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Figure 1: Hard-real-time soft tissue FEM dynamics compatible with standard character rigging. The input gorilla skeletal (60 DOFs)
motion was obtained by retargeting the Kinect-captured motion to the gorilla character in real time. Our method produces physically based
FEM dynamics of the gorilla soft tissue. The simulator runs at fast simulation rates (750 simulation FPS, 16,297 tetrahedra, 15,744 triangles)
and is suitable for applications in games and virtual reality. Speed is achieved using pose-dependent model reduction. We precompute
separate reduced models at 4 representative gorilla poses. At runtime, simulation is performed in a time-varying basis that is obtained by
interpolating the precomputed bases to the current pose. Our method fits into the standard pose-space deformation (PSD) pipeline whereby
self-contact and skinning artifacts are resolved, by artists, in each pose and stored as pose-space deformation corrections, and interpolated
at runtime. Our subspace is aware of the contact constraints and prohibits dynamics that cause deeper penetrations.

Abstract

We enrich character animations with secondary soft-tissue Finite
Element Method (FEM) dynamics computed under arbitrary rigged
or skeletal motion. Our method optionally incorporates pose-space
deformation (PSD). It runs at milliseconds per frame for com-
plex characters, and fits directly into standard character animation
pipelines. Our simulation method does not require any skin data
capture; hence, it can be applied to humans, animals, and arbitrary
(real-world or fictional) characters. In standard model reduction of
three-dimensional nonlinear solid elastic models, one builds a re-
duced model around a single pose, typically the rest configuration.
We demonstrate how to perform multi-model reduction of Finite El-
ement Method (FEM) nonlinear elasticity, where separate reduced
models are precomputed around a representative set of object poses,
and then combined at runtime into a single fast dynamic system, us-
ing subspace interpolation. While time-varying reduction has been
demonstrated before for offline applications, our method is fast and
suitable for hard real-time applications in games and virtual reality.
Our method supports self-contact, which we achieve by computing
linear modes and derivatives under contact constraints.

Keywords: physically based simulation, character rigging, pose-
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1 Introduction

In computer animation practice, characters are typically animated
by first animating the skeleton or rig parameters, either by hand
or by using a data-driven technique (motion capture). The polyg-
onal mesh of the character is then deformed kinematically, using
a rigging or skinning approach. In order to animate the bulging of
muscles, correct the artifacts of linear blend skinning, or sculpt arbi-
trary, pose-dependent modifications to standard skinning, it is com-
mon to use the technique of pose-space deformation (PSD). In PSD,
one sculpts pose-dependent corrections to rigging/skinning, and
then interpolates them to arbitrary poses using radial-basis func-
tions. PSD is, however, a static technique: for a given pose, it al-
ways returns the same shape. In this paper, we investigate how to in-
corporate physically based simulation into rigging/skinning and/or
PSD, to automatically produce secondary skin motion. We present
a method that has the following properties: (1) it runs at under 1-2
msec per frame for complex models and is as such suitable for real-
time applications in games and virtual reality, (2) it uses the Finite
Element Method (FEM) to give simulations a non-jiggly, “solid”
look, (3) it works with an arbitrary skinning/rigging method, (4)
supports character self-collisions, such as in the elbow and shoulder
regions, and (5) it fits into standard computer animation pipelines.
Our skin dynamics is driven by the inertial forces due to the skele-
ton or rig-induced motion, or by gravity or other external forces.
Our method uses physically based simulation and does not require
scanning skin data from real subjects. As such, it is suitable for car-
toon characters, animals, fantasy creatures, in addition to humans.

Our technique works by combining the Finite Element Method with
pose-dependent model reduction. Model reduction is a technique
wherein high-dimensional equations of motions are projected to a
suitable, more manageable low-dimensional space. Model reduc-
tion has been commonly employed in computer animation to ac-
celerate physically based simulations. In standard model reduc-
tion of three-dimensional nonlinear solid elastic models, however,
one builds a reduced model around a single pose, typically the
rest configuration. Such a basis becomes inaccurate as the char-
acter pose deviates from the rest configuration, due to the changing
geometric shape under skinning or rigging, and pose-dependent,
artist-sculpted changes in character geometry and material proper-
ties. Standard model reduction also suffers from non-locality of
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Figure 2: Fast secondary dynamics for keyframed rigged ani-
mation. Given the input keyframed rigged animation created by an
artist (144 rig DOFs, (b)), our method performs the reduced FEM
simulation in real time (700 FPS, 12,762 tetrahedra, 6,876 trian-
gles), and produces physically based secondary tissue dynamics,
(c). We partition the polar bear tetrahedral mesh into 6 overlap-
ping regions, (a), and compute a local basis for each region. Be-
cause the regions overlap, their dynamics is coupled automatically
and seamlessly, without any constraints or special treatment. Our
local bases are interpolated among 8 poses and produce rich local
and global dynamics on the belly, arms, hips, legs, ears and cheeks.

deformations, caused by the spatially global modes. Furthermore,
self-collisions introduce constraints that greatly change the simula-
tion basis and the dynamic behavior.

Our method addresses these practical challenges, as follows. Dur-
ing preprocess, we build separate reduced models around a repre-
sentative set of character poses. These poses may incorporate artist-
sculpted deformations, as well as pose-dependent material prop-
erties to simulate, say, muscle bulging. At runtime, we combine
these reduced models into a single fast dynamic system, using sub-
space interpolation. We drive the motion of the soft tissue using
inertial forces arising from skeletal motion or time-varying rig pa-
rameters, or external forces. Figure 3 gives an overview of our
system. We demonstrate how to align and smoothly interpolate the
low-dimensional deformation spaces so that the resulting dynamics
is smooth. Time-varying model reduction has been demonstrated
before; but with bases that are computed at runtime and not pre-
computed, which has limited the applications to offline simulation.
We present the first practical method to interpolate pose-dependent
pre-computed simulation spaces, separated by large deformations,
into a global fast system. We also demonstrate how to address pose-
space self-contact, by computing linear modes under linear contact
constraints, to which we propose an efficient preconditioner. Fur-
thermore, we demonstrate how to spatially localize the subspaces,
so that the common “ringing” artifacts of spatially global bases are
avoided.

Our method is fast and suitable for high-update rate real-time appli-
cations in games and virtual reality. We experimentally demonstrate
that our model reduction method performs substantially better than
coarse full simulations with equal computational budget. Similarly,

Figure 3: Overview.

we demonstrate that our method outperforms spatially global bases,
a single global pose-independent basis, and methods that do not in-
corporate self-contact into the basis.

2 Related Work

Rigging can generally be defined as a nonlinear mapping between
a low-dimensional space of rig parameters and a high-dimensional
surface mesh [Hahn et al. 2012]. Common examples include lin-
ear blend skinning, and the various nonlinear deformers in popular
software animation packages. Enriching rigged motion with dy-
namics has been widely explored. Several methods drive an unre-
duced physically based simulation of a solid simulation mesh by
constraining it to the underlying skeleton [Capell et al. 2002; Capell
et al. 2005; Galoppo et al. 2007; McAdams et al. 2011; Kim and
Pollard 2011; Liu et al. 2013]. Such full-space methods do not
run at hard real-time rates for complex geometry. In our work, we
present a hard real-time simulation approach that trades accuracy
for speed using model reduction. Furthermore, we can accommo-
date general rigging functions instead of just skeleton rigging.

The “rig-space physics” methods [Hahn et al. 2012; Hahn et al.
2013] also aim at general rigging functions, and obtain the sec-
ondary motion by an optimization in the rig space. Our work dif-
fers from rig-space physics as follows. First, our simulation runs
entirely in the reduced space and does not require calculating full-
space internal forces and their tangent stiffness matrices or project-
ing them at every simulation step; this difference alone brings us at
least a 240× speedup in the gorilla example (Figure 1), compared
to the fast rig-space physics method [Hahn et al. 2013]. Second,
the dynamics of rig-space physics is limited to the rig space. If
the artist did not specifically craft a rig parameter for a certain sec-
ondary deformation, that dynamic will not appear in the output.
In our work, we generate our bases automatically, and hence our
method can automatically generate natural secondary motion for
the given geometry, and material properties, without a need for the
artist to specifically design for it. At the same time, artists can de-
sign for specific dynamic deformations if so required. Our bases
automatically incorporate spatially non-homogeneous and pose-
varying material properties, whereas the rig-space physics subspace
is single-pose and geometric: it does not automatically adapt to
non-homogeneous material properties. Third, our method incorpo-



rates a fast self-contact handling method, by baking the per-pose
contact state into the per-pose basis.

Subspace methods have been popular in accelerating simulations
of deformable solids [James and Pai 2002; Hauser et al. 2003;
Barbič and James 2005; An et al. 2008; Hildebrandt et al. 2012].
While fast, it is not immediately obvious how to apply such meth-
ods to character animation pipelines that typically use rigging or
skinning. Model reduction has proven useful to increase perfor-
mance for static pose-space deformation without dynamics [Kry
et al. 2002], and for dynamic simulation [Galoppo et al. 2009; Hahn
et al. 2014; Teng et al. 2015]. A common theme in these papers
is to un-transform the simulation data with the skinning transfor-
mation to the neutral character pose, and then model-reduce it.
However, these prior methods evaluated reduced dynamics with
respect to the neutral pose of the character, which is inaccurate
for characters undergoing large deformations. Our pose-dependent
bases, and the reduced elastic internal forces and stiffness matrices,
are computed with respect to the geometry and material proper-
ties of each pose, which substantially improves dynamics around
poses that contain large deformations. Given several morph targets,
Galoppo et al. [2009] constructed a single pose-independent (also
called pose-global) basis by performing PCA on the sets of bases
computed at the undeformed configuration, but with per-pose mate-
rial properties and PSD corrections. However, for poses that differ
significantly from the undeformed configuration, bases computed
at the undeformed pose will produce incorrect dynamics. Different
from them, we compute a separate basis at a set of selected poses.
Because we never construct a pose-global basis, each of our per-
pose bases can have a small dimension, enabling faster simulation
rates. At runtime, we interpolate the precomputed bases to the run-
time poses. Therefore, our simulator uses a smaller basis, while
obtaining more plausible dynamics.

High-quality skin simulations can be achieved using data-
driven methods, combined with second-order auto-regressive mod-
els [Pons-Moll et al. 2015]. However, such a method requires a
real-life subject capture session, and is as such mostly limited to
humans. Our simulation method can be used to animate arbitrary
creatures, beyond humans. With our method, the animator can also
easily tweak the material properties of the tissue, and as such se-
lectively adjust the dynamics at the various parts of the creature.
Several simulation methods obtain the basis by performing PCA
on full simulation data [Kry et al. 2002; Hahn et al. 2014; Teng
et al. 2015]. We create pose-dependent bases automatically, with
standard modal analysis techniques, based on geometry and ma-
terial properties only, and without any training data. To accom-
modate large deformations, one can enrich the basis using modal
derivatives [Barbič and James 2005], or linear transformations of
the basis [von Tycowicz et al. 2013]. Our approach is agnostic to
the specific enrichment method; we choose linear modes and modal
derivatives. For fast modal integration, radial basis interpolation of
cubic force polynomials for the St.Venant-Kirchoff material [Ga-
loppo et al. 2009], or pose-space cubature interpolation of contact
forces [Teng et al. 2014] have been studied. We demonstrate how to
perform pose-space cubature interpolation of general hyperelastic
nonlinear materials, with different geometry and materials at each
pose. We also demonstrate how to employ cubature to efficiently
evaluate the reduced inertial forces.

Our method modifies the simulation basis at runtime. Kim et
al. [2009] proposed an online model reduction method which al-
ternates between full and reduced simulation. Our approach always
uses reduced simulation, without the need for any runtime full sim-
ulation, which makes it possible to run the simulation consistently
at hard real-time rates. Temporally adaptive bases can also be con-
structed by selecting a few basis vectors from a large precomputed
database [Hahn et al. 2014]. Their approach, however, requires the

evaluation and projection of full-space internal forces and stiffness
matrices, which we can avoid. Furthermore, in order to avoid pop-
ping, their method requires re-projecting the deformation at each
frame to a new basis. Our method creates the subspace by inter-
polating aligned basis vectors, which requires no re-projection and
therefore avoid re-projection errors and loss of energy.

In the engineering community, interpolation between parameter-
ized reduced-order models has been explored for aeroelasticity,
thermal design and probabilistic analysis [Amsallem and Farhat
2008; Degroote et al. 2010; Amsallem and Farhat 2011]. In these
methods, the varying parameter is typically a flow constant, such
as the Mach number, whereas the structural deformations are small
and often linearized. In our work, we interpolate bases for geomet-
ric shapes that have undergone large deformations. Different from
these methods outside of computer graphics, we demonstrate how
to construct a system that runs at hard real-time rates for complex
three-dimensional geometry undergoing large deformations.

Teng et al. [2014] computed self-contact forces in the subspace with
pose-space cubature, by exploiting contact coherence for articu-
lated bodies. Similarly, we detect self-contact at example poses, but
then bake the contact information into the construction of our pose-
dependent bases. This avoids the need for run-time self-collision
detection and resolution, trading accuracy for performance for hard
real-time applications. We also demonstrate how to support local-
ized deformations using spatially localized basis functions. Local
subspace deformations can be accommodated with the use of ana-
lytic Boussinesq solutions [Harmon and Zorin 2013], bi-harmonic
weights [Jacobson et al. 2011], discrete Laplacian [Wang et al.
2015], sparse matrix decomposition of animation sequences [Neu-
mann et al. 2013], or domain decomposition [Barbič and Zhao
2011; Kim and James 2012; Yang et al. 2013]. Huang et al. [2012]
trained spatially-local skinning deformation mappings in the lo-
cal pose space. In contrast to prior work, our localized deforma-
tions are designed for physical simulation involving large defor-
mations induced by a character rig, and are free of seaming arti-
facts. We construct our localized bases by letting the user spec-
ify a few points to denote individual regions, upon which a scalar
“region function” is computed for each region, using bounded bi-
harmonic weights [Jacobson et al. 2011]. Different from [Jacobson
et al. 2011] who used bi-harmonic functions directly as the defor-
mation subspace for static shape editing, we only use them to define
overlapping regions for model reduction, and simulate real-time dy-
namics.

3 Background: Pose-Space Deformation

In our work, we add physically based secondary motion effects, in
real-time, to triangle mesh animations obtained using any charac-
ter rigging process. In order to do so, we will employ a simulation
tetrahedral mesh. We denote all quantities y referring to the trian-
gle and tetrahedral meshes as ȳ and y, respectively. The input to
our method is an undeformed (also called neutral) triangle mesh
Γ̄ ∈ R3n̄ with n̄ vertices with positions X̄ ∈ R3n̄, alongside with an
arbitrary rigging function Φ̄(p, X̄). Here, p ∈ Rs is the rig parame-
ter which defines the specific pose. The rig function Φ̄(p, X̄) ∈R3n̄

gives the rig-deformed vertex positions; these positions are stati-
cally determined by p, devoid of any dynamics. Note that the pose
p may correspond to the joint angles of the character, but it can
also be more general; e.g., sliders in a rigging deformer, or even
any more abstract space. Our general formulation for Φ̄ incorpo-
rates elaborate character “production” rigs, nonlinear deformers,
skeleton-based methods (linear blend skinning, dual quaternions),
and blend-shape animations. In our system, the rigging function Φ̄

is treated as a black-box, and we do not require its explicit formula;
we only need the ability to evaluate Φ̄(p, X̄) for an arbitrary p and



X̄ . This allows us to use our method with, say, standard animation
packages such as Autodesk Maya.

Pose-space Deformation is a method that combines skeleton
subspace deformation (SSD) [Magnenat-Thalmann et al. 1988]
with artist-corrected pose shapes [Lewis et al. 2000]. Given a set of
triangle mesh poses S̄i corresponding to poses pi, for i = 1, . . . ,m,
typically obtained directly by skinning or rigging, the artist pro-
vides corrections δ̄i ∈R3n̄ that, for example, undo a candy wrapper
effect or improve volume preservation. We can then incorporate
these correction into the rig, by redefining it

Φ̄(p, X̄) → Φ̄(p, X̄)+ δ̄ (p). (1)

The nonlinear deformation correction δ̄ (p) can be obtained via
scattered-data interpolation using Radial Basis Functions (RBF) in
the pose-space as

δ̄ (p) =
m

∑
i=1

wi(p)δ̄i, for wi(p) =
m

∑
j=1

ŵi jφ(‖p− p j‖), (2)

where wi(p) ∈ R, i = 1, . . . ,m, are the normalized interpolation
weights, ŵi j ∈ R are the RBF-trained weights so that wi(p j) is 1
when i = j and 0 otherwise, and φ is the RBF kernel function. In
our system, we employ the globally supported commonly used bi-
harmonic RBF kernel φ(r) = r, considering the sparsity of the ex-
ample poses [Carr et al. 2001]. Note that in principle, a distinction
in notation should be made between the original rig function, and
the rig function that incorporates the PSD corrections. In our paper,
we will hereforth simply use Φ̄ to denote the PSD-corrected rig, be-
cause we never need to reference the original rig again. Our method
works equally well even if there is no PSD correction. Because X̄
is constant, we will often drop X̄ and simply write Φ̄(p).

4 Pose-Space Dynamics

How can one define meaningful physically-based dynamics for the
rigging function Φ̄? We assume that the trajectory p = p(t) is given
externally, as our input. This is compatible with the usual com-
puter animation pipelines, as p(t) can be obtained in any standard
way: motion capture, procedural animation, inverse kinematics,
etc. Therefore, in departure to prior work on rig-space physics,
we chose not to modify p or evolve p according to an ODE. In-
stead, we treat each configuration p as if it was a new rest config-
uration of the object. The justification for this decision is that in
static (non-dynamic) PSD, a pose p uniquely defines the shape: if
p is kept constant, the shape in static PSD never changes and can as
such be seen as the rest shape corresponding to p. A similar view
has been proposed by Liu et al. [2013], who used it for unreduced
FEM simulation and control, limited to linear blend skinning and
the co-rotational material. As p= p(t) evolves over time, the object
undergoes a trajectory of rest configurations. For each p, we then
simulate dynamics on top of this time-varying rest pose. Note that
our dynamic PSD supports, using pose-space interpolation, effects
such as materials stiffening in specific poses due to a large strain,
or due to activation (muscles). We can simulate any physical force,
such as gravity, collision forces or user forces. Additionally, the dy-
namics are driven by the inertial (also called “system”, “fictitious”,
or “d’Alembert”) forces, arising due to the changing rig parameter
p. Inertial forces are responsible for most of our dynamics, such as
the tissue overshooting when the character stops, or deformations
under Coriolis forces due to bone motion. The output of our method
is an animation of Γ̄ that is driven by p = p(t), but is enriched with
physically-based secondary motion.

4.1 Pose-Space Tetrahedral Mesh

Our secondary motion originates from a pose-aware model-reduced
FEM simulation of the tetrahedral mesh Γ ∈ R3n. During pre-
process, we compute Γ by meshing the space enclosed by Γ̄, in the
neutral configuration. Our method accommodates arbitrary, non-
manifold triangular geometry Γ̄, using signed distance field mesh-
ing [Xu and Barbič 2014]. The input rig function Φ̄ is defined
on the triangle mesh Γ̄, whereas we run physically-based simula-
tions on the tetrahedral mesh Γ. Therefore, we need to define the
rig function Φ on the tetrahedral mesh. For each tet mesh vertex i,
we perform this by interpolating the displacements of the nearest k
triangle mesh vertices (we use k = 4 in our method), using Shepard
“inverse-distance” weights [Barnhill et al. 1983]. The interpolation
weights are determined during the pre-process, in the neutral con-
figuration. Such a method may produce a non-smooth deformation
of Γ, when the vertex distribution of Γ̄ is non-uniform. Therefore,
in spirit of PSD, for each pose pi, we first compute a “physical”
well-fitted tet mesh, using optimization [Barbič et al. 2009]

Φ(pi) = argmin
x̂

(
‖Ax̂− Φ̄(pi)‖2

M + γE(x̂)
)
. (3)

Here, A is the sparse barycentric interpolation matrix between Γ and
Γ̄, determined in the neutral pose, E(x̂) is the elastic strain energy
for tet mesh vertex positions x̂ with respect to the neutral configu-
ration, and γ > 0 is a regularization constant. We store the differ-
ence between the Shepard-interpolated mesh and Φ(pi) as correc-
tions δ = {δ1,δ2, . . . ,δm}, at each pose. At run time, we correct
the Shepard-interpolated tet mesh with a PSD-interpolated correc-
tion δ (p) = w(p)δ ∈ R3n. We note that the “rig-space physics”
method [Hahn et al. 2013] addresses a similar technical issue by
training weights relating displacements of surface simulation ver-
tices to the interior vertices, using static simulation. While such
a method could be used to further improve the fit, the PSD scheme
above is very fast, and avoids the need for a weight training process.

4.2 Equations of Motion

Our dynamics is layered on top of the triangle mesh driven by the
rig parameter p. At any frame, we treat the current rigged mesh
Φ(p) as the rest shape. The dynamic deformation u ∈ R3n then
gives the displacements away from this rest shape, in world coordi-
nates. We write the equations of motion for the tetrahedral mesh as

M(p)ü+Du̇+ fint
(
Φ(p),u

)
= fext + finert, (4)

where M(p) ∈ R3n×3n is the mass matrix, D ∈ R3n×3n is the
damping matrix, fint(x,u) ∈ R3n is the internal force under the
rest shape x and displacements u away from x, fext ∈ R3n are
the external forces and finert ∈ R3n are the inertial forces caused
by the motion p = p(t). We use the Rayleigh damping model
D = αM + βK(Φ(p),u), where K(Φ(p),u) ∈ R3n is the tangent
stiffness matrix with respect to the current rest shape. Vector u
gives the displacements relative to Φ(p), expressed in the world-
coordinate system. We add the inertial force finert to model the
effect of the changing rig parameter p onto the deformation u. Con-
sider a sequence of tet mesh rest poses x(p), under a time-varying p.
Then, any location in the material, at any time t, undergoes a world-
coordinate acceleration ẍ(p) with respect to the world-coordinate
system, simply because of the rig-induced motion. Therefore, from
the point of view of a non-inertial coordinate system attached to a
small volume dV in the material, the material experiences an iner-
tial force−ρ ẍ(p)dV, where ρ is mass density. The inertial force on
the tet mesh vertices equals finert =−Ma(p) =−Md2x(p)/dt2. We
show how to efficiently evaluate finert in Section 5.4. We compute
the final deformed position of the triangle mesh Γ̄ as Φ̄(p)+Au, as



Figure 4: The modes change significantly under large defor-
mations. (a) We compare the modes for a cantilever beam, and
cantilever beam twisted into a “U-shape”. Reduced models com-
puted in pose 1 are vastly inexact when simply geometrically trans-
ferred to pose 2 (middle). If they are used for simulation, unnatu-
ral deformations appear (right). For this experiment, we statically
loaded the beam with two representative force loads. The warped
modes results are obviously wrong. (b) Transforming the deforma-
tions back to the neutral shape, and computing dynamics using the
basis computed in the neutral pose [Galoppo et al. 2009] also pro-
duces incorrect simulation results.

opposed to A(Φ(p)+ u). Such a choice uses the quality rig shape
Φ̄(p), and makes our system more forgivable to errors in the online-
fitted tet mesh Φ(p), even when Γ does not perfectly enclose Γ̄.

5 Reduced Pose-Space Dynamics

Equation 4 is too slow for interactive systems. In order to accel-
erate the computation, we employ model reduction, making the
dynamic simulation independent of the mesh size. Such a model
reduction, however, must incorporate the fact that we are dealing
with a time-varying rest shape. Reduced models computed under
one rest shape are vastly incorrect under a new rest shape, if simply
geometrically transferred, say, using the local deformation gradi-
ents or the rigging function (Figure 4). The errors occur because
both the basis and the reduced internal forces change substantially
under large rest shape changes. They are not simply rotated, or
transformed with a deformation gradient, or any similar geometric
transformation. Our problem therefore becomes one of generating
a sufficient number of reduced models Φ(pi), and properly combin-
ing them at runtime, based on the current p. Assuming that a good
basis U(p) ∈ R3n×r(r� 3n) for a rig shape Φ(p) is known, then,
for a fixed p, the ODE in Equation 4 can be projected to

M̃q̈+ D̃q̇+ f̃int

(
Φ(p),U(p)q

)
= f̃ext + f̃inert (5)

D̃ = αM̃+β K̃, M̃ =UT (p)MU(p), (6)

K̃ =UT (p)K
(

Φ(p),U(p)q
)

U(p), (7)

f̃int

(
Φ(p),U(p)q

)
=UT (p) fint

(
Φ(p),U(p)q

)
, (8)

f̃ext =UT (p) fext, f̃inert =UT (p) finert, (9)

where q are the reduced coordinates. In order to form a new ba-
sis U(p) at runtime, one could solve the generalized eigenproblem
Ku = λMu, and then enrich the linear modes with modal deriva-
tives [Barbič and James 2005]. Solving such a generalized eigen-
problem is quite expensive, however, and not suitable for runtime

Figure 5: Reduced models under contact. The human arm pose
(top left) has 197 contact points between the upper arm, forearm
and the body. Our basis computed with linear constraints effec-
tively prevents self-penetration during the motion, while basis with-
out constraints cannot (top right). The second rows compares the
modes computed without and with contact constraints (blue: low
deformation magnitude; red: high deformation magnitude). The
reduced modes are significantly different when contact is involved.

computation. Moreover, without preprocessing the reduced inter-
nal forces, such as by using cubature [An et al. 2008] or StVK cu-
bic polynomials [Barbič and James 2005], computing the reduced
internal forces, mass matrix and the reduced tangent stiffness ma-
trix for implicit integration are orders of magnitude too slow for
real-time simulation of complex meshes.

Another challenge that we must address is that, generally, when
a basis is changed, popping may occur. To remove the popping
artifacts when transforming to a new basis, careful design of the
basis [Hahn et al. 2014] is generally needed. Re-projecting the
full-space state variables (u, u̇, ü) to obtain new reduced state vec-
tors (q, q̇, q̈) is also necessary in previous methods [Kim and James
2009; Harmon and Zorin 2013; Hahn et al. 2014], an operation
which introduces a certain amount of energy loss (artificial damp-
ing). One approach to avoid these issues is to construct a pose-
independent basis using Principal Component Analysis. This has
been done either by using full simulation data [Teng et al. 2014], or
by combining bases computed at shapes obtained by perturbing the
neutral configuration with the morph targets [Galoppo et al. 2009].
However, because these methods ultimately use one big, pose-
independent global basis, the number of required modes needed to
accommodate a wide range of rig shapes will typically be quite
large. A pose-global basis is especially problematic when mate-
rial properties, and, crucially, contact configurations, change with
p (Figures 5, 14). In our work, we do not form a pose-independent
basis. Instead, we construct a local basis, and a reduced model, at
each pose pi, and then interpolate these bases and reduced models
at runtime.

Similar to PSD sculpting, we leave the pose selection to the artist.
We build a reduced model at each PSD-corrected pose (plus the
neutral pose) pi, for i = 1, . . . ,m. We choose these poses because
PSD corrections are usually needed at extreme poses where ge-
ometry undergoes significant changes, and hence these are natu-
ral choices for where a modified reduced dynamic model is also
needed. If additional reduced models are needed at poses where a
PSD correction was not provided, such as at poses with significant
material or contact configuration changes, we simply increase m to
include such poses, with an interpolated PSD correction. For each
mesh pose pi, i = 1, . . . ,m, we first fit the corresponding tetrahe-
dral mesh pose Φ(pi), using Equation 3. We then construct a basis
Ui ∈ R3n×r, by first solving the generalized eigenproblem (for a



Figure 6: Basis alignment. The basis vectors may permute, or
change completely, due to shape changes, varying contact configu-
rations and material property changes. In this case, the two poses
are almost identical with only a small perturbation ε on the width
and height of the beam. The first two modes permute. When ε is
close to 0 and we do interpolation with weights (0.5,0.5), direct
linear interpolation of basis columns, followed by normalization,
results in two identical modes (degenerated subspace). Our align-
ment procedure (right) produces a good interpolated basis.

small number of eigenvalues r̂)

K
(
Φ(pi)

)
U lin

i = MU lin
i Λ, (10)

where Λ ∈ Rr̂×r̂ is a diagonal matrix consisting of the first r̂ eigen-
values. To accommodate large deformations around each pose,
we augment U lin

i with modal derivatives [Barbič and James 2005].
We use the same basis size r for all of our poses. We also mass-
orthonormalize our bases, UT

i MUi = I.

It is not immediately obvious how to obtain a basis U(p) for some
arbitrary pose p, based on known bases Ui, how to then compute the
reduced internal forces, stiffness matrices and inertial forces, and
do so rapidly even for complex models, so that the method is useful
for real-time applications in games and virtual reality. To the best
of our knowledge, we are the first work in interactive simulation
of nonlinear elastic solids to undertake such a challenge. We now
describe our solution: pose-space basis alignment and interpolation
procedure, which addresses these challenges while still maintaining
hard real-time performance.

5.1 Basis Alignment

At runtime, for a given new pose parameter p, we construct the re-
duced basis U(p) by interpolating the pose bases. How to interpo-
late two or more bases? A naive approach is to linearly interpolate
each column of the basis matrix, optionally followed by normaliza-
tion. These approaches fail because columns with the same index i
do not necessary match each other in any meaningful way. This is
especially pronounced when the deformation is substantial, or the
contact configuration or material properties change. In such cases,
the basis content changes fundamentally, and there is no obvious
correspondence between the basis vectors. The naive interpolation
approach produces visible artifacts (Figure 6).

Given two reduced bases Ui and U j defined on a common under-
lying mesh, we instead ask, what is the natural, minimal transfor-
mation of the linear subspace spanned by the columns of Ui into
the linear subspace spanned by the columns of U j? Such a trans-
formation can be discovered by solving for congruence rotations
Qi,Q j ∈ Rr×r, such that UiQi can be interpolated into U jQ j sim-
ply by linearly interpolating the columns. Because of symmetry,
we can fix one of the basis transformations to be identity (Qi = Ir),
and then Q j can be obtained by solving an orthogonal Procrustes

Figure 7: Mesh alignment before Procrustes alignment.
Procrustes-only alignment of bases between two meshes with equal
topology, but distinct vertex positions, can easily produce incorrect
results, as modes may be matched to incorrect modes. In this case,
pose 1 and 2 are rotated by 90 degrees with respect to each other,
but are otherwise identical. Hence, the modes for pose 1 and 2 are
the same, but rotated by 90 degrees. Without mesh pre-alignment,
the Procrustes basis alignment will yield a mode permutation. In
our method, we first un-rotate the second basis with the local ge-
ometric rotation between the two meshes, then perform Procrustes
alignment, and rotate back, which greatly improves the alignment.

Figure 8: Basis alignment on a complex mesh with self-contact:
Given bases matrices Ui ∈ R3n×r computed at poses i = 1,2, and
incorporating self-contact constraints, our Procrustes alignment
finds a basis U2Q (for some Q∈Rr×r) spanning the same subspace
as U2 at pose 2, which optimally aligns with U1. After alignment,
basis matrix columns can be linearly interpolated.

problem [Gower and Dijksterhuis 2004], minimizing

Q j = argmin
Q∈Rr×r

‖U jQ−Ui‖M , subject to QT Q = Ir. (11)

The optimal transformation Q j can be determined analytically as

UT
j MUi = Y ΣZT (SVD), Q j = Y ZT , (12)

where Y = [y1,y2, . . . ,yr] ∈ Rr×r, Z = [z1,z2, . . . ,zr] ∈ Rr×r, and
Σ = diag[σ1,σ2, . . . ,σr] ∈ Rr×r. Figure 8 demonstrates such an
alignment result. Note that the subspace angles θk, k = 1, . . . ,r,
between the two basis vectors U jyk and Uizk can be computed as
θk = arccos(σk). A subspace angle θk = 0 denotes perfect consis-
tency between the associated vectors. On the other hand, a large
subspace angle indicates that the two subspaces are dissimilar. Such
a metric can be used to insert an intermediate pose as needed.

In our work, the two bases Ui =U(pi) and U j =U(p j) correspond
to poses pi and p j, respectively. They are defined on meshes Φ(pi)
and Φ(p j) that have the same connectivity, but different vertex po-
sitions. Therefore, the approach from the previous paragraph does
not work if there are large rotations between the two meshes. For
example, suppose that pose j is obtained from pose i by a global ro-
tation. In such a case, the individual basis vectors at each vertex will



Figure 9: The alignment graph G for the human arm example.

simply be rotated by this global rotation, which will cause the Pro-
crustes procedure to incorrectly align them (Figure 7). We address
this issue by aligning the two geometric shapes using local ver-
tex rotations. Before the Procrustes alignment, we first per-vertex-
rotate basis U j, to transform it onto pose i, so that the Procrustes
alignment then proceeds on rotation-aligned shapes. To transform
U j to pose i, we compute per-vertex rotations Rk

i j ∈ R3×3 from xi
to x j, for vertices k = 1, . . . ,n,

Rk
i j = quaternionToRotation

(∑e∈Nk
qe

i jV
e

∑e∈Nk
V e

)
, Fe

i j = Qe
i jR

e
i j, (13)

where Nk is the 1-ring of neighboring elements to vertex k, V e is
the element volume in pose i, and Fe

i j ∈ R3×3 is the element defor-
mation gradient between poses i and j. We perform polar decompo-
sition to obtain per-element rotations Re

i j ∈ R3×3 and convert them
to quaternions qe

i j. Then, we rotate vertex k in each basis vector of

U j by
(
Rk

i j
)−1

, and perform Procrustes alignment. After the align-
ment, we then rotate the aligned matrix back to pose j, using Rk

i j.

So far, we have discussed alignment between two poses. We now
consider the basis alignment among multiple poses. Conceptually,
we can form a directed graph G whose nodes are poses, and two
nodes i and j are joined by a directed edge if we perform an align-
ment between Ui and U j. Because one rotation Qi = I in each pair
is fixed, the graph must be connected and free of cycles, with each
node receiving at most a single incoming connection, but poten-
tially having multiple outgoing connections, i.e., a tree. Given a set
of poses, G can take many forms. Any node can in principle serve as
the root, but it is most natural for the neutral pose to be the root. Our
alignment strategy proceeds greedily from the neutral pose (root),
maintaining a list of nodes that have already been connected in the
tree. At any step, it selects the node pair (i, j) that minimizes the
distance ||pi− p j||2, where i and j are poses from the connected
and un-connected part of G, respectively. It then aligns j to i and
adds j to the connected set. These steps are repeated until the entire
G is connected (Figure 9).

5.2 Basis Interpolation

With all the bases aligned, we can now do runtime basis interpo-
lation to new poses p (Figure 10). In order to preserve the mass
orthogonality of the basis, one may choose to interpolate basis on
the tangent space of the Grassman manifold [Amsallem and Farhat
2008]. However, doing so requires a logarithmic mapping of the
bases onto the Grassman manifold tangent space, and an exponen-
tial map of the interpolated basis back to manifold, which are ex-
pensive to evaluate at runtime. Mass-orthogonality of the basis is a
useful, but not a strictly necessary property for our method. As long
as the columns of U are linearly independent, the reduced stiffness
matrix K̃ remains invertible. In addition, K̃ is regularized by the

Figure 10: Basis interpolation. Our basis interpolation between
pre-aligned subspaces provides a very good approximation to the
subspace recomputed using the exact interpolated geometry. Sim-
ilarly, our interpolated cubature weights also produce small ap-
proximation error. The error in approximating exact forces using
cubature for poses 1 and 2 is 1.1% and 1.9%, respectively. In the
intermediate shape, our interpolated cubature error computed with
the interpolated bases is 1.5% while recomputed cubature error is
1.3%.

presence of M̃ in the reduced system. Hence, the reduced simula-
tion can proceed without issues even if the columns of U are not
orthogonal. Because we have pre-aligned our bases, we have found
that it is in practice sufficient to only enforce a unit mass-norm of
each interpolated basis vector. We start by linearly interpolating the
bases with PSD scatter-data interpolation weights (Equation 2),

Û(p) =
m

∑
i=1

wi(p)Ui, (14)

where Û(p) is the interpolated basis before mass-normalization.
The mass-norm υk of the k-th basis vector can be computed as

υ
2
k (p) = ‖

m

∑
i=1

wi(p)Uk
i ‖2

M =
m

∑
i=1

m

∑
j=1

wi(p)w j(p)
(
Uk

i
)T MUk

j . (15)

Then, we form a diagonal matrix ϒ(p) ∈ Rr×r consisting of
1.0/υk(p). The normalized basis and reduced mass matrix are

U = Ûϒ, M̃ = ϒ
TÛT MÛϒ = ϒ

T
( m

∑
i=1

m

∑
j=1

wiw jUT
i MU j

)
ϒ, (16)

where we have dropped the dependency of U,Û ,ϒ,wi,w j on p, for
brevity. The matrices UT

i MU j ∈ Rr×r, i, j = 1, . . . ,m, can be pre-
computed. At runtime, we first evaluate the double sum in Equa-
tion 16. By Equation 15, the diagonal of the resulting matrix con-
sists of υ2

k . We can then form ϒ, and evaluate M̃ and f̃ext. We eval-
uate quantities K̃, f̃int, f̃inert using cubature (Section 5.3). Note that
the diagonal entries of M̃ are always 1 in our method. Our construc-
tion ensures that the reduced mass matrix and the interpolated basis
are always consistent with each other, M̃(p) =U(p)T MU(p). The
full-space mass matrix M is less sensitive to pose changes than the
stiffness matrix. We assume that the mass distribution around ev-
ery vertex roughly stays unmodified at the different poses, and use
a constant mass matrix for simplicity. Pose-dependent M(p) could
be accommodated by evaluating Equation 16 using cubature.

In [Kim and James 2009; Harmon and Zorin 2013; Hahn et al.
2014], full-space quantities (u, u̇, ü) must be re-projected into the
new basis each time the basis changes. This is not necessary in our
method, and both simplifies the computation and avoids the artifi-
cial damping introduced by such a re-projection. We can avoid the
re-projection because our displacement vector u is always defined



with respect to the current pose p. Similarly to how the rest shapes
are morphed via the rig Φ̄(p), our basis interpolation can be seen as
morphing displacements (away from the rigged shape), as p varies.
The basis U(p) defines the current local coordinates at each vertex
that interpret the meaning of q, and updating the pose p is equiv-
alent to transforming this “local coordinate system”. Furthermore,
the bases are pre-aligned and thus it is not necessary to remap the
reduced quantities. We mass-normalize the basis and thus magni-
tudes of the displacements vary smoothly, free of popping artifacts.

5.3 Pose-Space Cubature for Elasticity

We now describe how we quickly evaluate the reduced inter-
nal forces f̃int(Φ(p),U(p)q) and reduced tangent stiffness matrix
K̃(Φ(p),U(p)q), for general nonlinear material, under the interpo-
lated basis U(p), for arbitrary p and q. For the linear StVK material,
Galoppo [2009] proposed computing these quantities by the inter-
polation of cubic polynomial coefficients associated with each pose.
We introduce pose-space cubature to simulate arbitrary, nonlinear
materials, similar in spirit to [An et al. 2008; Teng et al. 2014], but
for multi-pose reduced elasticity.

For each pose pi, we determine a cubature element set Ci, and the
corresponding cubature weights vi ∈ Rci , where ci = |Ci|. At run-
time, we then linearly interpolate the cubature weights to each pose
p, using PSD weights. In each pose pi, we generate T random cu-
bature samples, q(i,k), k = 1, . . . ,T. The samples are obtained by
randomly sampling a Gaussian distribution for each mode, with
standard deviations proportional to the inverse of the modes stiff-
ness [An et al. 2008]. Independent cubature training at each pose
would in general result in different per-pose cubature tets. There-
fore, during runtime interpolation, the cardinality could grow as
large as ∑

m
i=1 ci. To avoid this problem, we use the same set of cu-

bature elements at every pose, Ci = C. We select this global cu-
bature set C based on the combined mT samples at all poses, us-
ing Hard Thresholding Pursuit (HTP) [von Tycowicz et al. 2013].
The weights are determined using Non-Negative Least Squares
(NNLS) [Chen and Plemmons 2006],

g1
1 g2

1 . . . gc
1

g1
2 g2

2 . . . gc
2

· · ·
g1

m g2
m . . . gc

m

v =

 b1
b2
· · ·
bm

 , ν ≥ 0, (17)

where the k-th components of vectors ge
i ∈ RT and bi ∈ RT , for

k = 1, . . . ,T, equal

ge
i,k =

UeT
i f e

int(Φ(pi),Ue
i q(i,k))

‖ f̃int(Φ(pi),Uiq(i,k))‖
, bi,k =

f̃int(Φ(pi),Uiq(i,k))
‖ f̃int(Φ(pi),Uiq(i,k))‖

.

(18)

Here, Ue
i ∈R12×r and f e

int ∈R
12 are the basis Ui and internal forces

restricted to element e, respectively.

After C is determined, we then separately optimize the cubature
weights vi for each pose, under the element set C, by solving[

g1
i g2

i . . . gc
i
]

vi = bi, vi ≥ 0. (19)

Such an additional optimization step gives per-pose optimized cu-
bature weights, and lowers the relative error at each pose. At run-
time, we obtain the interpolated cubature weights v(p) as

v(p) =
m

∑
i=1

wi(p)vi. (20)

The reduced internal forces f̃int(Φ(p),U(p)q) and stiffness matrix
K̃(Φ(p),U(p)q) can be approximated as

f̃int

(
Φ(p),U(p)q

)
= ∑

e∈C
ve(p)Ue(p)T f e

int

(
Φ(p),Ue(p)q

)
(21)

K̃
(

Φ(p),U(p)q
)
= ∑

e∈C
ve(p)Ue(p)T Ke

(
Φ(p),Ue(p)q

)
Ue(p).

(22)

At runtime, we evaluate f e
int and Ke with respect to the exact rest

shape positions Φ(p). We do so by explicitly computing the rest po-
sitions, in pose p, of the cubature tets C only (Section 4.1). Because
the set C represents only a small fraction of the entire tetrahedral
mesh, these rest shapes can be computed with minimal overhead.

5.4 Pose-Space Cubature for Inertial Forces

If Φ̄ is explicitly described, we can find a closed-form expression
for UT finert. For a general Φ̄, one approach is to evaluate finert us-
ing finite differences, and then project. Such a calculation, however,
involves full-space quantities. We now give an approach that com-
putes f̃inert using cubature approximation for a general “black-box”
Φ̄. The goal of the training stage is to locate a small cubature set of
vertices C′ such that

f̃inert = ∑
s∈C′

v′sU s(p)T f s
inert (23)

approximates reduced inertial forces to some desired degree of ac-
curacy. Here v′ are the cubature weights, and U s(p) ∈ R3×r and
f s
inert are the basis U(p) and inertial force finert restricted to vertex

s, respectively. We evaluate it as

f s
inert = ∑

j
ms j

d2x j

dt2 , (24)

where x j is the j-th vertex entry of Φ(p). The summation runs over
all vertices of tets adjacent to vertex s, and ms j is the 3× 3 block
of the mass matrix corresponding to vertices s and j. We evaluate
the acceleration of vertex j using finite differences. Therefore, at
run time, we only need to evaluate accelerations on a small set of
tet mesh vertices.

Cubature training: To determine C′ and v′, we first randomly
perturb the pose p around each pose pi, generating T′+ 2 sample
deformations of the tet mesh for each i. Our perturbations have a
prescribed maximum magnitude: we use 1◦ for rotation angles, and
1mm for translational degrees of freedom of human-sized charac-
ters. We treat the T′+2 samples as consecutive frames in time and
use them to obtain T′ sample inertial forces with finite differences.
We then combine all the samples at all poses into a global cubature
solve. Namely, we find C′ and v′ using Equation 17, where the k-th
component of vectors gs

i ∈ RT′ and bi ∈ RT′ for k = 1, . . . ,T′, is

gs
i,k =

U sT
i ( f s

inert(xi)
(k))

‖UT
i ( finert(xi)(k))‖

, bi,k =
UT

i ( finert(xi)
(k))

‖UT
i ( finert(xi)(k))‖

. (25)

Here, s = 1, . . . , |C′| denotes the s-th cubature tetrahedral mesh ver-
tex. We could continue optimizing the cubature weights for each
pose with pose-space cubature, analogous to Equation 19. How-
ever, we found that the globally obtained C′ and v′ already work
well in practice. Our relative training error is under 3% both for
elasticity and inertial force, in all examples.



6 Self-Contact-Aware Model Reduction

Self-collision detection and response are expensive operations for
real-time applications. Even if they were inexpensive, the dynam-
ics in the presence of contact will be incorrect if the basis does not
incorporate contact. We first resolve self-contact at each pose using
any existing method. This can be done by the artist when sculpting
a PSD pose, or it can be automated using a self-collision resolution
algorithm. The contact corrections are simply stored into the PSD
correction vector δ̄ (p). Next, we construct a basis that is aware of
the contact constraint, and as such the modes prohibit any deeper
penetrations (Figure 5). This is done by solving a constrained
sparse generalized eigenvalue problem, for which we propose an
efficient numerical procedure. To the best of our knowledge, we are
first to incorporate such pose-dependent contact into the construc-
tion of the basis for model reduction, by giving a practical algorithm
to compute linear vibration modes under constraints. Although the
contact is a unilateral constraint, we choose to model it as a bilat-
eral constraint that keeps the contact in place. This approximation
is motivated by two practical observations: (1) self-contact that we
are interested in occurs near the joints, such as the elbow and the
hip. In poses p that are self-colliding, assuming p is held fixed, the
contacting elastic material is in permanent contact as the two sides
of the arm or leg are firmly pressing against each other. Hence, it
is difficult for such a contact to separate, but a deeper penetration
could occur without a bilateral constraint, and (2) we are targeting
interactive applications where accuracy can be traded for speed.

Our contacts consist of c contact vertices of the tet mesh Γ, along
with a contact normal Ni, i = 1, . . . ,c. The contacts are detected by
running collision detection on the surface mesh of the fitted tet mesh
for each pose. Bilateral contact constraints can then be expressed
as Cu = 0, where C ∈ Rc×3n. Our constraints include fixed con-
straints, Siu = 0, or only permit sliding motion in the plane normal
to contact, NT

i Siu = 0, where Si ∈ R3×3n is the matrix that selects
the DOFs of the contact vertex from displacement u of Γ. We al-
ways enforce full-rank property of C, by removing redundant rows
using SVD, i.e., removing all the corresponding right singular rows
of C for singular values under some threshold ε; we use ε = 10−6.

Given the constraint matrix C, we compute the linear modes ϕi ∈
R3n as the smallest r̂ eigenvectors of the constrained generalized
eigenproblem

Kϕi = λiMϕi, subject to Cϕi = 0. (26)

The modes can be obtained by finding the nullspace Z∈R3n×(3n−c)

of C, and then set ϕi =Zyi, for some unknown yi ∈R3n−c. The con-
strained eigenproblem becomes an unconstrained eigenproblem,(

ZT KZ
)

yi = λi

(
ZT MZ

)
yi. (27)

Because K and M are symmetric positive-definite, the matrices
K̂ =

(
ZT KZ

)
and M̂ =

(
ZT MZ

)
are also symmetric and positive-

definite (proof in Appendix A). Hence, the Eigenproblem 27 can be
solved using a standard generalized Arnoldi eigensolver [Lehoucq
et al. 1997]. Special care needs to be taken because the matri-
ces K̂ and M̂ are obtained by multiplying sparse matrices, but are
not themselves sparse. We address this issue by noting that the
Arnoldi-based solvers only require a “black-box” ability to multi-
ply an arbitrary vector x with the matrix M̂−1K̂. Multiplying K̂x can
be performed efficiently simply by multiplying with sparse matri-
ces ZT ,K,Z. Multiplying with M̂−1 can be performed by solving
a linear system using the conjugate gradient method, where only
multiplications with M̂ are required. We augment the linear modal
basis with constrained modal derivatives ψi j by solving(

ZT KZ
)

zi j =−ZT
(
(H : ϕi)ϕ j

)
, ψi j = Zzi j, (28)

where H is the Hessian stiffness tensor. Again, the linear system
can be solved using conjugate gradients. Only multiplications with
sparse matrices ZT , K and Z are required.

We find the nullspace Z as follows. Because C is a full-rank matrix,
the fundamental theorem of linear algebra guarantees that there ex-
ists a permutation matrix P ∈ R3n×3n that permutes the columns of
C so that the first c columns of CP = [ Cp Cn ] form an invertible
matrix Cp ∈ Rc×c, and Cn ∈ Rc×(3n−c). The nullspace matrix can
then be obtained as

Z= P
[
−C−1

p Cn
I

]
. (29)

The process of finding the permutation matrix is equivalent to
LU factorization with column pivoting, CP = L [Up Un ], where
L ∈ Rc×c is lower-triangular, Up ∈ Rc×c is upper-triangular, and
Un ∈ Rc×(3n−c). After performing the LU factorization with col-
umn pivoting, we then compute and store the top-block of Z as

−C−1
p Cn = (LUp)

−1(LUn) =U−1
p Un. (30)

Instead of using conjugate gradients, one can solve linear systems
with M̂ and K̂ approximately, by cutting all entries of Z with an
absolute value below a small threshold ε = 10−10. This converts
Z, and therefore M̂ and K̂, into sparse matrices, and one can then
use a direct linear system solver (we use Pardiso [Pardiso 2015]).
We accelerate the CG solver by using the thresholded solver as a
preconditioner, which gave us a speedup of approximately 1.5× in
our examples. Our preconditioned CG method computed the con-
strained eigenmodes in a few seconds (Table 1), making it possible
to easily generate constrained modes in our preprocessing pipeline.

3n c uncons cons-thresh cons-CG
human arm 7092 54 0.9 s 1.2 s 2.6 s
polar bear 12054 73 1.9 s 2.2 s 7.3 s

gorilla 11313 114 1.7 s 2.4 s 6.2 s

Table 1: Eigenmodes computation (representative pose, 20 modes):
unconstrained (uncons), constrained thresholded (cons-thresh),
constrained using CG (cons-CG; preconditioned with cons-thresh).
Scalability with #modes (gorilla): cons-CG takes 5.4s, 6.2s, 11.7s,
18.7s for 10, 20, 50, 100 modes, respectively.

7 Localized Model Reduction

With spatially global modal vectors, the complexity of runtime ba-
sis interpolation and cubature-based reduced simulation grow lin-
early and cubically with the number of modal vectors r, respec-
tively. Although spatially global basis vectors produce good re-
sults for small and moderate problems, local deformation handling
is generally improved by increasing r. We address this problem
by computing localized basis functions. We do so by computing
smooth scalar weights that define overlapping local regions of the
tetrahedral mesh (Figure 2 (a)), and then compute a localized basis
in each region. We note that it has been challenging to define local-
ized basis functions for model reduction that can work with large
deformations induced by a character rig. One proposed solution
has been to partition the character into multiple domains, model-
reduce each domain, drive the rigid body motion of each domain
by a skeleton, and employ coupling elastic forces at the joints to
keep the deformation continuous [Kim and James 2012]. Because
our pose-space basis construction does not need joints, our local
regions do not need to be partitioned at the joints, and can (and
should) overlap partially with each other. We show how to con-
struct basis functions that decay arbitrarily smoothly at the bound-
ary of each region. As a result, there are no seam artifacts at the



Figure 11: Our method supports local deformations. Our lo-
calized basis (20 modes on the head, and r = 100 total for the en-
tire model) produces good local deformations (c). A basis of global
methods requires 180 modes to produce motion in the bear’s cheeks,
whereas the ears still have no local deformations. Furthermore, the
globality of the global modes causes “modal ringing”: visible de-
formations appear in the bear’s left arm when pulling the cheeks
(b), whereas our method has no such artifact (c).

region boundaries. Combined with our pose-space basis construc-
tion, this gives us hard real-time character soft-body dynamics that
exhibits localized deformations, free of any pose-interpolation or
basis spatial discontinuity artifacts.

The user first selects d ≥ 1 control handles (points or line seg-
ments), to denote d individual regions D. We then compute smooth,
localized scalar bi-harmonic weight functions Wi ∈ Rn on the ver-
tices of the tetrahedral mesh [Jacobson et al. 2011], under the con-
dition that the weight is non-negative everywhere, equals 1 at the
i-th control handle, and is 0 at all the other handles. We place a ver-
tex to region Di if the vertex weight in Wi is larger than a threshold
η ; we use η = 0.1. After thresholding, we remap Wi from [η ,1]
to [0,1] such that the weights smoothly decay to 0 on the region
boundary, by introducing W′i = (Wi−η)κ/(1−η)κ , where κ > 0
is a scalar parameter that controls the degree of locality and how
rapidly the weights decay to zero at the boundary; we use κ = 1/2.

In each region Di, we compute a localized basis by fixing the tet
mesh vertices outside of Di, and progressively increasing the mate-
rial stiffness, based on W′i, as we approach to the region boundary.
The linear modes for a mesh with such modified material properties
can be computed by solving the generalized eigenvalue problem

W−T KW−1
ϕi = λiMϕi, (31)

where W = W T ∈ R3n×3n is a diagonal matrix consisting of W′i.
Note that Because the stiffness matrix K is inversely weighted
with the scalar weight function, the modes are biased towards the
parts that have higher weights. Therefore, the deformation decays
smoothly to 0 on the boundary of each region. Equation 31 is equiv-
alent to

Kyi = λiW T MWyi, ϕi =Wyi, (32)

and therefore the numerical problem of inverting W is avoided.
Analogously, the modal derivatives are localized by solving

Kzi j =−(H : ϕi)y j, ψi j =Wzi j. (33)

Our examples use localized modal analysis and self-contact-aware
model reduction simultaneously. The linear modes and modal

Figure 12: Real-time inverse kinematics with FEM dynamics:
The human arm (4 rig DOFs) is driven in real-time by inverse kine-
matics (IK handle is shown in green). Our method computes the
dynamics caused by inertial forces, in hard real time (1,100 FPS).
The material stiffness of the upper arm muscle is designed to vary at
each pose (a), and this is incorporated into the basis at each pose.
Our method interpolates the materials in pose space at runtime.

derivatives are obtained by solving

(ZT KZ)yi = λi(Z
TW T MWZ)yi, ϕi =WZyi, (34)

(ZT KZ)zi j =−ZT
(
(H : ϕi)Zy j

)
, ψi j =WZzi j, (35)

where Z is formed using the weighted constraint matrix CW .

Our basis vectors are spatially sparse and we exploit the sparsity by
storing them as compressed matrices. Basis interpolation, reduced
internal force, tangent stiffness matrix, inertial force computation
and deformation vector assembly all operate only on non-zero en-
tries. There are no other changes needed to our system. The regions
are kept the same for all the poses pi, but the localized basis vectors
are different in each pose, due to the modified rest configuration
geometry in each pose. We demonstrate locality in Figure 11.

8 Pose-Space Materials

So far, we have assumed that the material properties are constant
throughout our tetrahedral mesh. However, as the pose p changes,
not only the rest shape Φ(p) changes, but the elastic material prop-
erties may also change. As an example, the muscle region of a
rigged arm should be stiffer when the arm bends and the muscle
contracts (Figure 12, (a)). In principle, the degrees of freedom of
material design for the artist are three-fold: material space (the spe-
cific shape of the strain-space curve), spatial space (materials that
vary across the mesh) and pose-space (pose-dependent material). In
this paper, we do not investigate material space design (for a recent
approach, see [Xu et al. 2015b]). We enable spatial and pose-space
design by letting the artist paint the spatial material E, optionally
in each pose, E(pi). We then construct the pose-dependent basis
U(pi) using E(pi). We note that per-pose materials have been pre-
viously explored by [Galoppo et al. 2009], who performed the sim-
ulation using St.Venant-Kirchhoff material in a pose-independent
basis U, whereas we simulate general nonlinear materials in a pose-
specific basis. Our cubature training at each pose, of course, also
needs to incorporate the specific material at the pose. At runtime,



Figure 13: The ”X”. Maya nonlinear deformer (1-DOF rig func-
tion); three poses. Rest shapes are shown in wireframe. Reduced
dynamics are driven at 1,700 FPS by inertial and external forces.

we simply interpolate the material on the cubature elements C as

E(p) = w(p)[E(p1),E(p2), . . . ,E(pm)]
T . (36)

The rest of our system remains the same as with constant materials.
Therefore, material control can be easily integrated into our system,
and adds negligible runtime computational or memory overhead.

In our system, the artist paints the material properties E(pi) by
specifying a (heterogeneous) scalar field of Young’s modulus or
Poisson’s ratios. The artist can paint them directly on the tetrahe-
dral mesh in each pose, as computed in Section 4.1. Alternatively,
the artist can paint them on the triangle mesh. We then need to
transfer them to the tetrahedral mesh. Similar to tetrahedral mesh
fitting, we do this by solving a least square fitting problem

E(pi) = argmin
E

T

∑
e=1

(
‖Ee− Ēe‖

)
+ζ

1
2

ET LE, (37)

where T is the number of tetrahedral mesh elements, Ēe is the aver-
age painted value specified among the triangle mesh vertices inside
the element e, ζ > 0 controls smoothness of E, and L ∈ RT×T is
the tet mesh volume-weighted Laplacian matrix [Xu et al. 2015a].

9 Results

In the human arm example (StVK material, Figure 12), we rig the
arm with 3 skeleton bones. We use the 3 rotational DOFs of the
shoulder joint and 1 rotational DOF (yaw) of the elbow joint. All
the tets intersecting the skeleton are fixed. We engaged an artist
to sculpt 10 poses (Figure 9) to resolve skinning artifacts and self-
collisions between the forearm, upper arm and the body. The mate-
rial distribution is heterogeneous and varies in different poses. We
define 3 local regions, each of which has 15 modes, for a total of 45
modes. We drive the human arm with an inverse kinematic handle,
solving in real-time for the joint angles, which are then sent to our
system as input. Reduced simulation runs at 1,100 FPS, producing
soft-tissue dynamics originating from the inertial forces.

In our second example (neo-Hookean material, Figure 13), we de-
form the X with a Maya nonlinear bending deformer. The rig mo-
tion is controlled by a 1-DOF rig parameter, i.e., the bending curva-
ture, which is interactively adjusted by the mouse. We choose the
neutral shape and the two rigged shapes at p=−135 and p= 135 as
poses, and compute 30 modes at each pose. The geometry changes
vastly in this example and our interpolated subspace produces nat-
ural motions in all the states (1,700 FPS).

Our third example (StVK material, Figure 2) is a polar bear rigged
with a Maya wire deformer (144 rigging DOFs). Animation se-
quences were created by an artist, by keyframing the rig motion.
We picked 8 representative poses, sculpted PSD corrections, and
addressed the self-contacts. Our constrained basis makes it possi-
ble to have a contact-free motion without performing run-time self-
collision detection. Localized basis with 6 regions (r = 15 for arms

Figure 14: Comparison to pose-independent PCA basis. Two
poses. The “X” is permanently fixed at the top. In pose 1, it is in the
air and free of ground contact. In pose 2, the bottom is in contact
with the ground plane and downward motion is restricted by our
contact-aware modal basis. We compute 20 modes at each pose.
For comparison, pose-global modes are computed by performing
PCA on the union of our modes computed at the two poses. At pose
1, 20 fixed PCA modes produce unnatural motion, as compared to
the full simulation ground truth, whereas our method matches the
ground truth much more closely. To achieve similar quality as our
method that only has 20 modes, r = 40 pose-independent modes are
needed. At pose 2, our method correctly handles contact. The pose-
independent modes violate contact constraint easily since they mix
content from pose 1 and pose 2, and therefore some of the unwanted
degrees of freedom for downward motion creep into the basis.

and the legs, and r = 20 for the head and the body, 100 modes total)
produces rich localized and global dynamics (700 FPS), without the
need for a large set of spatially global modes (Figure 11). By using
only 50 and 25 linear modes, we can increase the performance to
1250 and 1800 FPS, respectively, at only slightly decreased quality.

The gorilla example (StVK material, Figure 1) is rigged with 16
skeleton joints. We use the translational and rotational DOFs for
10 joints (60 rig DOFs). We selected 4 typical poses. Localized
subspaces are computed for 6 regions (r = 10 for the two legs, and
r = 20 for the head, body and two arms, a total of 100 modes).
We obtain the input gorilla skeletal motion by tracking a human
with Kinect 1.0, and then retarget the human skeleton to the gorilla
in real-time using the SmartBody system [Feng et al. 2015]. Our
method produces quality secondary dynamics at 750 FPS. Model
reduction has the nice property that it is easy to adjust the trade-
off between quality and speed, simply by altering the number of
modes [James and Pai 2002]. By using only 50;25;10 modes total,
we can accelerate the multi-core performance to 1550;2200;2350
FPS, respectively, at a small loss of quality (e.g., in the gorilla’s
chin and ears, visible in the supplemental video). The reason for
why r = 25 and r = 10 have similar performance is because of the
overhead of multi-threading, and because the rt:core and rt:render
costs of Table 3 become dominant. The single-core performances
are 240;600;1400;2200 FPS for r = 100;50;25;10, respectively.

We give a detailed breakdown on the theoretical and practical per-
formance and memory costs of our method in Table 2. Overall
measured performance is given in Table 3. We timestep the reduced
dynamics using the implicit backward Euler integrator; dense sys-
tem solves are performed using Intel MKL. The time cost for the
other parts, such as cubature weight interpolation and radial basis
weights evaluation, is negligible. Because we are using the cuba-
ture approximation for the reduced inertial force, our system does
not require evaluating/fitting the position Φ(p) of all tet mesh ver-
tices at each runtime frame. Instead, the tetrahedral mesh vertex
positions are only required for the vertices of the internal force cu-
bature elements C, and reduced force cubature vertices C′ and their
neighbors. Even for (more seldomly used) rig functions that cannot
compute a small number of vertices much faster than all of the ver-



Figure 15: Comparison to full simulation and coarse mesh sim-
ulation. (a) Our method produces a good approximation to the full
simulation while being 60× faster. (b) We compared our method
to coarse mesh full simulation. We adjusted the coarse mesh res-
olution so that the computation time matches that of our method
(first column). The tetrahedral mesh only has 169 vertices and 420
tets. A large percentage of tets intersect with the bones and are kept
fixed. The arms, hips and the legs does not have any dynamics. In
the second column, we create a more detailed, but still coarse, mesh
(417 vertices, 1229 tets). Now, our method is 5× faster, and still
produces better dynamics. While more tets are free in the coarse
mesh, the hips and the legs are still very rigid, and the dynamics
overall is low quality (such as the arms and the belly). Our method
is faster and produces quality dynamics.

tices, cubature approximation avoids full-space operations, such as
computing the full-space internal and inertial forces and their sub-
space projections. While we do not completely remove all the full-
mesh operations, our simulation is very amenable to parallelization
on the CPU or GPU. We render our dynamically deforming mod-
els in real-time at 90 FPS using shader-based OpenGL, including
real-time shadows, self-shadows and ambient occlusion. We take a
single simulation step per graphics frame in all examples; i.e., our
simulation timestep is 1.0/90s. We note that this is a general good
property of model reduction: it filters high-frequency elasticity con-
tent and hence improves stability, or permits larger timesteps.

Previous methods constructed a pose-independent basis using
PCA [Galoppo et al. 2009; Teng et al. 2015]. However, the modes
change substantially with the poses, due to the changing geometry,
material properties and contact conditions. Therefore, the pose-
independent basis will need a large set of basis vectors to have
quality dynamics globally in the pose space (Figure 14, left). Pose-
independent basis PCA mixes the modes computed under different
contact conditions. Therefore, contact constraints can be easily vi-
olated (Figure 14, right). Our method always uses a much more
compact set of basis vectors, specific to each individual shape. Fur-
thermore, the pose-independent basis methods transform the defor-
mations back to the neutral pose and simulate the dynamics around
the neutral pose. This will lead to incorrect dynamics, because the
force models at different poses vary substantially due to geometry
and material changes (Figure 4, Section 8).

We also compare our basis interpolation method to the adaptive
subspace method [Hahn et al. 2014], which reassembles the reduced
system at each timestep, i.e., computes UT KU,UT MU,UT f . These
projections have a high total running time of O(nr2), and take up
a significant fraction of the computation time. In our system, as-

time [msec] storage [MB]
pose-space deformation O(n̄) 0.07 3n̄m 0.4
tetrahedral mesh fitting O(d) 0.12 3md 3

basis interpolation O(nr) 0.2 3nrm 4.3
reduced internal forces O(r3) 0.48 2|C| 0.01
reduced inertial forces O(r2) 0.11 2|C′| 0.01

reduced integration O(r3) 0.24 0 0
construct ū = AU(p)q O(nr+ n̄) 0.1 4n̄ 0.2

Table 2: Performance and storage complexity (gorilla, r = 100);
d = |C|+ |neigh(C′)|. The PSD storage is conservative because in
practice PSD corrections are only non-zero in the vicinity of the
joints. We always perform the basis interpolation on the full mesh.
Because rendering needs the full mesh basis, whereas simulation
only needs the basis at d vertices, further speedups would be possi-
ble if multiple simulation steps are taken per rendering frame. Re-
duced internal force row includes the reduced stiffness matrix. The
storage for displacement vector assembly and interpolation (last
row) consists of the interpolation weights between the tetrahedral
and triangle mesh (matrix A).

sembling the reduced system does not depend on the mesh resolu-
tion. With equal subspace dimension, our reduced system assem-
bly and basis interpolation is two orders of magnitude faster than
their reduced system assembly: human arm: 0.4 msec vs 38 msec
(95×), polar bear: 0.95 msec vs 82 msec (86×), gorilla 1.0 msec vs
320 msec (320×). Even when we count the entire simulation costs
of one timestep of our method, our simulation is 44×,57×,240×
faster than their subspace assembly costs alone in the three respec-
tive examples (and hence even faster against their entire costs). A
similar argument applies to the fast rig-space physics method [Hahn
et al. 2013], which also needs to construct JT KJ,JT MJ,JT f at ev-
ery timestep, where J is their rig-Jacobian function.

Our reduced dynamics provides a good approximation to full simu-
lation (Figure 15, (a)), while being 40-125× faster than full simula-
tion (Table 3). Note that here, full simulation is allowed to use our
fast tetrahedral mesh fitting Φ(p). Without our fast fitting, with the
full simulation fitting a ”physical” tet mesh at each frame [Barbič
et al. 2009], full simulation is 2,000× slower than our method. A
natural question to ask is whether results similar to ours in terms
of both speed and quality could be achieved by running a full sim-
ulation [Capell et al. 2005; McAdams et al. 2011; Kim and Pol-
lard 2011; Liu et al. 2013] that is sufficiently coarse to achieve
the needed speed. We performed such an experiment and report
the results in Figure 15, (b). Under equal computation time, the
coarse mesh is overconstrained to the skeleton, and does not have
enough degrees of freedom, producing very suboptimal dynamics.
Even when a finer coarse mesh is used where overconstraining is
no longer a substantial issue, our method is 5× faster, and produces
a much higher quality dynamics.

10 Conclusion

We presented a method to add physically based dynamics to pose-
space deformation and character rigging. Our method augments
pose-space deformation with high-quality secondary soft-tissue dy-
namics under arbitrary rigged or skeletal motion. It runs at mil-
liseconds per frame for complex characters, presents only a mini-
mal change to the existing character animation pipelines, is artist-
directable through painting of stiffness maps, supports localized ba-
sis functions and respects skin contacts.

We treat the entire object as one mesh, optionally with non-
homogeneous material properties, but do not simulate the internal
anatomical structure such as bones, muscles and tendons. While
we use standard pose-space deformation, our system is orthogonal



Example tet-vtx tet-el tri-vtx r reg poses PSD cub:int cub:inert rt:core rt:dyn rt:render rt:total mem FPS sp
arm 2364 8122 10525 45 3 10 9 192 45 36 % 58 % 6% 0.87 ms 11 MB 1150 60×
X-shape 3077 9303 2362 30 1 3 0 144 50 26 % 65 % 9% 0.59 ms 4.2 MB 1700 105×
polar bear 4018 12762 6876 100 6 8 7 336 200 29 % 66 % 5% 1.43 ms 7.3 MB 700 40×
gorilla 3771 16297 15774 100 6 4 2 144 119 29 % 63 % 8% 1.33 ms 7.9 MB 750 125×

Table 3: Simulation statistics for #tet mesh Γ and triangle mesh Γ̄ vertices and elements (tet-vtx, tet-el, tri-vtx), #of reduced DOFs (r),
#local regions (reg), #poses with a simulation basis (poses) and PSD-corrected geometry (PSD), #cubature samples for internal and inertial
forces (cub:int, cub:inert), total memory (mem), frame rate (FPS), speedup (sp) over full simulation, simulation step time (rt:total), and its
breakdown in terms of timestepping reduced dynamics (rt:dyn: reduced internal and inertial forces, and integration), constructing deforma-
tions for rendering (rt:render, ū = AU(p)q), and the rest (rt:core; including sparse tet mesh fitting and basis interpolation). We use 8 threads
with OpenMP; no GPU computation. Intel Xeon 2.9 GHz CPU (2×8 cores; 32GB RAM); GeForce GTX 680 graphics card (2GB RAM).

to other more advanced pose-space deformation techniques, such
as weighted pose-space deformation [Kurihara and Miyata 2004]
and weight-decay regularization [Anjyo et al. 2014]. For shapes far
from training data, the normalized biharmonic RBF weights used
in our system converge to a constant value (a limit, independent of
the radial direction) that is a convex combinations (with weights
on [0,1]) of the artist-sculpted PSD corrections. It would be in-
teresting to explore such and other advanced sparse data interpo-
lation techniques in the future. Our collisions are treated as bilat-
eral constraints in each pose. Although unilateral contact would
be in principle more desirable, our approach is fast, and prevents
our dynamics from causing self-collisions. In typical poses where
character self-collisions occur, such as bent elbows or shoulders,
the self-colliding surfaces are pushing against each other due to
contact. It is therefore difficult for the skin to break contact any-
way without modifying the pose. If the pose itself breaks contact,
so does our method. Hence, treating the contact bilaterally does
not significantly decrease realism in these typical scenarios. For
poses close to contact, the interpolated basis can be contaminated
by the contact-aware basis computed at the contact pose. While
this effect is small and we did not observe artifacts in our examples,
the problem could be alleviated by adding a near-contact pose into
the set of poses with a reduced model. Our method does not pre-
vent self-collisions that occur because the input rigged animation
causes the character to self-collide. These self-collisions must be
avoided in another way, such as by properly modifying the skeleton
joints or rig parameters. We believe these compromises are reason-
able for applications in games and virtual reality, where speed is
paramount. In the future, we would like to investigate how to add
anatomy to our simulations, or incorporate data scanned from real
subjects. For example, as opposed to computing the basis using lin-
ear modes and derivatives, we could form our basis by performing
PCA on the anatomically simulated, or scanned data, in the vicinity
of each pose. We did not use GPU computation; several stages of
our pipeline could be significantly accelerated on the GPU.
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A Proof that ZT AZ is SPD

Let A ∈ Rn×n be a symmetric positive-definite (SPD) matrix, and
Z ∈Rn×k be a full-rank matrix, for k≤ n. ZT AZ is obviously sym-
metric. Suppose xT (ZT AZ)x = 0 for some vector x ∈ Rk. Then,
yT Ay = 0, for y = Zx. Because A is SPD, we must have y = 0, and
therefore, as Z is full-rank, we have x = 0. Hence, ZT AZ is SPD.
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