ,

which implies that the expression for 𝜕2Ψ/𝜕𝐹 2 is independent of
the choice of𝑈 and 𝑉 .

When all singular values are equal (𝜆1 = 𝜆2 = 𝜆3 = 𝜆), we have

𝜕1Ψ = 𝜕2Ψ = 𝜕3Ψ, 𝜕11Ψ = 𝜕22Ψ = 𝜕33Ψ, 𝜕12Ψ = 𝜕13Ψ = 𝜕23Ψ,

as well as

lim
𝜆1→𝜆2

𝜕1Ψ − 𝜕2Ψ
𝜆1 − 𝜆2

= lim
𝜆2→𝜆3

𝜕2Ψ − 𝜕3Ψ
𝜆2 − 𝜆3

= lim
𝜆3→𝜆1

𝜕3Ψ − 𝜕1Ψ
𝜆3 − 𝜆1

=

= 𝜕11Ψ − 𝜕12Ψ.
This gives us a formula for the Hessian when 𝜆1 = 𝜆2 = 𝜆3, which
is free of singularities:

𝜕2Ψ

𝜕𝐹 2
=

1
𝜆
𝜕1Ψ

(
t1t𝑇1 + t2t𝑇2 + t3t𝑇3

)
+

+𝜕11Ψ
(
d1d𝑇1 + d2d𝑇2 + d3d𝑇3 + l1l𝑇1 + l2l𝑇2 + l3l𝑇3

)
+

+𝜕12Ψ
(
d1d𝑇2 + d2d𝑇1 + d2d𝑇3 +

d3d𝑇2 + d3d𝑇1 + d1d𝑇3 − l1l𝑇1 − l2l𝑇2 − l3l𝑇3
)
.
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We activate the above formula if all three singular values are within
10−4 of each other. Now, let us prove that the formula is independent
of the choice of𝑈 and𝑉 . Suppose we choose a different pair of𝑈 , 𝑉 :

𝑈 = (ũ1, ũ2, ũ3) = 𝑈𝑋, 𝑉 = (ṽ1, ṽ2, ṽ3) = 𝑉𝑋,

where 𝑋 =
(
𝑥ij

)3
𝑖, 𝑗=1 is an orthogonal matrix. Then, we have

𝐷 =

(
d̃1, d̃2, d̃3

)
= (d1, d2, d3)

©­«
𝑥211 𝑥212 𝑥213
𝑥221 𝑥222 𝑥223
𝑥231 𝑥232 𝑥233

ª®¬+
+
√
2 (l1, l2, l3)

©­«
𝑥21𝑥31 𝑥22𝑥32 𝑥23𝑥33
𝑥31𝑥11 𝑥32𝑥12 𝑥33𝑥13
𝑥11𝑥21 𝑥12𝑥22 𝑥13𝑥23

ª®¬ = 𝐷𝐴DD + 𝐿𝐴DL,

𝑇 =

(
t̃1, t̃2, t̃3

)
= 𝑇𝐴TT =

= (t1, t2, t3)
©­«
𝑥33𝑥22 − 𝑥32𝑥23 𝑥31𝑥23 − 𝑥33𝑥21 𝑥32𝑥21 − 𝑥31𝑥22
𝑥13𝑥32 − 𝑥12𝑥33 𝑥11𝑥33 − 𝑥13𝑥31 𝑥12𝑥31 − 𝑥11𝑥32
𝑥23𝑥12 − 𝑥22𝑥13 𝑥21𝑥13 − 𝑥23𝑥11 𝑥22𝑥11 − 𝑥21𝑥12

ª®¬ ,
𝐿̃ =

(
l̃1, l̃2, l̃3

)
=

= (l1, l2, l3)
©­«
𝑥33𝑥22 + 𝑥32𝑥23 𝑥31𝑥23 + 𝑥33𝑥21 𝑥32𝑥21 + 𝑥31𝑥22
𝑥13𝑥32 + 𝑥12𝑥33 𝑥11𝑥33 + 𝑥13𝑥31 𝑥12𝑥31 + 𝑥11𝑥32
𝑥23𝑥12 + 𝑥22𝑥13 𝑥21𝑥13 + 𝑥23𝑥11 𝑥22𝑥11 + 𝑥21𝑥12

ª®¬+
+
√
2 (d1, d2, d3)

©­«
𝑥12𝑥13 𝑥13𝑥11 𝑥11𝑥12
𝑥22𝑥23 𝑥23𝑥21 𝑥21𝑥22
𝑥32𝑥33 𝑥33𝑥31 𝑥31𝑥32

ª®¬ = 𝐿𝐴LL + 𝐷𝐴LD .

Therefore, d̃1d̃1
𝑇 + d̃2d̃2

𝑇 + d̃3d̃3
𝑇 + l̃1 l̃1

𝑇 + l̃2 l̃2
𝑇 + l̃3 l̃3

𝑇
=

= 𝐷𝐷𝑇 + 𝐿̃𝐿̃𝑇 = (𝐷, 𝐿)
(
𝐴DD 𝐴LD
𝐴DL 𝐴LL

) (
𝐴𝑇DD 𝐴𝑇DL
𝐴𝑇LD 𝐴𝑇LL

) (
𝐷𝑇

𝐿𝑇

)
=

= (𝐷, 𝐿)
(
𝐼 0
0 𝐼

) (
𝐷𝑇

𝐿𝑇

)
= 𝐷𝐷𝑇 + 𝐿𝐿𝑇 =

= d1d𝑇1 + d2d𝑇2 + d3d𝑇3 + l1l𝑇1 + l2l𝑇2 + l3l𝑇3 ,

d̃1d̃2
𝑇 + d̃2d̃1

𝑇 + d̃2d̃3
𝑇 + d̃3d̃2

𝑇 + d̃3d̃1
𝑇 +

+d̃1d̃3
𝑇 − l̃1 l̃1

𝑇 − l̃2 l̃2
𝑇 − l̃3 l̃3

𝑇
=

=

(
𝐷, 𝐿̃

) ©­­­«
0 1 1
1 0 1
1 1 0

0

0 −𝐼

ª®®®¬
(
𝐷𝑇

𝐿̃𝑇

)
=

= (𝐷, 𝐿)
(
𝐴DD 𝐴LD
𝐴DL 𝐴LL

) ©­­­«
0 1 1
1 0 1
1 1 0

0

0 −𝐼

ª®®®¬
(
𝐴𝑇DD 𝐴𝑇DL
𝐴𝑇LD 𝐴𝑇LL

) (
𝐷𝑇

𝐿𝑇

)
=

= (𝐷, 𝐿)
©­­­«
0 1 1
1 0 1
1 1 0

0

0 −𝐼

ª®®®¬
(
𝐷𝑇

𝐿𝑇

)
=

= d1d𝑇2 + d2d𝑇1 + d2d𝑇3 + d3d𝑇2 + d3d𝑇1 + d1d𝑇3 − l1l𝑇1 − l2l𝑇2 − l3l𝑇3 ,
3∑︁

𝑖=1
t̃𝑖 t̃𝑖

𝑇
= 𝑇𝑇𝑇 = 𝑇𝐴TT𝐴

𝑇
TT𝑇

𝑇 = 𝑇𝑇𝑇 =

3∑︁
𝑖=1

t𝑖 t𝑇𝑖 .

In the above algebraic manipulations for the 𝜆1 = 𝜆2 = 𝜆3 case,
we used the following three Lemmas.

Lemma 1 𝐴TT is orthogonal.
Proof: Note that

𝐴TT =
©­«
𝑥33𝑥22 − 𝑥32𝑥23 𝑥31𝑥23 − 𝑥33𝑥21 𝑥32𝑥21 − 𝑥31𝑥22
𝑥13𝑥32 − 𝑥12𝑥33 𝑥11𝑥33 − 𝑥13𝑥31 𝑥12𝑥31 − 𝑥11𝑥32
𝑥23𝑥12 − 𝑥22𝑥13 𝑥21𝑥13 − 𝑥23𝑥11 𝑥22𝑥11 − 𝑥21𝑥12

ª®¬ =

(det𝑋 )𝑋−𝑇 = (det𝑋 )𝑋,
Therefore, 𝐴TT is orthogonal. ■

Lemma 2
(
𝐴DD 𝐴LD
𝐴DL 𝐴LL

)
is orthogonal.

Proof: First, let us write down the entries:

𝐴DD =
©­«
𝑥211 𝑥212 𝑥213
𝑥221 𝑥222 𝑥223
𝑥231 𝑥232 𝑥233

ª®¬ , 𝐴DL =
√
2 ©­«
𝑥21𝑥31 𝑥22𝑥32 𝑥23𝑥33
𝑥31𝑥11 𝑥32𝑥12 𝑥33𝑥13
𝑥11𝑥21 𝑥12𝑥22 𝑥13𝑥23

ª®¬
𝐴LD =

√
2 ©­«
𝑥12𝑥13 𝑥13𝑥11 𝑥11𝑥12
𝑥22𝑥23 𝑥23𝑥21 𝑥21𝑥22
𝑥32𝑥33 𝑥33𝑥31 𝑥31𝑥32

ª®¬ ,
𝐴LL =

©­«
𝑥33𝑥22 + 𝑥32𝑥23 𝑥31𝑥23 + 𝑥33𝑥21 𝑥32𝑥21 + 𝑥31𝑥22
𝑥13𝑥32 + 𝑥12𝑥33 𝑥11𝑥33 + 𝑥13𝑥31 𝑥12𝑥31 + 𝑥11𝑥32
𝑥23𝑥12 + 𝑥22𝑥13 𝑥21𝑥13 + 𝑥23𝑥11 𝑥22𝑥11 + 𝑥21𝑥12

ª®¬ .
We need to prove that

𝐴𝑇DD𝐴DD +𝐴𝑇DL𝐴DL = 𝐴𝑇LD𝐴LD +𝐴𝑇LL𝐴LL = 𝐼 ,

𝐴𝑇DD𝐴LD +𝐴𝑇DL𝐴LL = 𝐴𝑇LD𝐴DD +𝐴𝑇LL𝐴DL = 0.
Denote x1, x2, x3 to be the three column vectors of 𝑋 . Then, we

have

𝐴𝑇DD𝐴DD +𝐴𝑇DL𝐴DL =

©­«
∥x1∥4 (x1 · x2)2 (x1 · x3)2

(x1 · x2)2 ∥x2∥4 (x2 · x3)2
(x1 · x3)2 (x2 · x3)2 ∥x3∥4

ª®¬ =
©­«
1 0 0
0 1 0
0 0 1

ª®¬ = 𝐼 ,

𝐴𝑇LD𝐴LD +𝐴𝑇LL𝐴LL =

©­«
∥x2∥2 ∥x3∥2 (x2 · x3) (x3 · x1) (x2 · x1) (x3 · x2)

(x3 · x2) (x1 · x3) ∥x3∥2 ∥x1∥2 (x3 · x1) (x1 · x2)
(x1 · x2) (x2 · x3) (x1 · x3) (x2 · x1) ∥x1∥2 ∥x2∥2

ª®¬+©­«
(x2 · x3)2 (x2 · x1) ∥x3∥2 ∥x2∥2 (x3 · x1)

∥x3∥2 (x1 · x2) (x3 · x1)2 (x3 · x2) ∥x1∥2
(x1 · x3) ∥x2∥2 ∥x1∥2 (x2 · x3) (x1 · x2)2

ª®¬ =

©­«
1 0 0
0 1 0
0 0 1

ª®¬ + ©­«
0 0 0
0 0 0
0 0 0

ª®¬ = 𝐼 ,

𝐴DD𝐴
𝑇
DL +𝐴LD𝐴

𝑇
LL =

√
2 ©­«

(x1 · x2) (x1 · x3) (x1 · x3) ∥x1∥2 ∥x1∥2 (x1 · x2)
∥x2∥2 (x2 · x3) (x2 · x3) (x2 · x1) (x2 · x1) ∥x2∥2
(x3 · x2) ∥x3∥2 ∥x3∥2 (x3 · x1) (x3 · x1) (x3 · x2)

ª®¬ = 0,
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𝐴𝑇LD𝐴DD +𝐴𝑇LL𝐴LD =

(
𝐴DD𝐴

𝑇
DL +𝐴LD𝐴

𝑇
LL

)𝑇
= 0. ■

Lemma 3
(
𝐴DD 𝐴LD
𝐴DL 𝐴LL

)
commutes with

©­­­«
0 1 1
1 0 1
1 1 0

0

0 −𝐼

ª®®®¬ .
Proof: Note that 𝐴DD, 𝐴DL, 𝐴

𝑇
LD all have (1, 1, 1)𝑇 as eigenvector

with eigenvalues 1, 0, 0, respectively. Therefore,

𝐴DD
©­«
0 1 1
1 0 1
1 1 0

ª®¬ = 𝐴DD
©­«©­«
1
1
1

ª®¬ (1, 1, 1) − 𝐼ª®¬ =

©­«
1
1
1

ª®¬ (1, 1, 1) −𝐴DD =
©­«
0 1 1
1 0 1
1 1 0

ª®¬𝐴DD,

𝐴DL
©­«
0 1 1
1 0 1
1 1 0

ª®¬ = 𝐴DL
©­«©­«
1
1
1

ª®¬ (1, 1, 1) − 𝐼ª®¬ = −𝐴DL,

©­«
0 1 1
1 0 1
1 1 0

ª®¬𝐴LD =
©­«©­«
1
1
1

ª®¬ (1, 1, 1) − 𝐼ª®¬𝐴LD = −𝐴LD

⇒
(
𝐴DD 𝐴LD
𝐴DL 𝐴LL

) ©­­­«
0 1 1
1 0 1
1 1 0

0

0 −𝐼

ª®®®¬ =

©­­­«
0 1 1
1 0 1
1 1 0

0

0 −𝐼

ª®®®¬
(
𝐴DD 𝐴LD
𝐴DL 𝐴LL

)
=

©­­­­­­­«

1
1
1
0
0
0

ª®®®®®®®¬

©­­­­­­­«

1
1
1
0
0
0

ª®®®®®®®¬

𝑇

−
(
𝐴DD 𝐴LD
𝐴DL 𝐴LL

)
■

E GRADIENT AND HESSIAN OF 𝜁
Our function 𝜁 is defined in Equation 13. The first and second deriva-
tives are

𝑑𝜁

𝑑𝜇
= 2

∑︁
𝑖

(
𝑓 𝑆𝑖 − 𝑓 𝐸𝑖

) (
𝜕𝑓 𝑆
𝑖

𝜕𝜇
+
𝜕𝑓 𝑆
𝑖

𝜕𝑢𝐹
𝑖

𝜕𝑢𝐹
𝑖

𝜕𝜇

)
=

= 2
∑︁
𝑖

(
𝑓 𝑆𝑖 − 𝑓 𝐸𝑖

) (
𝜕𝑓 𝑆
𝑖

𝜕𝜇
+ 𝐾𝐶𝐹

𝑖

𝜕𝑢𝐹
𝑖

𝜕𝜇

)
,

𝑑2𝜁

𝑑2𝜇
= 2

∑︁
𝑖

(
𝜕𝑓 𝑆
𝑖

𝜕𝜇
+
𝜕𝑓 𝑆
𝑖

𝜕𝑢𝐹
𝑖

𝜕𝑢𝐹
𝑖

𝜕𝜇

)𝑇 (
𝜕𝑓 𝑆
𝑖

𝜕𝜇
+
𝜕𝑓 𝑆
𝑖

𝜕𝑢𝐹
𝑖

𝜕𝑢𝐹
𝑖

𝜕𝜇

)
+

+2
∑︁
𝑖

(
𝑓 𝑆𝑖 − 𝑓 𝐸𝑖

) (
𝜕2 𝑓 𝑆

𝑖

𝜕𝜇2
+ 2

𝜕2 𝑓 𝑆
𝑖

𝜕𝜇𝜕𝑢𝐹
𝑖

𝜕𝑢𝐹
𝑖

𝜕𝜇
+

+
(
𝜕𝑢𝐹

𝑖

𝜕𝜇

)𝑇
𝜕2 𝑓 𝑆

𝑖

𝜕𝑢𝐹
𝑖

2

(
𝜕𝑢𝐹

𝑖

𝜕𝜇

)
+
𝜕𝑓 𝑆
𝑖

𝜕𝑢𝐹
𝑖

𝜕2𝑢𝐹
𝑖

𝜕𝜇2
ª®¬ .

The gradient and Hessian of displacements with respect to 𝜇 can
be derived from the force equilibrium equation 𝑓 𝐹

(
𝜇, 𝑢𝐹 (𝜇)

)
≡ 0,

𝑑 𝑓 𝐹

𝑑𝜇
=
𝜕𝑓 𝐹

𝜕𝜇
+ 𝜕𝑓 𝐹

𝜕𝑢𝐹

𝜕𝑢𝐹

𝜕𝜇
=

=
𝜕𝑓 𝐹

𝜕𝜇
+ 𝐾𝐹𝐹 𝜕𝑢

𝐹

𝜕𝜇
= 0 ⇒ 𝜕𝑢𝐹

𝜕𝜇
= −

(
𝐾𝐹𝐹

)−1 𝜕𝑓 𝐹
𝜕𝜇

,

𝑑2 𝑓 𝐹

𝑑𝜇2
=
𝜕2 𝑓 𝐹

𝜕𝜇2
+2 𝜕

2 𝑓 𝐹

𝜕𝜇𝜕𝑢𝐹

𝜕𝑢𝐹

𝜕𝜇
+
(
𝜕𝑢𝐹

𝜕𝜇

)𝑇
𝜕2 𝑓 𝐹

𝜕𝑢𝐹
2

(
𝜕𝑢𝐹

𝜕𝜇

)
+ 𝜕𝑓

𝐹

𝜕𝑢𝐹

𝜕2𝑢𝐹

𝜕𝜇2
=

= 2
𝜕𝐾𝐹𝐹

𝜕𝜇

𝜕𝑢𝐹

𝜕𝜇
+

(
𝜕𝑢𝐹

𝜕𝜇

)𝑇
𝜕𝐾𝐹𝐹

𝜕𝑢𝐹

(
𝜕𝑢𝐹

𝜕𝜇

)
+ 𝐾𝐹𝐹 𝜕

2𝑢𝐹

𝜕𝜇2
= 0

⇒ 𝜕2𝑢𝐹

𝜕𝜇2
= −

(
𝐾𝐹𝐹

)−1 (
2
𝜕𝐾𝐹𝐹

𝜕𝜇
+

(
𝜕𝑢𝐹

𝜕𝜇

)𝑇
𝜕𝐾𝐹𝐹

𝜕𝑢𝐹

) (
𝜕𝑢𝐹

𝜕𝜇

)
.

The elastic energy, force, tangent stiffness matrix, and their gra-
dients with respect to 𝜇 are

𝐸 (𝜇, 𝑢 (𝜇)) = 2𝜋
∑︁
𝑘

𝑤𝑘𝑟𝑘Ψ (𝜇, 𝐹𝑘 ),

𝑓 (𝜇, 𝑢 (𝜇)) =
(
𝜕𝐸

𝜕𝑢

)𝑇
= 2𝜋

∑︁
𝑘

𝜔𝑘𝑟𝑘

(
𝜕𝐹𝑘

𝜕𝑢

)𝑇 (
𝜕Ψ

𝜕𝐹 |𝐹=𝐹𝑘

)𝑇
,

𝜕𝑓

𝜕𝜇
= 2𝜋

∑︁
𝑘

𝜔𝑘𝑟𝑘

(
𝜕𝐹𝑘

𝜕𝑢

)𝑇
𝜕2Ψ

𝜕𝐹 𝜕𝜇 |𝐹=𝐹𝑘
,

𝐾 (𝜇, 𝑢 (𝜇)) = 𝜕2𝐸

𝜕𝑢2
= 2𝜋

∑︁
𝑘

𝜔𝑘𝑟𝑘

(
𝜕𝐹𝑘

𝜕𝑢

)𝑇
𝜕2Ψ

𝜕𝐹 2 |𝐹=𝐹𝑘

(
𝜕𝐹𝑘

𝜕𝑢

)
,

𝜕𝐾

𝜕𝜇
= 2𝜋

∑︁
𝑘

𝜔𝑘𝑟𝑘

(
𝜕𝐹𝑘

𝜕𝑢

)𝑇
𝜕3Ψ

𝜕𝐹 2𝜕𝜇 |𝐹=𝐹𝑘

(
𝜕𝐹𝑘

𝜕𝑢

)
,

𝜕𝐾

𝜕𝑢
=
𝜕3𝐸

𝜕𝑢3
= 2𝜋

∑︁
𝑘

𝜔𝑘𝑟𝑘

(
𝜕𝐹𝑘

𝜕𝑢

)𝑇
𝜕3Ψ

𝜕𝐹 3 |𝐹=𝐹𝑘

(
𝜕𝐹𝑘

𝜕𝑢

) (
𝜕𝐹𝑘

𝜕𝑢

)
.

Note that the weights 𝜔𝑘 were defined in Section 4.2. Equations 14
and 15 now follow by discarding the 3rd-order derivatives of𝜓 . This
did not impede our optimization; and actually, we found that useful
optimizations can be obtained even with as little as (but not without)
the first tensor product term of 𝑑2𝜁 /𝑑𝜇2 (i.e., the term appearing in
the first line of the above expression for 𝑑2𝜁 /𝑑𝜇2).
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