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Abstract

Isotropic Finite Element Method (FEM) deformable object simulations are widely used in computer graphics.
Several applications (wood, plants, muscles) require modeling the directional dependence of the material elas-
tic properties in three orthogonal directions. We investigate orthotropic materials, a special class of anisotropic
materials where the shear stresses are decoupled from normal stresses. Orthotropic materials generalize trans-
versely isotropic materials, by exhibiting different stiffnesses in three orthogonal directions. Orthotropic materials
are, however, parameterized by nine values that are difficult to tune in practice, as poorly adjusted settings easily
lead to simulation instabilities. We present a user-friendly approach to setting these parameters that is guaran-
teed to be stable. Our approach is intuitive as it extends the familiar intuition known from isotropic materials. We
demonstrate our technique by augmenting linear corotational FEM implementations with orthotropic materials.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques, I.6.8 [Simulation and Modeling]: Types of Simulation—Animation

1. Introduction

Simulation of three-dimensional solid deformable models
is important in many applications in computer graphics,
robotics, special effects and virtual reality. Most applications
in these fields have been limited to isotropic materials, i.e.,
materials that are equally elastic in all directions. Many real
materials are, however, stiffer in some directions than oth-
ers. The space of such anisotropic materials is vast and not
easy to navigate, tune or control. In this paper, we study or-
thotropic materials. Orthotropic materials exhibit different
stiffness in three orthogonal directions; formally, they pos-
sess three orthogonal planes of rotational symmetry. They
form an intuitive subset of all anisotropic materials, as they
generalize the familiar isotropic, and transversely isotropic,
materials to materials with three different stiffness values
in some three orthogonal directions. Although simpler than
fully general anisotropic materials, orthotropic materials still
require tuning nine independent parameter values. In prac-
tice, this task is difficult due to the large number of param-
eters and because many of the settings lead to unstable sim-
ulations in a non-obvious way. In this paper, we study or-
thotropic materials from the point of view of practical sim-
ulation in computer graphics and related fields. We demon-
strate how to intuitively and stably tune orthotropic material

parameters, by parameterizing the six Poisson’s ratios using
a stable one-dimensional parameter family, similar to the in-
tuition from isotropic simulation. This makes it possible to
easily augment existing simulation solvers with stable and
intuitive anisotropic effects. We support large deformations
using corotational Finite Element Method simulation.

2. Related Work

Anisotropic materials are discussed in many references, see,
e.g. [Bow11]. Transversely isotropic hyperelastic materials
were presented by Bonet and Burton [BB98]. Picinbono
et al. [PDA01] proposed a non-linear FEM model to sim-
ulate soft tissues with large deformations and transversely
isotropic behavior. Thije et al. [TTAH07] addressed the in-
stabilities that occur under strong anisotropy, and provided a
simple updated Lagrangian FEM scheme to handle the prob-
lem. Picinbono et al. [PLDA00] described a surgery simu-
lator that can model linear transversely isotropic materials
at haptic rates and also presented a nonlinear transversely
isotropic model for medical simulation [PDA03]. Sermesant
et al. [SCD∗01,SDA06] and Talbot et al. [TMD∗13] adopted
a transversely isotropic material in constructing an electro-
mechanical model of the heart. Allard et al. [AMC∗09] used
a 2D anisotropic material to simulate thin soft tissue tearing,
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Comas et al. [CTA∗08] implemented a transversely isotropic
visco-hyperelastic model on the GPU, and Teran [TSB∗05]
and Sifakis [SNF05, Sif07] simulated human muscles with
a transversely isotropic, quasi-incompressible model. Irv-
ing et al. [ITF04] proposed a robust, large-deformation in-
vertible simulation method and demonstrated it with trans-
versely isotropic models. Previous anisotropic applications
in computer graphics focused on transversely isotropic ma-
terials where two directions have equal stiffness, leading
to five tunable parameters. We generalize materials to or-
thotropic materials with three distinct stiffnesses in three
orthogonal directions, and present an intuitive approach to
tune the resulting nine parameters. To the best of our knowl-
edge, we are first work in computer graphics to analyze
orthotropic materials in substantial detail. Previous papers
on orthotropic materials in engineering assumed that the
nine orthotropic parameters are given or measured from
real materials [VBCW81], whereas we provide an intuitive
way for the users to tune them and ensure they are stable.
Our work uses corotational linear FEM materials introduced
in [MG04]. Construction of the stiffness matrix for linear
FEM materials can also be found, for example, in [Sha90].

3. Orthotropic Materials

We now introduce orthotropic materials. Given the defor-
mation gradient F, the Green-Lagrange strain is defined as
ε3×3 = (FT F − I)/2, and the Cauchy stress σ3×3 gives
the elastic forces per surface area in a unit direction n,
as σ3×3n [Sha90]. Note that we can operate with Cauchy
stresses here as they are equivalent to other forms of stresses
(Piola) due to the small-deformation analysis; we achieve
large deformations via co-rotational linear FEM [MG04].
The 6×6 elasticity tensor S relates strain ε to stress σ via
ε =S σ , where we have unrolled the 3×3 symmetric matri-
ces ε3×3 = [εi j]i j and σ3×3 = [σi j]i j into 6-vectors, using the
12, 23, 31 ordering of the shear components as in [Sha90]:

ε = [ε11 ε22 ε33 2ε12 2ε23 2ε31]
T , (1)

σ = [σ11 σ22 σ33 σ12 σ23 σ31]
T . (2)

Components 11,22,33 are called normal components,
whereas 12,23,31 are referred to as shear components. The
inverse elasticity tensor C = S −1 relates σ to ε, via σ =
C ε. The elasticity tensor must be symmetric and therefore it
has 21 independent entries for a general anisotropic material,

C =


C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26
C33 C34 C35 C36

C44 C45 C46
Sym. C55 C56

C66

 . (3)

Once C is known, the stiffness matrix for a linear tetrahe-
dral element is computed as Ke =V eBeT C eBe, where V e is

volume of tet e, and Be is a 6×12 matrix determined by the
initial shape of tet e (see [Sha90] or [MG04]).

Unlike isotropic materials that are parameterized by a sin-
gle Young’s modulus and Poisson’s ratio, orthotropic mate-
rials have three different Young’s moduli E1,E2,E3, one for
each orthogonal direction, and six Poisson’s ratios νi j, for
i 6= j, only three of which are independent. Young’s mod-
ulus Ei gives the stiffness of the material when loaded in
orthogonal direction i. Poisson’s ratio νi j gives the contrac-
tion in direction j when the extension is applied in direc-
tion i. In a general anisotropic material, both the normal and
shear components of strain affect both the normal and shear
components of stress, i.e., matrix C is dense. In orthotropic
materials, however, the normal and shear components are
decoupled: normal stresses only cause normal strains, and
shear stresses only cause shear strains. Furthermore, individ-
ual shear stresses in the 12,23,31 planes are decoupled from
each other: strain εi j (i 6= j) only depends on stress σi j via a
scalar parameter (shear modulus) µi j. Under these assump-
tions, the elasticity tensor has 9 free parameters and takes a
block-diagonal form. It is easiest to first state its inverse

Sortho =



1
E1

− ν21
E2

− ν31
E3

0 0 0
− ν12

E1

1
E2

− ν32
E3

0 0 0
− ν13

E1
− ν23

E2

1
E3

0 0 0
0 0 0 1

µ12
0 0

0 0 0 0 1
µ23

0
0 0 0 0 0 1

µ31


. (4)

The orthotropic elasticity tensor is then

Cortho = S −1
ortho =

[
A 0
0 B

]
, for (5)

A = ϒ

 E1(1−ν23ν32) E2(ν12 +ν32ν13) E3(ν13 +ν12ν23)
E1(ν21 +ν31ν23) E2(1−ν13ν31) E3(ν23 +ν21ν13)
E1(ν31 +ν21ν32) E2(ν32 +ν12ν31) E3(1−ν12ν21)

 ,
(6)

B =

µ12 0 0
0 µ23 0
0 0 µ31

 , and (7)

ϒ =
1

1−ν12ν21−ν23ν32−ν31ν13−2ν21ν32ν13
. (8)

Equations 4 and 5 give elasticity tensors with respect to
the world coordinate axes. A general orthotropic material,
however, assumes the block-diagonal form given in Equa-
tions 4 and 5 only in a special orthogonal basis, given by
the three principal axes where the stiffnesses are E1,E2,E3.
In other bases (including world-coordinate axes), its form
looks generic, as in Equation 3. Therefore, to model or-
thotropic materials whose principal axes are not aligned with
the world axes, we need to convert elasticity tensors from
one basis to another. For a basis given by a rotation Q, the
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elasticity tensor C transforms as follows:

Cworld = KClocalK
T ,K =

[
K(1) 2K(2)

K(3) K(4)

]
, for (9)

K(1)
i, j = Q2

i, j , K(2)
i, j = Qi, jQi,( j+1)mod 3 , (10)

K(3)
i, j = Qi, jQ(i+1)mod 3, j , (11)

K(4)
i, j = Qi, jQ(i+1)mod 3,( j+1)mod 3+ (12)

+Qi,( j+1)mod 3Q(i+1)mod 3, j . (13)

The rotation matrix Q is an input parameter for constructing
the orthotropic material, and can vary spatially on the model
(our cylinder and fern examples). It can be made, for exam-
ple, to correspond to the directional derivatives of a 3D uvw
texture map.

3.1. Special cases

When two of the three orthogonal directions are equally stiff,
one obtains the transversely isotropic material. For such a
material, there is a plane in which the material is isotropic,
but the orthogonal direction is not. There are 5 free param-
eters, Ep,Ez and νp,νpz and µzp, and we have E1 = E2 =
Ep,E3 = Ez,ν12 = ν21 = νp,ν13 = ν23 = νpz,ν31 = ν32 =
νzp = νpzEz/Ep,µ12 = Ep/2(1+ νp),µ23 = µ31 = µzp. A
further simplification is the isotropic material which has just
two free parameters E and ν and we have E1 =E2 =E3 =E,
νi j = ν for all i, j and µ12 = µ23 = µ31 = E/2(1+ν).

4. Setting the orthotropic parameters

In order to keep the elasticity tensor symmetric, the Pois-
son’s ratios have to satisfy

νi j

Ei
=

ν ji

E j
, (14)

for all i 6= j. Therefore, only 3 of the 6 Poisson’s ratio are
independent. This leaves a total of 9 free parameters in the
orthotropic material: E1,E2,E3,ν12,ν23,ν31,µ12,µ23,µ31.
There are limitations on these 9 parameters. In order for
the elastic strain energy of the orthotropic material to be a
positive-definite function of ε, the elasticity tensor Cortho
must be positive-definite. Because it is block-diagonal, this
condition is equivalent to µ12 > 0,µ23 > 0,µ31 > 0 plus
positive-definiteness of the upper-left 3×3 block of Cortho.
Using the Sylvester’s theorem [HJ85], this is equivalent to

E1 > 0, E2 > 0, E3 > 0, (15)

ν12ν21 < 1, ν23ν32 < 1, ν31ν13 < 1, ϒ > 0. (16)

These restrictions can be easily derived by examining the
upper-left 3×3 block of Sortho [Lem68].

Unlike the isotropic case where it is well-known that the
Poisson’s ratio ν has to be on the interval (−1,1/2), there
is no analogous limits on νi j for orthotropic materials. In

practice, it is very tedious to tune these parameters, as sub-
optimal values easily cause the simulation to explode, or in-
troduce undue stiffness or other poor simulation behavior.

Figure 1: Stability of
orthotropic materials.
The curves show the
boundary of the stabil-
ity region for the naive
choice ν12 = ν23 =

ν31; the other νi j are
determined via (14).

We demonstrate the shape of the
stability regions in Figure 1, for the
naive choice where ν12,ν23,ν31
are made equal. The range of
Young’s modulus ratios which sat-
isfies the positive-definiteness con-
ditions (15) and (16) is limited
to the regions shown in the fig-
ure. The stability region becomes
smaller as νi j approaches 0.5. Such
a simple choice of νi j greatly limits
the range of stable Young’s mod-
ulus ratios along the three prin-
cipal axes. Therefore, we propose
a scheme to tune the orthotropic
materials using the familiar in-
tuition from the isotropic case.
Our scheme provably guarantees
positive-definiteness of the elastic-
ity tensor. By applying (14) into
(16), we obtain

ν
2
12 <

E1

E2
, ν

2
23 <

E2

E3
, ν

2
31 <

E3

E1
. (17)

Guided by the intuition from isotropic materials, we would
like to use one parameter to simplify and control the assign-
ments of all νi j. Equation 17 imposes upper and lower limits
on all the three free νi j parameters. We control these three
parameters using a single Poisson’s ratio-like parameter ν as

ν12 = ν

√
E1

E2
, ν23 = ν

√
E2

E3
, ν31 = ν

√
E3

E1
.

(18)

All three restrictions on νi j from (17) are satisfied by impos-
ing −1 < ν < 1. Using (14) and (18), we can express ϒ as

ϒ =
1

(1+ν)2(1−2ν)
. (19)

To ensure ϒ > 0, we need to set −1 6= ν < 1
2 . Therefore, to

ensure a positive-definite elasticity tensor Cortho, ν must sat-
isfy the condition−1 < ν < 1

2 . This is the familiar condition
known with isotropic materials. Once ν has been selected,
we can then use equation (18) to safely determine all νi j.
Figure 2 demonstrates the volume-preservation effect of our
orthotropic materials for three values of ν . For transversely
isotropic materials, our formula simplifies to

νpz = νp

√
Ep

Ez
. (20)

In an orthotropic material, the shear moduli µi j are in-
dependent of E and ν . Suboptimal values of shear parame-
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Figure 2: Controlling volume preservation with a sin-
gle parameter ν . Orthotropic dinosaur; stiffnesses are 1E7,
2E7, 1E8. Simulated under three Poisson’s ratios ν =
0.3,0.4,0.49. Isotropic material (ν = 0.4) is shown black.

ters, however, easily lead to excessive shear or stiff simula-
tions that lock. It is useful to compute some reasonable µi j
based only on Young’s moduli and Poisson’s ratios. There-
fore, we propose a scheme to set these values automatically.
The shear modulus µ of an isotropic material is

µ =
E

2(1+ν)
. (21)

We extend this equation to set µi j for orthotropic materials.
Since we have found a parameter ν to control all νi j for or-
thotropic materials, we can use this parameter in (21). So an
equation for a reasonable µi j of orthotropic materials is

µi j =
E i j

2(1+ν)
, (22)

for some choice of a scalar E i j. There are several possible
methods to assign E i j. For example, one can set E i j to the
maximum, minimum, arithmetic mean or geometric mean
of Ei and E j. Huber [Hub23], followed by other researchers
in mechanics [Ber85, CH84], used the geometric mean in
predicting shear moduli of reinforced concrete slabs,

µi j =

√
EiE j

2(1+√νi jν ji)
, (23)

for (i, j) = (1,2),(2,3),(3,1). Notice that if we use one pa-
rameter ν to control all Poisson’s ratios, then √νi jν ji is
equal to ν and Huber’s formula becomes an example of
(22). We also examined other methods (max, min, arith-
metic mean), and determined that the geometric mean of-
fers good simulation properties (Figure 3), especially when
the three Ei differ by orders of magnitude. First, geometric
mean is consistent with the other entries in the elasticity ten-

Figure 3: Setting the shear modulus for orthotropic mate-
rials. The three stiffnesses are radial, longitudinal (in/out the
paper), tangential. It can be seen that for small stiffness dif-
ferences, each method produces acceptable results. For large
stiffness differences, we also increased the force strength to
generate large deformations. It can be seen that the geomet-
ric mean still bends the tube into an ellipse, which is correct
given the low tangential stiffness and high radial stiffness.
The other three methods cannot reproduce this effect.

sor Cortho. Applying (14) and (18) into (6) to (8) yields:

A =
1

(ν +1)(1−2ν)

E1(1−ν)
√

E1E2ν
√

E1E3ν√
E1E2ν E2(1−ν)

√
E2E3ν√

E1E3ν
√

E2E3ν E3(1−ν)

 ,
(24)

B =
1

1+ν


E12
2 0 0
0 E23

2 0
0 0 E31

2

 . (25)

In the upper-left 3× 3 block A of Cortho, non-diagonal en-
tries contain a factor

√
EiE j. Using geometric mean to com-

pute shear moduli is similar in spirit to this expression. Sec-
ond, geometric mean considers the magnitude of the Young’s
moduli in the two directions more evenly than arithmetic
mean, especially when the values differ by orders of mag-
nitude. For an orthotropic material where a principal direc-
tion with a Young’s modulus E1 is several orders of magni-
tude stiffer than the other two directions, arithmetic mean
would make E12 and E31 close to E1

2 , and therefore any
difference between E2 and E3 is ignored for µ12 and µ31.
Using the geometric mean, however, produces a visible dif-
ference between µ12 and µ31 when E2 and E3 themselves
differ substantially. In a transversely isotropic material, the
shear modulus of the isotropic plane can be derived from Ep
and νp like with isotropic materials, leaving µzp as the only
free shear parameter. We can assign µzp as in Equation 22.

5. Results

We demonstrate orthotropic properties using a tube model
(Figure 6). We simulate an orthotropic plant (Figures 4),
muscle (Figure 5), as well as a flexible dinosaur (Figure 7).
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Figure 4: Orthotropic vs isotropic plant. This orthotropic
fern (top row) has stiffnesses that are 2x, 1x, and 0.01x
higher than the isotropic fern (bottom row) in the longitudi-
nal, transverse left-right and transverse up-down directions.
We modeled the principal axes to vary along the curved stem,
so that they are always orthogonal to the stem. An interesting
phenomenon can be observed at frames 20 and 40, similar
to buckling: because the left-right direction is much stiffer
than the up-down direction, the orthotropic fern’s stem ro-
tates (twists), causing most of the deformation to occur in the
easiest material direction (up-down), which has now become
aligned with the main deformation direction (left-right).

Figure 5: Stretched orthotropic muscle. Red vertices are
fixed, green vertices are constrained to a fixed displacement.
Orthotropic stiffnesses in the up-down (green), transverse
(blue) and longitudinal (red) directions are 1000x, 30x and
1x higher than the isotropic stiffness, respectively. The or-
thotropic muscle preserves the original cross-section more,
shrinks less near the attachment points and assumes a more
organic shape. Top-left shows the simulation mesh and the
spatially varying orthogonal directions.

vertices tets time PSC IFC
dinosaur 344 1,031 0.0060 sec 3 4
muscle 5,014 21,062 0.41 sec 8 12

tube 25,620 129,600 1.2 sec 12 12
fern 298,929 928,088 5.0 sec 12 8

Table 1: Timestep computation times and the number of em-
ployed cores (PSC=Pardiso solver, IFC=internal forces).

Very small modifications are needed to the isotropic code.
Runtime simulation times are unaffected, as we only need
to change the computation of the elasticity tensor. This only

Figure 6: Static poses for an orthotropic tube, (129,600 tets,
25,620 vertices), under a fixed force load. The right column
gives the tube cross-section at the central height where the
tube is being pulled. The local orthotropic axes vary across
the object: for each element, they point along the longitu-
dinal (up-down), radial and tangential directions. The rows
have 1000× higher Young’s modulus in the longitudinal, ra-
dial and tangential tube direction, respectively. In the first
row, high Young’s modulus in the longitudinal direction pre-
vents the tube from stretching up/down and therefore makes
it harder for it to deform sideways. Note the local deforma-
tion in the horizontal direction. In the second row, the high
radial Young’s modulus preserves the thickness of the tube
wall, as the tube cannot stretch radially. In the third row,
high tangential Young’s modulus makes it difficult to stretch
the tube along its perimeter, i.e., preserves the perimeter
length of the tube; note the radial local deformation.

affects the stiffness matrix computation, which is only done
once at startup in a corotational linear FEM simulation.
There is only a minor change in the stiffness matrix compu-
tation times. For example, the times to construct the isotropic
and orthotropic global stiffness matrices were 1993 msec
and 2038 msec, respectively (tube example).

6. Conclusion

We have augmented standard corotational linear FEM de-
formable simulations to support orthotropic materials. We
presented a complete modeling pipeline to simulate such
materials, which requires minimal changes to existing sim-
ulators. We parameterized Poisson’s ratios with a single pa-
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Figure 7: Orthotropic vs isotropic dinosaur. The directions
in the first, second and third column are 0.01×, 1× and
100× stiffer than the isotropic case.

rameter and therefore there are orthotropic materials that are
not included in our one-dimensional family. For example,
with isotropic stiffness (E1 =E2 =E3), our one-dimensional
family consists of isotropic materials, which excludes or-
thotropic materials with isotropic stiffness but distinct Pois-
son’s ratios in the three orthogonal directions. Our simu-
lator is also limited to linear strain-stress relationships. In
the future, we would like to augment it to support gen-
eral anisotropic nonlinear materials. Anisotropic materials
would make it possible, for example, to model materials that
shear sideways when subjected to a normal load. We would
also like to combine our method with inversion-preventing
simulations [TSIF05], and investigate orthotropic damping.
Implementation of our work is available in Vega FEM 2.1,
http://www.jernejbarbic.com/vega.

Acknowledgments: This research was sponsored in part by
the National Science Foundation (CAREER-53-4509-6600),
USC Annenberg Graduate Fellowship to Yijing Li, and a do-
nation of two workstations by the Intel Corporation.

References
[AMC∗09] ALLARD J., MARCHAL M., COTIN S., ET AL.:

Fiber-based fracture model for simulating soft tissue tearing. In
Medicine Meets Virtual Reality (2009), vol. 17, pp. 13–18. 1

[BB98] BONET J., BURTON A.: A simple orthotropic, trans-
versely isotropic hyperelastic constitutive equation for large
strain computations. Computer methods in applied mechanics
and engineering 162, 1 (1998), 151–164. 1

[Ber85] BERT C. W.: Discussion: “Theory of Orthotropic and
Composite Cylindrical Shells, Accurate and Simple Fourth-
Order Governing Equations”. Journal of Applied Mechanics 52
(1985), 982. 4

[Bow11] BOWER A. F.: Applied mechanics of solids. CRC press,
2011. 1

[CH84] CHENG S., HE F.: Theory of orthotropic and compos-
ite cylindrical shells, accurate and simple fourth-order governing
equations. J. Appl. Mech. 51 (1984), 736–744. 4

[CTA∗08] COMAS O., TAYLOR Z. A., ALLARD J., OURSELIN
S., COTIN S., PASSENGER J.: Efficient nonlinear FEM for soft
tissue modelling and its GPU implementation within the open
source framework SOFA. In Biomedical Simulation. Springer,
2008, pp. 28–39. 2

[HJ85] HORN R. A., JOHNSON C. R.: Matrix Analysis. Cam-
bridge University Press, 1985. 3

[Hub23] HUBER M.: The theory of crosswise reinforced ferro-
concrete slabs and its application to various important construc-
tional problems involving rectangular slabs. Der Bauingenieur 4,
12 (1923), 354–360. 4

[ITF04] IRVING G., TERAN J., FEDKIW R.: Invertible Finite
Elements for Robust Simulation of Large Deformation. In Proc.
of the Symp. on Comp. Animation (2004), pp. 131–140. 2

[Lem68] LEMPRIERE B.: Poisson’s ratio in orthotropic materials.
AIAA Journal 6, 11 (1968), 2226–2227. 3

[MG04] MÜLLER M., GROSS M.: Interactive Virtual Materials.
In Proc. of Graphics Interface 2004 (2004), pp. 239–246. 2

[PDA01] PICINBONO G., DELINGETTE H., AYACHE N.: Non-
linear and anisotropic elastic soft tissue models for medical sim-
ulation. In IEEE Int. Conf. on Robotics and Automation (2001).
1

[PDA03] PICINBONO G., DELINGETTE H., AYACHE N.: Non-
linear anisotropic elasticity for real-time surgery simulation.
Graphical Models, 5 (2003), 305–321. 1

[PLDA00] PICINBONO G., LOMBARDO J.-C., DELINGETTE H.,
AYACHE N.: Anisotropic elasticity and force extrapolation to
improve realism of surgery simulation. In IEEE Int. Conf. on
Robotics and Automation (2000), vol. 1, pp. 596–602. 1

[SCD∗01] SERMESANT M., COUDIÈRE Y., DELINGETTE H.,
AYACHE N., DÉSIDÉRI J.-A.: An electro-mechanical model of
the heart for cardiac image analysis. In Medical Image Com-
puting and Computer-Assisted Intervention–MICCAI (2001),
Springer, pp. 224–231. 1

[SDA06] SERMESANT M., DELINGETTE H., AYACHE N.: An
electromechanical model of the heart for image analysis and sim-
ulation. IEEE Trans. on Medical Imaging 25, 5 (2006), 612–625.
1

[Sha90] SHABANA A. A.: Theory of Vibration, Volume II: Dis-
crete and Continuous Systems. Springer–Verlag, New York, NY,
1990. 2

[Sif07] SIFAKIS E. D.: Algorithmic aspects of the simulation and
control of computer generated human anatomy models. PhD the-
sis, Stanford University, 2007. 2

[SNF05] SIFAKIS E., NEVEROV I., FEDKIW R.: Automatic de-
termination of facial muscle activations from sparse motion cap-
ture marker data. ACM Trans. on Graphics (SIGGRAPH 2005)
24, 3 (2005), 417–425. 2

[TMD∗13] TALBOT H., MARCHESSEAU S., DURIEZ C., SER-
MESANT M., COTIN S., DELINGETTE H.: Towards an interac-
tive electromechanical model of the heart. Interface focus 3, 2
(2013). 1

[TSB∗05] TERAN J., SIFAKIS E., BLEMKER S. S., NG-THOW-
HING V., LAU C., FEDKIW R.: Creating and simulating skeletal
muscle from the visible human data set. IEEE Trans. on Visual-
ization and Computer Graphics 11, 3 (2005), 317–328. 2

[TSIF05] TERAN J., SIFAKIS E., IRVING G., FEDKIW R.: Ro-
bust Quasistatic Finite Elements and Flesh Simulation. In Proc.
of the Symp. on Comp. Animation (2005), pp. 181–190. 6

[TTAH07] TEN THIJE R., AKKERMAN R., HUETINK J.: Large
deformation simulation of anisotropic material using an updated
lagrangian finite element method. Computer methods in applied
mechanics and engineering 196, 33 (2007), 3141–3150. 1

[VBCW81] VAN BUSKIRK W., COWIN S., WARD R. N.: Ul-
trasonic measurement of orthotropic elastic constants of bovine
femoral bone. J. of Biomechanical Engineering 103, 2 (1981),
67–72. 2

c© The Eurographics Association 2014.

http://www.jernejbarbic.com/vega

