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Abstract—We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation,
enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as
keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete.
The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the
animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input
animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for
the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results
requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of
simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of
the simulation mesh, and resolving collisions and self-collisions while following the input.

Index Terms—Computer Graphics, Animation, physically based modeling, animation system, directable simulation, FEM, collisions.
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1 INTRODUCTION

T HE problem of combining keyframe animation with phys-
ically based simulation is one of the most interesting and

important ones in computer animation, and has been examined in
several publications in recent years. In this system paper, we look
into an important specific problem that has to date not received
substantial analysis: how to improve existing animations of three-
dimensional solids represented as triangle meshes (characters,
tissue, plants, creatures, etc.) by making them better obey physics,
yet simultaneously, for purpose of artistic direction and control,
preserve the input in a controllable way in space and time.
The input to our method is a triangle mesh animation, obtained
using any method, such as keyframe animation, geometric shape
modeling, or scanned from real subjects using computer vision.
The input animation may be crude, non-physical or incomplete.
Our method makes it possible to replace the input triangle mesh
animation with physically based simulation, or properly blend the
two, smoothly and selectively, in desired mesh regions and time
intervals. This makes it possible to preserve the input wherever
needed, but improve it with physically based simulation in the
target regions. We investigate the system pipeline and simulation
aspects that are needed in order to obtain a robust and versatile sys-
tem. Furthermore, our method is designed so that it only modifies
the triangle mesh dynamic deformable detail that is representable
by the chosen tetrahedral mesh. This makes it possible to rapidly
“physify” the input using a coarse tetrahedral mesh, which only
modifies the coarse part of the motion, whereas the input dynamic
spatial high-frequency motion is preserved.

In animation production, animations are often created in layers,
such as, first the skeletal animation, followed by muscles, fat,
skin and then clothing and hair. The output of each of these
layers is “baked” as a triangle mesh animation, and then serves
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as input to the next layer, or is sent to the renderer. Instead, our
“physification” method serves as an additional layer in the pipeline
that simply transforms an input triangle mesh animation into
another triangle mesh animation, and can as such be selectively
employed with a minimal change to the established computer ani-
mation pipelines. We note that several of the animation production
layers often use rigging deformers of various form (skeletal, wire,
blendshape, cluster, lattice, etc.). Although one could in principle
employ a rigging-aware physically based method, this is seldom an
easy investment for a film or games studio, as it requires re-writing
complex code and re-training the artists. Furthermore, for inputs
that are obtained using geometric shape modeling techniques
(Figure 14), or acquired from real subjects using computer vision
(Figure 1), a rig is not available, necessitating a method that can
work with triangle meshes directly.

Our method works as follows. We first generate a quality tetrahe-
dral mesh to the undeformed triangle mesh. We demonstrate how
to do so even in the presence of self-collisions in the undeformed
triangle mesh (Figure 2). Next, we convert the input into a
physically based form, by fitting a tetrahedral mesh animation to
the embedded triangle mesh input animation using a fast Newton
solver. The tetrahedral mesh animation is then generated using
physically based simulation, subject to the constraint that it has
to follow the input motion, to a degree controllable by the artist
in space and time. The artist exerts this controls by painting
a scalar field on the input mesh. We automate the painting so
that only a minimal UI input is required. Our method makes it
possible to strictly follow the input in parts of the mesh, let the
simulation evolve completely based on physics in other parts, and
anything in between. To achieve the tradeoff between physics and
the input, we provide two methods: (1) using an implicit blending
force during the simulation, and (2) blending the shapes after the
simulation. For both methods, we demonstrate how to incorporate
collision and self-collision response that simultaneously preserves
the input motion. Figure 4 gives an overview of our system. The
end result is an artistically directed simulation: it conforms to
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Fig. 1: Completing a tracked face using physics: Due to occlusions, vision tracking systems cannot capture all parts of a human head
(mouth cavity, inner lips, tongue, etc.). We utilize physically based simulation to produce the deformations of the untracked parts. Left
(the input): tetrahedral mesh (18,391 tets), the tracked triangle mesh (49,924 triangles) and the neutral complete triangle mesh of the
head. Middle, right (the output): the deformed tracked mesh and the complete mesh computed using our method. 960 frames, 1.35 sec
per frame.

Fig. 2: Self-collisions in the input mesh (human face). Left: the
lips collide in the highlighted region. Right: an interior view of
the self-collision. Our method works with such ill-formed inputs.

the input by a prescribed amount, but is enriched with physics,
secondary motion and collision response. Our method operates
in the full FEM space without model reduction, simulating both
global and local deformations. In addition to providing good
dynamics, our method can also infer missing data in a triangle
mesh, making it suitable for completing deformed animation
frames based on a rest configuration template.

2 RELATED WORK

2.1 Adding Physics

The problem of simulating deformable objects has been well-
studied since the pioneering work of [1]. Several publications have
improved simulation versatility and efficiency, for example [2],
[3], [4], [5], and robustness [6], [7]. A common theme in computer
animation is to simulate soft tissue based on the motion of an
embedded skeleton or character rig [5], [8], [9], [10], [11], [12],
[13]. Wiggly splines were used for direct manipulation of physical
oscillatory motion [14], and Shi [15] enhanced skeleton-driven an-
imations with secondary motion extracted from sample sequences.
Hahn [16], [17] formulated the equations of motion in the rig
space so that some rig parameters can evolve via physics. Different
from these previous methods that generate soft tissue motion from
the character rig, our method does not require a rig, and works
with and corrects an existing triangle mesh animation. Several
methods [18], [19], [20], [21] enriched coarse cloth animations
with spatial high-frequency effects such as wrinkles and folds.
Among them, Bergou [18] achieved this by running a detailed

Fig. 3: Adding physics to a keyframed sumo wrestler anima-
tion. Left-most column: the fixed Ω′′ and free Ω \Ω′′ region of
the sumo tetrahedral mesh. Free regions include the body, thighs,
cheeks and derrière. The top row on the right shows several frames
of the input motion. The bottom row on the right shows our result
with secondary motion added.

mesh simulation constrained to the input coarse animation. We
also use constraint-based dynamics, but with a different design
goal. We modify the coarse (spatially low-frequency) component
of the animation, as representable by the chosen simulation mesh,
and preserve high-frequency motion, whereas Bergou’s method
preserves coarse motion and generates high-frequency detail. We
compare our method to Bergou’s method in Section 9.

2.2 Animation Design and Control

Several papers addressed the design and editing of elastic phys-
ically based simulations using keyframes [22], [23], [24] or
spacetime constraints [25], [26], [27]. Additionally, Kondo [28]
allowed animation editing by both keyframes and trajectories.
Barbič [29] directed physical simulations to given input trajec-
tories. Coros [30] controlled deformable objects by changing their
rest shapes. Barbič [31] introduced spacetime Greens functions
for interactive animation editing. These papers mainly focus on
direct user control. Although they can enrich animations with
physics, they require special models (e.g., model reduction or
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Fig. 4: Overview. This diagram corresponds to the kinematic
blending method. Implicit blending is performed simultaneously
while running the simulation.

specific definitions of elastic forces), or operate under specific
assumptions. We aim to achieve the goal using commonly used
methods such as Newton’s method and full-space FEM with
boundary constraints, so that the method is better understood,
more general and more likely to be adopted in practice.

2.3 Volumetric Mesh Tracking and Fitting

When fitting a volumetric mesh animation to a triangle mesh
animation, the surface vertices of the volumetric mesh are usually
over-determined by the given triangle mesh geometry, whereas
the interior vertices are in the opposite situation. Therefore, a
smoothing term is usually used to determine the positions of
the interior vertices. Choi and Szymczak [32] proposed fitting
volumetric meshes to animated surfaces by minimizing a warped
linear elasticity energy and surface distance. Wuhrer [33] used
point clouds that are a subset of the surface vertices of the
volumetric mesh to infer material properties, forces and interior
displacements. Paillé [34] compressed a volume grid to fit its
boundary to the input surface. Volumetric mesh tracking for 2D
and 3D images is also used in biomechanics [35]. Our volumetric
mesh fitting process differs from these methods in that these meth-
ods tracked the surface of a volumetric mesh. In contrast, we apply
embedded simulation, a widely useful technology in computer
animation where the tracked triangle mesh is not necessarily on
the volumetric mesh surface, but may be embedded (deep) into
the volumetric mesh, with the goal of subsequent physically based
animation.

2.4 Inverse Caging

Inverse caging is the process of finding a deformed cage (and
sometimes its weights) that best generates the given shape. The
vertices of a volumetric mesh can be treated as the handles of
a cage that controls an embedded mesh. Lu [36] and Savoye
and Franco [37] adopted Laplacian coordinates to deform or fit
a cage. Chen [38] used Green coordinates as cage weights and
transferred the deformation gradients of the input mesh to a
cage. In order to address over-determined systems occurring in
the fitting problem, Thiery [39] computed the maximum volume
submatrix of the interpolation matrix, to fit a cage animation to a
triangle mesh animation. Savoye [40] converted performance mesh
animation into cage-based animation using an linear estimation
framework. These methods focus on geometric caging where the
cage is typically a surface mesh, with applications in animation
compression and geometric editing. We focus on volumetric
mesh fitting using a 3D solid physical energy, including interior

vertices, for physically based simulation. Our method can avoid
interior contact on triangle mesh deformation like collisions in
concave regions (Figure 17). Barbič [22] used a related method
to generate volumetric mesh deformations from given triangle
meshes. However, they only used fitted deformations as animation
keyframes, whereas we fit meshes to an entire animation. We
utilize temporal coherence to accelerate Newton solve on the
fitting energy. In contrast to their model reduction approach which
is limited to global low-frequency deformations, our outputs are
full-dimensional, model local deformations and preserve input
animation detail up to the volumetric mesh resolution.

3 OVERVIEW

The input to our method is a neutral pose of a triangle mesh Γ, and
an animation of a submesh Γ′ ⊆ Γ. The animation of Γ′ consists
of frames i = 0, . . . ,T, each given by a displacement vector away
from the neutral pose of Γ′. This input animation can be created
using any means available: it can be keyframe-animated, itself
animated using some physical process, or it can be scanned from
a real subject. In several examples, we will simply have Γ′ =
Γ. The Γ′ $ Γ case occurs, for example, with the human face
geometry, where Γ refers to the entire human head, including the
complete lips (both inside and outside the mouth cavity) and the
internal mouth structure (the “artist mesh”). The computer vision
tracking system, however, only manages to track a proper subset
Γ′ that misses the interior part of the lips, the internal mouth cavity
and large peripheral regions of the face (Figure 1). The output of
our method is an animation of Γ that is identical to the input
animation in a user-selected subset Γ′′ ⊆ Γ′. Elsewhere on Γ′,
it strikes a balance between physically-balanced simulation and
following the input animation. This balance is user-controlled: it
can be spatially-varying and painted on the mesh by the artist. The
animation in Γ\Γ′ is reasonably and automatically extended from
Γ′ using our physical process. If desired, the output animation
also obeys collisions. Our algorithm is designed so that it can
optionally preserve the input detail that is beyond the resolution
of the chosen tetrahedral mesh, everywhere on Γ′, unlike typical
physically based simulation that either requires a computationally
slow detailed tetrahedral mesh to produce rich detail, or else detail
is destroyed using coarse meshes.

An overview of our method is shown in Figure 4, and pseudocode
is given in Figure 5. First, a tetrahedral simulation mesh is built
to enclose the input triangle mesh (Section 4.1), and then fitted
to the input animation (Section 4.2). We run a physically based
simulation with boundary constraints to produce physical motion
on selected parts of the mesh (Section 5), and optionally preserve
the dynamic spatial high-frequency detail (Section 6). The user
can control how much physics is added to the animation by
painting weights on the tetrahedral mesh. The tradeoff between
input animation and physics is achieved either via implicitly
integrated forces driving the simulation to the input animation,
or by kinematically blending the input with the simulation result
(Section 7).

4 FITTING A SIMULATION MESH

To physically enrich the input (non-manifold) triangle mesh
animation, it is first necessary to equip it with a simulation
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Fig. 5: Add Physics to Animation

Input: Γ, submesh Γ′, {q̄i}
Output: {qi}

1: procedure ADD PHYSICS(Γ,Γ′,{q̄i})
2: {Ω,C,C′}← CREATE TET MESH(Γ,Γ′) . C,C′ are

interpolation matrices to Γ,Γ′

3: {ūi}← FIT ANIMATION(Ω,Γ′,C′,{q̄i})
4: assign Ω′′ ⊆Ω that follows input
5: if use implicit blending force then
6: initialize blending force fw according to weights W
7: else
8: fw← 0
9: end if

10: {ui}← SIMULATE(Ω,Ω′′,{ūi}, fw)
11: if use kinematic blending then
12: {ui}← BLEND MOTIONS({ui},{ūi},W )
13: end if
14: {qi}←C{ui} . interpolate ui to qi
15: if preserve high-frequency detail then
16: {qi}← PRESERVE DETAIL(Ω,C′, q̄i,{ūi},{ui})
17: end if
18: return {qi}
19: end procedure

(tetrahedral) mesh capable of providing physics. In this section, we
explain how we generate a simulation mesh, and fit an animation
of it to the input triangle mesh animation.

4.1 Generating a Simulation Mesh

Given the input triangle mesh Γ, we create a tetrahedral simulation
mesh Ω that encloses the space occupied by the undeformed trian-
gle mesh. Many existing tools such as Tetgen [41] and NetGen [42]
can generate good-shaped tetrahedral meshes given manifold sur-
face triangle meshes. In order to generate a quality tetrahedral
mesh from an arbitrary, non-manifold input, we first compute a
signed distance field using the method described in [43]. Next, we
use an isosurface meshing algorithm [44] to generate a manifold
triangular surface. Recent work by Sacht [45] can be used to
coarsen the surface mesh with collision avoidance. Finally, we
build a tetrahedral mesh using constrained Delaunay tetrahedral-
ization [46], [47]. The resulting tetrahedral mesh encloses the
space of the input mesh and has good quality. However, extra
effort is needed to accommodate a common practical situation: the
undeformed triangle mesh contains self-intersections (such as in
the case of human lips in Figure 2 and dragon horns in Figure 14),
causing the mesh to “weld”. We will present our solution to this
problem in Section 8.

By adjusting the isosurface and tetrahedral mesher parameters,
the user can obtain a tetrahedral mesh at whatever resolution
desired. Our method then automatically adds physical effects that
are resolved by the chosen tetrahedral mesh, but keeps the input
high-frequency spatial component of the animation unmodified.
Note that this is different from merely preserving the spatially
high-frequency detail in the neutral pose: our method does not
preserve just the static geometric detail of the neutral pose (as
has been done in many prior papers), but also the input spatially
high-frequency animation of the detailed geometry (Figure 6).

Fig. 6: Preserving dynamic spatial high-frequency detail: Top:
input animation of the plant withering (aging), containing spatial
high-frequency motion on the leaves. The model and animation
were downloaded from the Internet. Middle: physically based sim-
ulation loses high-frequency detail. Bottom: our result preserves
high-frequency detail. Tetrahedral mesh can be coarse and is
shown overlaid. Our fitting process can be seen as extracting the
spatial low-frequency part of the motion and modifying it using
physically based simulation. The high-frequency motion can be
added back depending on needs.

4.2 Fitting the Simulation Mesh Animation

For every input frame of the triangle mesh Γ′, we compute a
tetrahedral mesh deformation that best conforms to it. We do so
using an energy function that balances the match to the input frame
and the elastic strain energy of the tetrahedral mesh. Given the
tracked triangle mesh with t vertices and its deformation q̄i ∈ R3t

at a frame i, the deformation of the tetrahedral mesh ūi ∈ R3n is
obtained by minimizing

ūi = argmin
u

1
2
‖C′u− q̄i‖2

Λ + γΦ(u), (1)

where C′ ∈ R3t×3n is the interpolation matrix that interpolates
tetrahedral mesh deformation to Γ′, Φ(u) is an internal elastic
energy for deformation u to regularize the shape, and γ > 0
determines the tradeoff between the two terms. Diagonal matrix
Λ is used to weight the interpolation energy according to the
surface area of each vertex, ‖x‖2

Λ
= xT Λx. We choose the invertible

St.Venant-Kirchhoff (StVK) elastic energy [6] because it is robust,
because it preserves volume under large stretches better than the
linear co-rotational material (Figure 7), and because its evaluation
speed is similar to the corotational linear FEM [48]. One limitation
of such invertible models is that the energy is not consistent in the
extrapolated regions corresponding to extreme compression and
inversion. We did not encounter any related stability problems; but
if needed, the issue can be remedied using [49]. The interpolation
matrix simply consists of the barycentric coordinates of every
triangle mesh vertex in its containing tetrahedron. One could
instead adopt other coordinates to perform the interpolation, such
as [50] or [51]. We report γ in Table 1 and discuss the parameter
tuning in Section 9.
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Fig. 7: Comparison of invertible StVK to corotational linear
FEM. The input is a severely stretched cube triangle mesh. With
the same amount of total fitting error, the shape produced by
the corotational linear FEM (right) has self-intersections along
the cube edge, whereas the invertible StVK (middle) has no such
artifacts.

For each frame i, given an initial guess, we compute the tetra-
hedral mesh deformation at that frame using a process similar to
numerical timestepping. We approximate the energy in Equation 1
using a second-order Taylor series in u, minimize this quadratic
function, and iterate. The quadratic approximation involves the
tangent stiffness matrix (second derivative) of the StVK elastic
energy Φ(u), which can be computed easily. We compute the
derivative of the fitting energy and set it to zero:

C′T Λ(C′u− q̄)+ γFint(u) = 0, (2)

where Fint is the internal elastic force. Given an initial guess u0 for
u, we can approximate Equation 2 with:

C′T Λ

(
C′∆u+C′u0− q̄

)
+ γ

(
K(u0)∆u+Fint(u0)

)
= 0. (3)

Here, K(u0) is the tangent stiffness matrix of the elastic energy
Φ evaluated at u0. By solving the above sparse system for ∆u,
we obtain the next iterative approximation for ūi. The iteration
continues until the relative difference between the two consecutive
iterations becomes small enough (1% in our examples). For the
first frame in the animation, we use the rest shape as the initial
guess and apply a line search after each iteration to stabilize the
optimization. For the other frames, we use the deformation of the
previous frame as the initial guess.

Such a Newton’s method is faster than a gradient-only optimiza-
tion method such as the conjugate gradient optimizer [52] applied
directly to the energy in Equation 1, with no visible loss of
quality. We observed a 30x speedup in our examples. Although our
algorithm proceeds frame by frame, it can still exploit parallelism
since the bottleneck of the computation is the evaluation of the
second derivative of Φ(u) and the linear system solve, which
can be easily parallelized. One can instead parallelize the solver
across multiple frames. However, such independent parallel solves
present a difficulty for maintaining temporal coherence across
the fitted frames, whereas our sequential implementation is less
likely to create temporal artifacts. In practice it gives good results
without noticeable temporal artifacts.

5 CONSTRAINED SIMULATION

After the tetrahedral mesh deformations at all frames are con-
structed, we use them to add physics to the input triangle mesh

animation. The user first selects a subset tetrahedral mesh Ω′′ of
Ω that will be constrained during the simulation to follow the
input.

We compute the animation of Ω \Ω′′ using a physically based
simulation where the vertices in Ω′′ serve as boundary constraints.
The equation of motion of a FEM nonlinear deformable object is

Mü+D(u)u̇+ fint(u) = fext(t), (4)

subject to uc = ūc, (5)

where M is mass matrix, u is the vertex displacements of Ω, fint(u)
is the internal elastic force, fext(t) is the external force including
gravity and contact forces, and D(u) is the damping matrix. The
vertex displacements of Ω′′ obtained during the fitting process
and during the simulation are denoted by ūc and uc, respectively.
We use the same invertible StVK energy as in the fitting process
because of its robustness and fast evaluation. We adopt Rayleigh
damping in all our examples: D(u)=αM+βK(u), where α and β

are Rayleigh damping parameters and K(u) is the tangent stiffness
matrix at u.

We use v = u̇ to represent vertex velocities. Given the state (vk,uk)
at frame k, we perform one iteration of the implicit backward
Euler integrator to get ∆v so that the velocity at next frame is
vk+1 = vk +∆v, and the displacement is uk+1 = uk +∆tvk+1.

In order to compute ∆v, we partition the linear system into[
A f f A f c

Ac f Acc

][
∆v f

∆vc

]
=

[
b f

bc

]
, (6)[

A f f A f c

Ac f Acc

]
= A = M+∆tD(u0

k)+∆t2K(u0
k), (7)[

b f

bc

]
= b = ∆t( fext − fint(u0

k)− (∆tK(u0
k)+D(u0

k))vk), (8)

where ∆vc and ∆v f correspond to the DOFs in Ω′′ and Ω \Ω′′,
respectively, ∆t is the timestep and u0

k is the linearization state
for internal elastic forces, discussed further below. Since we have
the boundary constraint ∆vc = ¯∆vc that the motion in Ω′′ should
follow the fitted motion, we only need to solve

A f f
∆v f = b f −A f c ¯∆vc. (9)

We use PARDISO, a direct sparse solver. While a fully implicit
Euler involves multiple iterations of the Newton-Raphson method,
we in practice solve Equation 9 only once. In our experiments,
for a fixed amount of computation cost, it was better to simply
subdivide the timestep, than to invest the same amount of com-
putation time into multiple Newton-Raphson iterations of a single
timestep. We made a comparison where we ran (A) one timestep
of size ∆t with five Newton iterations, versus (B) five timesteps
of size ∆t/5 with one Newton iteration. We found that the largest
stable timestep under (B) is 5-10× times larger than (A), plus (B)
is higher quality (less damped) due to the smaller timestep.

We experimented with two choices for the evaluation state u0
k for

internal forces. We observe that it can have a substantial visual
influence on the output animation (Figure 8). One choice, u0

k =
uk + ∆tvk, is used by Bergou [18], while the other is u0

k = uk.
We observed that the latter produces stabler simulations, allowing
very large timesteps with minimal tuning, at the cost of more
damped motion. We give a control on the initial guess as u0

k = uk+
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Fig. 8: Comparison of different internal force evaluation
strategies: A simple bar vibrates with one end fixed. The yellow
shape was obtained using u0

k = uk +∆tvk (Bergou’s initial guess).
The gray shape was obtained using u0

k = uk (the other). The initial
displacement and velocity are the same in both methods. In the
first row, ∆t = 0.003. Bergou’s initial guess exhibits a less-damped
motion. In the second row, ∆t = 0.1. A position constraint is added
to one vertex (shown as a red dot). The other initial guess is stable
under the large timestep, whereas the Bergou’s is not.

δ∆tvk, 0 ≤ δ ≤ 1, so that the user can choose to prefer accuracy
or stability given same amount of computation cost.

To keep the integrator stable, we subdivide the animation timestep
if necessary. One limitation of our constrained simulation is that
the boundary constraints on Ω′′ only provide a C0 deformation
continuity across the interface between Ω′′ and Ω \Ω′′. This
is because we use linear tetrahedral elements. Deformations are
linear per element and C0 across elements. However, in order
for non-C1 continuity to be visible, shear is generally required,
and solid simulations tend to avoid shear. Continuity can also be
improved with sufficient stiffness around the interface, or with
additional averaging or soft constraints around the interface. The
user can also use the blending methods described in Section 7 to
blend the simulated motion around the interface with the scripted
motion to reduce possible discontinuity.

6 PRESERVING HIGH-FREQUENCY DETAIL

After the simulation, we obtain the output deformation qi of Γ at
frame i as qi =Cui, where C interpolates tetrahedral mesh defor-
mation to Γ. If the input triangle mesh animation contains spatial
high-frequency motion, it will be lost during this interpolation
step because the simulation mesh is typically much coarser than
the triangle mesh. Note that this only applies to dynamic detail
in the animation; any spatial detail present in the undeformed
mesh Γ is always preserved. In our method, we preserve the
dynamic detail (as opposed to only static) as follows (see also
Figure 9). At each frame, for each tracked triangle mesh vertex,
we store the difference between the input vertex displacement and
the displacement interpolated using the fitted tetrahedral mesh
deformations ūi. This difference is then rotated and added to
the interpolated displacement obtained using simulation mesh
deformations ui, effectively reproducing the high-frequency detail

q′i =C′ui +Ri(q̄i−C′ūi), (10)

Fig. 9: Preserving dynamic high-frequency detail: The differ-
ence between the input vertex displacement q̄i and the interpolated
displacement q̄∗i of the fitted triangle ū1ū2ū3 (left) is rotated by the
rotation component R of the deformation gradient between the
two triangles (2D example). It is then added to the interpolated
displacement q∗i of the simulated triangle u1u2u3 (right) to give
the final displacement qi.

where q′i ∈ R3t is the final displacement on the tracked mesh Γ′

at frame i, Ri ∈ R3t×3t is a block diagonal matrix formed by 3×
3 rotation matrices. Each rotation matrix is extracted by polar
decomposition from the relative deformation gradient between the
fitted and simulated tetrahedron containing each vertex.

This procedure has the property that the dynamic detail on Γ′′

is always preserved. For any triangle mesh vertex in Γ′′ chosen
to follow the input, its embedding tetrahedron should be in Ω′′,
which is constrained throughout the simulation. Consequently, the
deformations of this tetrahedron in the input shape and in the
simulated shape are identical, at any frame. The rotation matrix is
thus always identity, causing q′i = q̄i. After the transfer of the
detail, the vertex position is guaranteed to be identical to the
input; i.e., the input is exactly preserved in Γ′′. The result of this
procedure is shown in Figure 6. We also considered an alternative
method where the tetrahedral deformation gradient is directly
used to transform q̄i−C′ūi. While this alternative method worked
on most examples, it failed in cases where the input animation
causes large compressions in the fitted tetrahedral mesh shape
(Figure 10). This produced nearly singular deformation gradients
on compressed tetrahedra, resulting in mesh “spikes” when the
fitting procedure causes the triangle mesh vertex to escape out
of its original tetrahedron. Altering barycentric coordinates for
each individual frame does not work well either. It would have
difficulties if the tetrahedral mesh self-collides during the fitting,
which leaves multiple tetrahedra containing the same embedded
vertex, or for vertices outside of the mesh with poorly conditioned
neighboring tetrahedra. Our method does not suffer from these
issues. One limitation of using rotations is that they have slight
discontinuities at tetrahedra boundaries. In practice, the rotations
of neighboring tetrahedra are similar, and we did not observe any
artifacts.

7 BALANCING INPUT MOTION WITH PHYSICS

In the previous section, the output animation comes either from
physical simulation, or from the artist input. We now describe
and compare two procedures that permit the artists to control the
balance between physics and the input animation. We discuss
their advantages and disadvantages. The balance is prescribed
by spatially-varying tetrahedral mesh vertex weights wi ≥ 0.
We explain how the artists can easily generate such weights in
Section 7.3.
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Fig. 10: High-frequency detail transfer failure produces spikes
on the mesh (left) when using tetrahedral deformation gradients to
transfer detail from highly compressed tetrahedra, as contrasted
with the smooth shape (right) produced by transfer with the rota-
tion component (our method). An alternative method to preserve
high-frequency detail is to alter barycentric coordinates for the
triangle mesh at each frame. This method also suffers from such a
“spike” failure.

7.1 Implicit Blending Force

In the first method, we add an implicitly integrated external force
to drive the mesh toward the input, scaled by the weights

fw =W (ū−u), (11)

where W ∈ R3n×3n is the diagonal matrix of weights wi for each
vertex. Higher weights generate motion closer to the input. In
industry, such forces are often referred to as the kin(ematic)
springs. They can be integrated implicitly in Equation 9. Because
Equation 11 is perfectly linearized, the Jacobian of this force is
exact. The implicit integration thus has an exact prediction of
the force. Besides, the presence of W increases only diagonal
entries in the system matrix, making it more well-conditioned.
As a result, the integration of this force is highly stable. We have
experimentally observed stable convergence to ū as W grows to
extremely large values such as 1030, well beyond values that
produce visually identical motion as ū. It is convenient for the
user to express weights on the interval [0,1]; we re-map them
to [0,∞] using the function f (x) = η(x1/ζ ), where the user can
adjust parameters η > 0 and ζ > 1. Contact can be resolved during
the simulation; no special handling is required. For simplicity, we
use the penalty-based method to handle contact, but any contact
resolution method could be used. The disadvantage of this method
is that the relationship between the weights and the input vs.
physics tradeoff, while monotonic, is only indirect.

7.2 Kinematic Blending

In the second approach, we use a construction similar to as-rigid-
as-possible interpolation [23], [53] to blend the output physical
shapes and the input shapes. We decompose the deformation
gradient for each tetrahedron into a rotation and symmetric matrix,
blend them separately according to the weights, and solve a linear
system to combine the deformation gradients of all tetrahedra
as in rotation-strain coordinate warping [54]. Weights used in
this procedure are intuitive as they can be assigned directly on
[0,1]. The method permits easy post-simulation tuning of weights,
upon which one can resolve for the blended animation without
re-simulating physics.

Such an approach, however, is not compatible with contact resolu-
tion. We use the following strategy to resolve contact. After each
simulation step, we use kinematic blending to produce a blended
shape. If any collision is detected in the blended shape, penetration
depths are collected and penalty forces calculated with respect to

the blended shape (Section 8). These penalty forces cannot be
applied to the simulation mesh directly, since the blended shape
usually has a different shape and orientation as the simulation
mesh. Therefore, a per-tetrahedron rotation is calculated, based on
the deformation gradient of each tetrahedron of the blended shape
relative to the same tetrahedron in the simulation mesh. We then
rotate the penalty forces with these rotations to get the correct
force direction before adding the contact forces to the integrator.
This strategy works reasonably well in our elephant example (see
the supplementary video and Figure 13). A more precise method
could compute the gradient of the blending function (such as
in [27]); we regard this as too complicated and did not pursue
this direction. We implemented and compared the two methods
(Figure 13 and the accompanied video). We prefer the implicit
blending force to the kinematic blending because it enables colli-
sion handling without any special additional provisions, albeit at
some loss of weight intuitiveness.

7.3 Generating Weights

In this section, we explain how we can easily determine suitable
weights wi > 0 for any vertex i of the simulation mesh Ω \Ω′′,
for blending purposes. Larger weights bring the mesh closer to the
input motion. We provide an interface to compute all the weights
using a bi-Laplace solver. The Laplacian matrix L is defined as

wT Lw = ∑
1≤i< j≤m

σi, j(wi−w j)
2, (12)

σi, j =

{
1 if vertex i and j share an edge,
0 otherwise. (13)

Here, w ∈ Rm×1 is the vector of the weights, and m is the number
of vertices in Ω \Ω′′. The action of the tetrahedral mesh bi-
Laplacian LT L is defined similarly as in [55], [56], except that
we define Laplacian on vertices instead of tetrahedra. We then
minimize

1
2

wT LT Lw, (14)

subject to Sw = w̄, (15)

where S is the selection matrix, and w̄ are the user-defined weights
on a few vertices. Because the constraints are linear and the
objective is quadratic, the minimization can be performed using
a single sparse linear system solve.

8 COLLISIONS

Collisions may occur and need to be handled in various parts of
our pipeline. Robust handling of collisions is generally a difficult,
but an essential task for any physically based simulator. This
section explains how we address collisions.

8.1 Self-colliding Undeformed Triangle Mesh

When the undeformed triangle mesh has regions that are very close
to each other, it is difficult to construct a tetrahedral mesh without
welding these parts together. This problem becomes even worse if
the input triangle mesh has self-intersections. To avoid confusion,
we argue that there are two types of self-intersections. The first
type is where different mesh components are put together to form
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a complete object. For example, the elephant tusks are separate
meshes that collide with the body. We do not wish to separate
self-intersections of this kind. The second self-intersection type
appears because of errors in the modeling, or because they are
too tedious to address manually in existing workflows. We want
to remove such self-intersections. Our meshing pipeline addresses
the first type; it will produce a connected tetrahedral mesh without
any special treatment.

There has been work on removing self-collision in the rest mesh.
Sacht [57] converted the mesh into a collision-free shape to
tetrahedralize it correctly. However, they can only process two-
manifold meshes and focused mostly on sphere-topology shapes.
Jacobson [58] provided robust inside-outside segmentation even if
the mesh has self-intersection, but did not give a method to remove
self-intersections. We argue that it is impossible to properly
process self-collision given only the geometry. This is because the
collision type (first or second) depends also on the semantics (the
meaning of the geometry). Therefore, we give a general method to
remove self-collisions of the second type, at the cost of additional
user interaction. The pseudocode is given in Figure 12. In order
to identify the second type, we ask the user to select a deformed
pose Γ∗ of the mesh where the regions are more separated. This
can either be an input animation frame, or an individual pose from
another source. We then build a tetrahedral mesh Ω∗ for Γ∗, and
apply the tetrahedral mesh fitting method (Section 4.2), to deform
Ω∗ towards the undeformed triangle mesh Γ. This produces a
smooth tetrahedral mesh Ω around Γ. We then use Ω as the
undeformed tetrahedral mesh for the rest of our method. Because
the fitting process does not handle collisions, the simulation mesh
Ω may still be self-colliding. It is, however, topologically correct,
not welded, and does not pose any simulation issues. We note
that self-colliding undeformed tetrahedral meshes were also used
in [59], [60].

One technical challenge that we need to address is that self-
colliding tetrahedral meshes introduce ambiguity in building the
interpolation matrix C that interpolates tetrahedral mesh defor-
mations to the triangle mesh (line 11 in Figure 12). In the self-
colliding region, a triangle mesh vertex P can be contained in at
least two tetrahedra. To resolve this, we find out the tetrahedron e
that contains P in the collision-free shape Ω∗, and then compute
barycentric coordinates for e and P on Ω. Due to the fitting error,
P might be moved outside of e on Ω. However, because Ω is
topologically correct, we can form a line segment between the
centroid of e and P on Ω, and then walk down the line segment in
the tetrahedron e’s topological neighborhood to find the containing
tetrahedron. If the point lies outside of all tetrahedra, we use the
last traversed tetrahedron to embed it. A 2D illustration is shown
in Figure 11.

8.2 Collision Mesh Creation

The input triangle mesh may contain ill-formed triangles and
non-manifold components not suitable for collision detection.
Therefore, we re-use the method of [43] to create a manifold
collision surface mesh. The mesh resolution can be adjusted to
trade accuracy for collision speed.

Fig. 11: Ambiguity in embedding: A vertex P is embedded in
triangle e on Ω∗. After fitting, P is embedded by both triangle a
and b on the self-colliding mesh Ω. To find the correct triangle
to embed, we start at e on Ω, go towards P in e’s neighborhood,
and arrive at b. Since b embeds P, we stop and declare b as the
containing triangle of P on Ω.

Fig. 12: Create a Tetrahedral Mesh and Its Interpolation Matrices

Input: Γ,Γ′

Output: Ω,C,C′

1: procedure CREATE TET MESH(Γ,Γ′)
2: if Γ is collision-free then
3: Ω← MESHING PIPELINE(Γ)
4: C← INTERP MATRIX(Ω,Γ)
5: else
6: find a collision-free shape Γ∗

7: Ω∗← MESHING PIPELINE(Γ∗)
8: C∗← INTERP MATRIX(Ω∗,Γ∗)
9: ū∗← FIT ANIMATION(Ω∗,Γ∗,C∗,Γ−Γ∗)

10: Ω←Ω∗+ ū∗

11: C← INTERP MATRIX WITH COLLISION(Ω,Γ,C∗)
12: end if
13: C′← TRACKED INTERP MATRIX(Γ,Γ′,C)
14: return Ω,C,C′

15: end procedure

8.3 Collisions in Triangle Mesh Animation

The input triangle mesh animation may contain self-colliding
frames. We do not resolve collision during the fitting because
such collisions can be resolved during the simulation, as long as
at least one of the colliding regions are in Ω \Ω′′. If collisions
appears on the first frame, we add additional “pre-roll” copies of
the first frame before the animation to allow penalty forces to
resolve collisions during the pre-roll.

8.4 Collision Detection and Response During the Simulation

After a collision mesh is created, we embed it into the simulation
mesh Ω using barycentric coordinates. At runtime, we perform
collision detection using a bounding volume hierarchy [61]. For
each colliding collision mesh vertex c, its penalty force fc is calcu-
lated based on the penetration depth. We compute the penetration
depth in a manner similar to [62]. The force fc is redistributed
to the vertices of the tetrahedron that embeds c, weighted by its
barycentric coordinates [63],

fi = wc
i fc, (16)
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statistics elephant dragon bird head plant sumo
vtx 8,400 25,002 408 25,600 961 15,482
tri 16,636 50,000 7,878 49,924 1,600 30,642
tet-vtx 3,850 1,590 3,949 5,729 200 2,717
tet 14,942 5,387 11,846 18,391 413 7,767
free tet-vtx 1,621 1,401 2,414 – 199 1,642
free tet 5,354 4,801 6,915 – 410 4,599
frames 178 420 299 960 120 650
sim-frames 1,602 2,500 600 – 120 3,900
fitting 0.54s 0.11s 0.78s 1.35s 0.024s 0.24s
γ 10−10 10−9 10−5 10−8 10−2 10−9

sim 8.37s 0.68s 0.084s – 0.0058s 0.30s

TABLE 1: Simulation statistics. vtx, tri=#triangle mesh vertices
and triangles; tet-vtx, tet=#tet mesh vertices and tets; free tet-
vtx, free tet=#tet mesh vertices and tets in the free region Ω\Ω′′;
frames=#graphical frames; sim-frames=#simulation frames, in-
cluding intermediate frames that were inserted for stable simula-
tion; fitting, sim = time for fitting the tetrahedral deformations and
simulation for one graphical frame, respectively; γ: parameter
used in fitting. Intel Xeon 2.3GHz 2×6 cores, 32 GB memory.
In the elephant example, 95% of the simulation time is spent
processing collisions. The head example only uses frame fitting;
hence, no simulation time is reported.

where fi is the collision force on tetrahedral mesh vertex i, and wc
i

is the barycentric weight of c with respect to i.

9 RESULTS

We demonstrate our method using several examples. Statistics are
available in Table 1.

Elephant: In our first example (Figure 13), we enrich a walking
elephant motion with physics. The motion was created by an artist
in Maya, using rigging and keyframing. We use our method to
add secondary motion to the ears, trunk, belly and tail, by putting
them into Γ \ Γ′′. In each of these regions, we also adjusted a
single Young’s modulus value to make the region more or less
elastic. The motion has 178 frames. It took three minutes to
generate the tetrahedral mesh. Then, we iterated seven times to
fit the first several frames of the animation, searching for a good
γ (Equation 1). This process took eight minutes including user
interaction and running the fitting. It took about 90 seconds to
produce the entire fitted animation with the desired γ. Collision
detection and contact resolution were enabled in the simulation.
Figure 13 shows our blended result, where we blend between a
physically based simulation and the input with different weights,
using the blending method of Equation 11. We also show the
result of using kinematic blending: it produces a similar motion as
implicit blending. In Figure 18, we demonstrate that we can also
enrich input artist animations with large physically based contact.
Such contact can be useful when the artist already designed the
primary motion of a character, and then wants to add additional
(deformable or rigid) objects into the scene that should collide
with the deformable character, without substantially changing the
original character motion.

Dragon: The second example (Figure 14) is an Asian dragon
animation created by a surface deformation method [64]. The
dragon’s horns (nearly) self-collide with the head in the input
mesh, and standard methods produce welded tetrahedral meshes
with incorrect topology. We use the method described in Section 8
to create an undeformed tetrahedral mesh with correct un-welded

topology, despite self-collisions. We spent three minutes generat-
ing a (non-neutral) self-intersection-free mesh in Maya. Then it
took three minutes to create a tetrahedral mesh, and one minute to
produce the topologically correct neutral tetrahedral mesh. Next,
it took six iterations in four minutes of user time to fit the initial
frames, and then 46 seconds to fit the animation. The feet of the
dragon are constrained to perform a rising action similar to the one
used in [65]. We include the entire dragon except the back feet into
Γ \Γ′′. Implicit blending forces are added on the head and front
feet. Our method produces vivid motion on the horns, whiskers,
body and tail. By adjusting the weights temporally on the head and
front feet, we make them follow the input strictly during the initial
part of the animation, and exhibit secondary motion afterwards.

In Figure 15, we compare our method to TRACKS [18]. The
original TRACKS is designed for cloth simulation, and we extend
it by building Petrov-Galerkin constraints between the input tri-
angle mesh animation and the embedded mesh animation driven
by solid FEM simulation. The triangle mesh displacements v in
those constraints G(v) = 0 are then substituted with Cu = v, to
create simulation constraints for the tetrahedral mesh Ω. We find
that TRACKS constraints suppress global, spatially low-frequency
motion. The generated high-frequency motion is less pronounced
on solids than on cloth. In comparison, our method imposes no
restrictions on Γ\Γ′′ to allow secondary motion.

Bird: We add physics to a keyframed bird animation as our third
example (Figure 16). The model and the animation were purchased
online in a 3D model store. We place the legs into Γ′′, so that
the animator’s previous work on ground contact is preserved.
Similarly, we place the ends of the hands into Γ′′, so that the
hand motion follows the input, which can be seen as a variant of
inverse kinematics. The rest of the hand including the arm feathers,
however, is placed into Γ\Γ′′, which gives secondary motion. We
also add physics to the head and eyes.

Sumo Wrestler: In our fourth example (Figure 3), we enrich the
motion of a dancing sumo wrestler with secondary motion on the
belly, cheeks, derrière and thighs. We place the hands and legs
(except thighs) into Γ′′ to follow the artist’s input. We also put the
neck, and parts of the back and the hips into Γ′′, confining the
motion to reasonable poses. We put the lower half of the head into
Γ\Γ′′, to produce secondary motion on the cheeks. The rest of the
head is in Γ′′. Our method produces large deformations when the
wrestler is dancing and jumping. The thighs and cheeks exhibit
jiggling motion as well.

Head: In our fifth example, we complete the deformed shapes
of a human head triangle mesh Γ, based on the input motion
of a submesh Γ′ (Figure 1). The input motion was computed
using a proprietary optical flow-like tracking algorithm at a major
computer animation company. Due to occlusions, it is missing
all the deformation detail in the inner lips and the mouth cav-
ity. We compare our method to a standard surface deformation
method [64] (Figure 17). We find that the surface deformation
method produces collisions, especially in the mouth cavity and
inside the eyes, as these regions contain extremely concave geom-
etry. Surface deformation methods also require a single connected
surface mesh, whereas in the head model the tongue and teeth
are separate triangle shells; we removed them for this comparison.
We created a tetrahedral mesh Ω for the entire head using the
procedure described in Section 8. Then we fitted tetrahedral mesh
deformations ūi based on the input tracked triangle mesh motion.
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Fig. 13: Adding physics to an elephant walk cycle. Left-most column: the fixed Ω′′ and free Ω\Ω′′ region of the elephant tetrahedral
mesh. Free regions include the trunk, ears, belly and tail. Left four columns: Each column is a separate animation with a different
blending weight (Equation 11) between the artist input and physics. Implicit blending method was used. From left to right, the weights
are decreased from following the input 100%, to a 100% physically enriched result. In Γ\Γ′′, our method produces secondary motion
according to the weights, whereas in Γ′′, the output is identical to the input. Right-most column: kinematic blending with 50% physics.
It produces similar results as the implicit blending method, but suffers from less intuitive tuning of collision handling, such as between
the legs and belly.

Fig. 14: Adding physics to a dragon animation. The fixed region
consists of the two back feet. The blending weights (third and
fourth subfigures in the first row) change through time to follow
input at first, and add secondary motion afterwards. Note that the
weights on the back feet are ignored because they are in Γ′′. The
second row shows the resulting animation where the dragon rises
up. For cinematic effect, we add a particle-effect fire animation.
Secondary motion is present in the horns, whiskers, body and tail.

Fig. 15: Our method produces more global motion than
TRACKS with 40 automatically-generated regions. Two compar-
isons are made at each frame: (1) the Euclidean distance between
the displacement uk ∈ R3n and the input frame ūk ∈ R3n, and (2)
the difference in the x-axis position of a selected dragon vertex
between the output and input.

Since the tracked data already contains facial dynamics, we skip

Fig. 16: Adding physics to a keyframed bird animation. The
top row shows the fixed Ω′′ and free Ω \Ω′′ bird regions. Free
regions are the head, belly and wings, except the wing tips which
are fixed to drive the wings, similar to inverse kinematics. The
middle row shows several frames of the input motion. The bottom
row shows our result with subtle secondary motion added. This
example does not use blending.

the simulation part of our pipeline, and interpolate the complete
mesh Γ using ūi. The teeth are handled separately by extracting
the closest rigid transformation to the interpolated shapes because
they are rigid. In this example, we did not add back the input high-
frequency detail as the input detail contains tracking noise, rather
than something that was intelligently designed by the artist (as in
Figure 6). Actually, the input data contains tracking imperfections,
mostly along the perimeter of the lips, which our method resolved.
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Fig. 17: Comparison to as-rigid-as-possible energy: Left: the
deformation produced by our method. Right: the shape produced
by as-rigid-as-possible energy [Sorkine and Alexa 2007]. In order
to improve the as-rigid-as-possible result, we clamp the negative
weights in the as-rigid-as-possible energy; otherwise, the as-rigid-
as-possible method causes the obtuse mesh triangles to collapse.
We performed the comparison by setting the positions of the
tracked mesh Γ′ as constraints for Γ and minimized the as-rigid-
as-possible energy. Lacking interior information, the as-rigid-as-
possible energy resulted in a colliding shape at extremely concave
regions such as the mouth cavity and eyelids, whereas our method
produces a good result.

Fig. 18: Adding physically based contact to artist animations:
The soft ball is launched at the elephant. The ears, trunk, belly
and the tail are enriched with physics just as in Figure 13. Our
system performs collision detection between the elephant and the
ball. Upon impact, contact forces are computed and added to both
objects, resulting in local contact deformations on both objects,
all the while the elephant still generally follows the original
animation.

We processed 12 facial animations, each containing about 80
frames. Fitting each of these animations took 1.8 minutes on
average.

Fitting Parameters: The meaning of γ changes if one adjusts the
material stiffness (Youngs modulus). Our default Young’s modulus
for fitting is 107N/m2. Some examples require heterogeneous
materials, in which case we keep the average Young’s modulus in
the same range. We use Poisson’s ratio of 0.45 in all the examples.

A wide range of γ is used across our examples. A good γ depends
not only on the size and overall stiffness of the object, but also
on the input animation quality. In the elephant example, the input
animation has quite large non-smooth deformations on the legs
which generate huge internal elastic potential. We have to use a
very small γ (10−10) to achieve a tight fit. In contrast, the motion
of the plant is very gentle and smooth, and even a large γ can
produce a good result. Besides, a large γ (10−2) helps filter out the
local high-frequency dynamic details, which we remove during

fitting, and add them back after the simulation.

10 CONCLUSION AND FUTURE WORK

We have augmented general, arbitrary triangle mesh animations
with physics. Our method enables artistically driven simulation of
three-dimensional solid objects. We allow balance between input
and physics. We augment coarse tetrahedral mesh simulation with
the preservation of spatial dynamic detail.

Our system has the limitation that the input animation must
be provided at every frame; completely missing frames would
require solving space-time optimization problems. Our method
also requires that at least a (small) part of the model has to follow
the input exactly. In the context of artist-directed animation, this
requirement is natural as one typically wants physically based
animations that do obey the input at least somewhat; otherwise,
one can simply run standard physically based simulation. We
augment coarse tetrahedral mesh simulation with the preservation
of spatial dynamic detail. While our method is not tied to a
particular interpolation method, barycentric coordinates are only
C0 at the tetrahedral boundaries. Smoother interpolation methods
such as mean value coordinates [50] could be used instead. Our
method cannot generate deformations smaller than the volumetric
mesh resolution. Therefore, it can be hard to create wrinkles and
other small details. In practice, one desires a mesh that resolves
the appropriate deformation detail as well as performs efficiently.
This fundamental tradeoff in computer simulation requires exper-
imentation and user iteration.

If the input deformations are unreasonable or chaotic, fitting may
produce severely strained volumetric mesh animations, which in
turn will make the simulation unstable. Adding anatomical detail
to our solid models would improve animation realism. We would
also like to extend our method to shells (cloth), and apply model
reduction to accelerate the simulation.
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