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Fig. 1. Large-strain editing of a fish: We apply positional constraints (“landmarks”; red dots) to edit the fish shape. Our method
makes it possible to deform the fish using spatially varying large rotations and non-uniform scales. We stretch the mouth and a side fin
of the fish, exaggerate the tail and shrink the opposite fin. Our method successfully produces a smooth shape that matches the drastic
user landmark inputs.

Abstract—Modeling arbitrarily large deformations of surfaces smoothly embedded in three-dimensional space is challenging. We
give a new method to represent surfaces undergoing large spatially varying rotations and strains, based on differential geometry, and
surface first and second fundamental forms. Methods that penalize the difference between the current shape and the rest shape
produce sharp spikes under large strains, and variational methods produce wiggles, whereas our method naturally supports large
strains and rotations without any special treatment. For stable and smooth results, we demonstrate that the deformed surface has to
locally satisfy compatibility conditions (Gauss-Codazzi equations) on the first and second fundamental forms. We then give a method to
locally modify the surface first and second fundamental forms in a compatible way. We use those fundamental forms to define surface
plastic deformations, and finally recover output surface vertex positions by minimizing the surface elastic energy under the plastic
deformations. We demonstrate that our method makes it possible to smoothly deform triangle meshes to large spatially varying strains
and rotations, while meeting user constraints.

Index Terms—Surfaces, shape modeling, differential geometry, fundamental forms, plasticity, large rotations, large strain

1 INTRODUCTION

Modeling surfaces and their deformations is a central topic in computer
graphics. In the context of surface modeling, a surface representing
the shape needs to be stretched, sheared, or rotated to meet arbitrary
user constraints. Users intuitively expect that the deformation should
preserve the intrinsic original shape of the object, while being globally
smooth. In some applications, for example, the artists may want to
stretch a local part of the character to meet the target positions while pre-
serving the part’s intrinsic shape, and avoid volume-preservation-based
shrinkage as is often the case in existing methods. To maintain the orig-
inal shape, geometric shape modeling methods and physically-based
simulation methods often penalize the changes between the current
shape and the rest configuration, or they minimize the smoothness
of the deformation gradient and its derivatives (variational methods).
Given sparse positional constraints on a few points or vertices, these
methods either produce “spikes”, or excessive curvature under large
deformations. To avoid these problems and accommodate large strains
and rotations for 3D volumetric objects, Wang et al. [37] used plas-
tic strains to deform volumetric meshes of template human organs to
match medical images of real subjects. This produced smooth volu-
metric shapes satisfying sparse positional constraints. We note that the
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usage of the word “plasticity” here should not be understood in the
context of material simulation, but rather merely as a term denoting the
change of the elastic rest shape of an object. For deformation shape
modeling, this then merely serves as a tool to define the shape defor-
mation, without any implication of simulating plastic deformations of
physically based materials. Still, the concept of “plasticity” is the exact
mathematical counterpart of our intended usage, as indeed deforming a
surface could be viewed as applying a permanent plastic deformation
to it.

At first glance, it seems that applying Wang’s volumetric plasticity
methodology to surfaces embedded into R3 should be straightforward.
However, this is not the case. For 3D solids in 3D, one can change
their rest shape simply by applying a stretching transformation, i.e., the
plasticity DOFs are the entries of a 3× 3 symmetric matrix. This is
because one can arbitrarily plastically rotate the tetrahedrons, even with
different rotations at different tets, without any effect on the deformation
energy. In the case of thin-shells embedded into 3D, the situation is
very different. Now, applying a spatially varying plastic rotation has
a large effect on the thin-shell elastic energy, because it re-defines the
bending energy. Therefore, what is necessary is a new set of plastic
degrees of freedom. A naive approach would be to use the symmetric
entries of the plastic first and second surface fundamental forms directly
as degrees of freedom; but as our experiments show (Figure 17, g), this
does not work: shape optimization fails to make progress. We identify
the source of the failure, namely the lack of a compatibility of the
plastic first and second fundamental forms. Particularly, given some
arbitrarily defined local surface plastic deformations, we must ensure
that a matching surface (i.e., mesh vertex positions) even exists (at
least locally), otherwise, as our experiments show, shape optimization
diverges or is prone to local minima.

Our key insight is that the definition of plasticity must satisfy compat-
ibility conditions on surface’s first and second fundamental forms. To
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Fig. 2. Stretching and bending the wings of a swallow to meet the landmarks: Our method can handle large rotations and strains to deform the
wings of a swallow smoothly to meet the given landmarks. Esturo et al. produce a similar result with large rotations but using a tetrahedral mesh (see
Figure 3 in [25]).

satisfy these requirements, we give a novel differential shape represen-
tation for thin-shells embedded into R3 whereby local surface plastic
deformations are modeled using a spatially-varying 3×3 rotation, and
a spatially-varying 2×2 symmetric matrix. The former models plastic
bending, whereas the latter models arbitrarily-oriented (large) plastic
strains in the UV parameterization domain. The rotation also globally
orients every infinitesimal local surface “patch” (a triangle when the sur-
face is discretized) in the world space. This new representation is very
versatile and can easily model large spatially varying surface strains
and rotations. We prove that our modified fundamental forms (“plastic
fundamental forms”) resulting from the above 3×3 rotations and 2×2
symmetric matrices are not “abstract quantities” as in prior work [12],
but correspond to an actual locally defined surface. Although we do
not guarantee the existence of a global surface matching our plastic
fundamental forms, this is not necessary in practice. Our experiments
show that local existence is sufficient, as a “most closely matching”
global surface can be found using optimization. Namely, with consis-
tently defined plasticity, we can stably compute “best” global mesh
vertex positions, by minimizing (in a proper metric) the deviation of the
output surface fundamental forms from the plastic fundamental forms.
This is achieved by finding the mesh static elastic equilibrium under
the plastic fundamental forms.

To use our representation to perform geometric shape modeling
under user sparse positional constraints, we define a further “higher-
level” optimization problem that optimizes for smooth spatially varying
locally consistent plastic deformations so that the resulting surface
matches the user constraints as closely as possible. A part of the chal-
lenge here is to define the smoothness of plastic fundamental forms.
Note that in many applications in geometric shape modeling, one en-
counters functions that map UV coordinates to matrices, such as elastic
strains, or fundamental forms as in our work. In order to avoid the need
for a global UV parameterization, we use a separate UV space for each
triangle, as commonly done in prior work [5, 12]. Due to arbitrarily
oriented UV coordinate systems at adjacent triangles, this complicates
the definition of a Laplacian. We give an approach for consistently
defining the discrete Laplacian of matrix functions of UV coordinates
(Section 4.3). Equipped with our plastic fundamental forms and their
spatial Laplacian, our optimization successfully handles difficult yet
sparse point constraints. For example, our method can generate shapes
that undergo simultaneous bending and large scaling (Figure 2 and
Figure 17, `). Our method produces smooth output shapes undergoing
large and anisotropic shape deformation. We demonstrate that these
effects are difficult to achieve with previous methods. Our contributions
include the following:

• To the best of our knowledge, we are first to use plasticity and
FEM to successfully model triangle meshes undergoing large de-
formations specified by sparse positional constraints. Unlike [37]
who operated on 3D solids, our method operates on thin shells.
Thin shells pose specific mathematical challenges, and one cannot
merely apply 3D solid methods; we identify the challenges and
overcome them. Because thin shells have a lesser number of
DOFs for the same shape compared to solids, our method can pro-

duce results of equivalent quality much faster. Furthermore, our
method handles both large spatially varying strains and rotations,
while [37] only needed to consider large strains.

• We propose a new method to modify the first and second fun-
damental forms of (discretized) surfaces embedded into the 3-
dimensional space, using local rotations and strains. Compared
to [12] and [22], our method can cleanly decouple the intrinsic
and extrinsic surface DoFs, thus guaranteeing compatibility of
plastic deformations for each infinitesimal local patch. This is
demonstrated to be crucial for decreasing the objective energy
(please see our video).

• We give a carefully designed smoothness energy for our differen-
tial rotation and strain DoFs; this smoothness energy maintains
the object’s inherent shape. Using only two landmark constraints,
our method successfully re-produces uniform scaling (Figure 17).

• We also define a discrete Laplacian of functions mapping UV
coordinates to matrices, for the important practical case where
each triangle has its own UV parameter space (Section 4.3).

2 RELATED WORK
Modeling shape deformation is an important topic in computer graphics
and encountered in many sub-disciplines, including geometric model-
ing [1, 9], physically based FEM simulation [31] and mesh non-rigid
registration [2]. In general, a shape deformation problem can be treated
as an optimization problem whose objective function is defined as the
“smoothness” of the shape, combined with some user constraints.

Different definitions of the “smoothness” energies give rise to var-
ious output properties. The smoothness of the shape has been for-
mulated through variational methods [7, 38], Laplacian surface edit-
ing [33], as-rigid-as-possible (ARAP) deformation [19, 32], coupled
prisms (PRIMO) [8], and partition-of-unity interpolation weights such
as bounded biharmonic weights (BBW) [21] and quasi-harmonic
weights [40]. Nonetheless, existing methods produce suboptimal de-
formations when the shape undergoes large rotations and large strains
simultaneously (see [37]), or they are not designed for meeting user ver-
tex constraints. Variational methods suffer from large rotations, while
ARAP and PRIMO produce spiky shapes given difficult constraints.
These problems have been discussed and illustrated by [9, 37]. BBW
generates smooth interpolation weights that can be used for interpolat-
ing transformations across the entire shape, but it takes a substantial
amount of time to compute the weights, and the weights must be re-
computed whenever the handles change. Furthermore, BBW has not
been designed to meet vertex constraints, but rather enact shape trans-
formation by tweaking the transformations in a forward process. To
overcome the problem caused by large rotations in variational methods,
the smoothness energy has been defined to penalize the Laplacian after
the rotations [10, 11]. While the resulting shapes are C2-smooth, the
method generates wiggly artifacts similar to variational methods [40].
To address this problem and handle large strains properly, the rest shape
can be reset during each deformation iteration [16, 17, 30]. Doing so,
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Fig. 3. Comparison of our shape modeling method using a hinge-based elastic thin shell energy [18] vs energy defined via surface
fundamental forms [12] (as used in our method): On asymmetric meshes, the hinge-based energy produces substantial artefacts. The landmarks
are shown in red.

however, loses important aspects of the original input shape, such as
not being able to preserve volume and sharp features. In contrast, our
method provides a trade-off on the various objectives and handles large
rotations and large strains simultaneously and consistently.

When performing non-rigid registration on a template mesh to match
the target shape, a smoothness energy is often needed in the objective
function. Existing methods penalize the affine transformations between
neighboring vertices or triangles [2, 3, 23]. Such energy is combined
with dense correspondences to achieve deforming the template mesh
to match the target. When the smoothness energy is combined with
sparse inputs, however, artifacts similar to those in variational methods
appear, as demonstrated by [37] and in our Figure 14. Deformation
transfer is able to handle sparse markers without visible artefacts [35],
but it cannot handle large rotations. Kircher et al. solved the prob-
lem by decomposing the affine transformations into the rotational and
shear/stretch parts, and treated them separately [22]. However, as
shown in our video, this still does not cleanly decouple the intrinsic
and extrinsic surface DoFs, causing shape optimization to stall due to
suboptimal search directions.

Physically-based FEM simulation can also be used for shape defor-
mation. When enclosing a well-defined volume, an object can either be
treated as volumetric or as a surface. For volumetric objects, the elastic
energy penalizes volume changes, large strains, and gives C0 continuity
around constraints [31], similar to ARAP. For surface objects, they
are often modeled using thin-shell (“cloth”) simulation. Cloth elastic
energy usually consists of two terms, namely, in-plane elastic energy
and out-of-plane bending energy. The in-plane energy is defined in a
similar fashion to the elastic energy for 3D volumetric objects [36]. As
a result, it exhibits similar behavior and artifacts as volumetric simula-
tion. On the other hand, the bending energy is modeled as the change
of curvature. In fact, penalizing the bi-Laplacian mentioned above in
variational methods can also be considered as a type of a bending en-
ergy, as it models the change of mean curvature. For a comprehensive
comparison of bending models, we refer readers to [12]. In general,
elastic models are always large-strain-unfriendly, because they penalize
the changes to the rest shape.

Plastic deformation can in principle address such issues, because it
models shapes that undergo permanent and large deformations. There-
fore, it is in principle a natural choice for shape deformation modeling.
However, while plasticity has been widely used in forward simula-
tion [6, 13, 20, 26, 28, 34], its applications to shape deformation have
been limited. Wang et al. [37] employed plastic deformations for
shape modeling, but they only addressed volumetric objects (tetrahe-
dral meshes in 3D), not surfaces. In our work, we address surfaces
in 3D. Because we formulate plastic deformations directly on the sur-
face, our method uses fewer DoFs, which leads to faster performance.
Last but most important, the presence of the co-dimension makes the
problem substantially more difficult, due to the necessity to model
compatible first and second fundamental forms. Lipman et al. [24]
proposed a rotation-invariant representation of surface meshes using
discrete frames and fundamental form coefficients. Their work decou-
ples frame rotations from the deformation of the tangent space, and
solves them in two separate steps. However, it does not guarantee the
compatibility of fundamental forms. Wang et al. [39] used edge lengths
and dihedral angles as primary variables to compute discrete funda-

mental forms, and derived local and global compatibility conditions.
We use local rotations and strains to modify fundamental forms, not
edge lengths and dihedral angles. Another key difference to our work
is in the surface reconstruction step. While we employ plasticity to
ensure that arbitrarily large strains are accommodated, their surface
reconstruction method penalizes the distance between the current (com-
patible) shape and the (always compatible) initial shape. Because of
this, their method will still suffer from spikes under large deformation,
as demonstrated in Figure 11. One can penalize the magnitude of en-
ergy gradients over the whole mesh and achieve smooth shapes [25].
However, such a method still employs an objective energy term with
a tendency to preserve object volume. This causes objects to shrink
in one direction to preserve volume (Figure 10), which may not be
desirable in some applications. In our work, we can freely “inflate”
the object without any penalization. Also, [25] is limited to quadratic
energies, i.e., it does not handle higher-order elastic energies such as
our Equation 6. Although some of the above methods discussed dif-
ferent approaches to discretizing the fundamental forms, and derived
compatibility of surface meshes, it is very difficult to define plasticity
and the corresponding smoothness based on their definitions. That is
why we choose to follow the thin shell model in [12].

Parameterizing surface plastic deformations is not straightforward:
an incorrect choice results in degenerate outputs and optimization diver-
gence. To achieve our goal, we first choose a state-of-the-art thin-shell
simulation method [12]. In addition to “properly” (in a physical sense)
treating thin-shell energies and thus providing physically-plausible
simulation, it also gives a proper space to define plastic deformations.
However, arbitrarily defined plasticity based on the first and second
fundamental forms as in [12] does not ensure compatibility of fun-
damental forms, and leads to shape optimization divergence. This is
the advantage of our method: by setting local rotations and strains,
we automatically guarantee local compatibility of fundamental forms
at each triangle. Note that compatibility (Gauss-Codazzi equations)
involves spatial partial derivatives and thus, when discretized, links
rotations and strains at each triangle to those in its 1-neighborhood; it
does not involve single triangle quantities only. We also experimented
with other elastic cloth models such as [18], but the “hinge” nature of
the energy introduces bias that depends on the orientation of the edges
in the mesh; when using the plasticity and elasticity of [12], such bias is
greatly reduced (Figure 3). Directly decomposing a plastic deformation
gradient into a rotation and a symmetric matrix is also not doable in
practice [22] (Section 3.1.1), as demonstrated in our video.

Our method performs a local step (adjustment of the local per-
triangle plastic degrees of freedom), followed by a global step (finding
mesh vertex positions that are the elastic equilibrium under the lo-
cal plastic deformations). This structure is similar to the “two-step”
processes employed in many previous shape deformation publica-
tions [8, 10, 32]. Our 6-DoF “plastic” deformable DoFs deform the
mesh locally to meet the constraints, whereas the elasticity and the
smoothness regularization globally solve for the final output. That said,
our local 6-DoF deformable degrees of freedom are a unique innovation
of our work. Furthermore, our usage of the Laplacian smoothness on
our 6-DoF deformable degrees of freedom permits the shape to undergo
a smooth and controlled, but unrestricted and unhindered deformation,
consistent with the user inputs.



Fig. 4. Plastic and elastic deformation of one triangle. The optimiza-
tion process uses three sets of fundamental forms: (1) The user provides
the input triangle shape; the first and second fundamental forms are
denoted by a and b; (2) matrices R and S modify the fundamental forms
to ā and b̄; this gives the plastic shape, serving as the elasticity rest state;
(3) using this rest state, we solve for the static elastic equilibrium, to get
the output shape with fundamental forms ã and b̃.

3 PLASTICITY OF SURFACES

Before describing our method for shape modeling of surfaces, we give
a brief review of the relevant surface theory from differential geometry,
following [12].

3.1 Continuous Formulation

Our modeling of surfaces stems from the continuous mechanics where a
surface is modeled as a thin shell Φ∈R3 of thickness h > 0, parameter-
ized over a domain Ω⊂R2. The surface is embedded (strictly speaking,
immersed, as we do not need to assume a lack of self-intersections) into
R3 via φ : Ω× [−h/2,h/2]→R3, with Φ being the image of φ . By the
Kirchhoff-Love assumption, the shell “thin volume” can be represented
only in terms of the shell’s mid-surface r : Ω→ R3,

φ(u,v, t) = r(u,v)+ tn(u,v), (1)

where n = (ru × rv)/||ru × rv|| is the midsurface normal, ru =
∂ r/∂u, rv = ∂ r/∂v, and t ∈ [−h/2,h/2]. The first and second fun-
damental forms a and b of the surface are

a = FT F ∈ R2×2, b =−NT F ∈ R2×2, where

F = [ru rv] ∈ R3×2, and N = [nu nv] ∈ R3×2,
(2)

where nu = ∂n/∂u and nv = ∂n/∂v. In this paper, we use a and b to
denote the first and second fundamental forms of the input surface. We
assume that the parameterization is non-degenerate, i.e., matrix F is
rank 2 everywhere.

3.1.1 Plasticity

We say that a surface changes its shape through “plasticity” when its
shape is specified by some first and second fundamental forms ā and
b̄ (at each location on the surface), that differ from those of the input
mesh (Figure 4). In this paper, we use variables without any diacritics
to represent quantities on the input mesh. We use ¯ and ˜ to denote
quantities on the plastic and output shapes, respectively. Note that
the “plastic shape” does not exist as a globally defined surface, but
the local quantities do. Chen et al. [12] employed plasticity for thin-
shell forward simulation, by directly modifying a and b into ā and b̄,
using some procedural formulas. However, such an approach runs into a
substantial limitation that was readily apparent in our shape deformation
system: arbitrary ā and b̄ may not satisfy the compatibility conditions
(Gauss-Codazzi equations [41]). In other words, given arbitrary first
and second fundamental forms ā and b̄, we cannot guarantee that such
a surface exists, not even locally, let alone globally. According to
our experiments, setting ā and b̄ without regarding to compatibility
leads to poor search directions and inability to decrease the energy
for solving shape deformation. Therefore, what is needed is a new
approach that modifies the first and second fundamental forms in a
compatible manner. However, since satisfying the global compatibility
is too difficult under user constraints [39], we enforce a weaker form
of compatibility, namely local compatibility at each triangle. We first
introduce the fundamental theorem of surface theory [29].

Theorem 1 (Fundamental Theorem of Surface Theory) A surface
is uniquely determined by its first and second fundamental forms if its
position and tangent space are known at just one point. Conversely, for
any choice of abstract first and second fundamental forms (defined as
smooth functions from some open disk D ⊂Ω⊂R2 into 2×2 matrices)
that obey the Gauss-Codazzi equations on the open disk D , there
exists a local surface (i.e., surface defined via a parameterization on a
sufficiently small open subset S ⊂D), such that its first and second
fundamental forms are as prescribed everywhere on S . Note that this
theorem cannot be generalized to ensure global surface existence on
Ω, even if Gauss-Codazzi equations are globally satisfied on Ω.

For each parameter σ ∈ Ω defining a surface point r(σ), the vectors
t1(σ) = ru, t2(σ) = rv span the tangent plane. The unit normal at r(σ)
can be computed as n = (t1× t2)/||t1× t2||. Then, we can define a
non-degenerate local frame at every point σ by

D =
[
t1 t2 n

]
. (3)

Our idea is to scale the infinitesimal UV neighborhood of each point
σ ∈ Ω using a 2× 2 symmetric matrix S(σ), and then change the
world-coordinate surface orientation with a 3×3 rotation matrix R(σ).
The embedding of such a local patch after simple scaling and rotation
operations will still exist locally (but not necessarily globally), and lead
to a new local frame at σ ,

D̄ = R
[
t1 t2 n

](S 0
0 1

)
. (4)

Because (Rt1)× (Rt2) = R(t1× t2), the normal in the new frame D̄ will
always automatically be perpendicular to the new tangent plane, which
is spanned by the two columns of matrix R[t1 t2]S∈R3×2. The infinites-

imal local patch can be parameterized via ζ 7→ r̄(ζ ) def
= R(σ)r(σ +S ζ ).

This map is defined for ζ ∈ R2 from some sufficiently small neighbor-
hood of the origin in R2; note that σ is kept constant in this map. By
derivation against ζ = (u,v), one can verify that

F̄ = [r̄u r̄v] = RFS, and n̄ = Rn,

ā = F̄T F̄ = ST aS, b̄ =−N̄T F̄
(5)

where N̄ can be calculated from n̄ using R and S (see Section 3.2.2).
Our updated first and second fundamental forms ā and b̄ are calculated
based on D̄ and will be naturally compatible because they correspond
to an actual local surface, namely the one defined by the embedding r̄.
Conversely, according to Theorem 1, there is only one surface locally
matching ā and b̄, and having the local frame D̄, namely exactly the
one given by the embedding r̄. We note that the above discussion kept R
constant on the local infinitesimal patch. Strictly speaking, our rotation
changes continuously with σ , and therefore, the fundamental forms
of the surface defined by the mapping r̄ at some ζ 6= 0 slightly differ
of those computed directly at σ +ζ , due to the derivative dR/dσ . We
neglect this secondary effect in our work, noting that our modified
(“plastic”) fundamental forms at each σ match an actual surface, unlike
prior work [12]. This approximation is further justified by the fact that
in our discrete formulation (Section 3.2), we keep the rotation constant
on each triangle.

Intuitively speaking, we (anisotropically) scale the UV space near
r(σ) using a symmetric matrix S(σ), and locally rotate the surface
in world space using R(σ). Note that R preserves the first fundamen-
tal form and therefore also intrinsic properties (such as Gauss curva-
ture) [29], whereas S does not. As such, we can view R as preserving the
intrinsic surface shape locally and only modifying the extrinsic surface
properties (forming “extrinsic DoFs” of surface deformation), whereas
S modifies intrinsic surface properties (forming “intrinsic DoFs” of
surface deformation). Our method cleanly decouples the intrinsic and
extrinsic DoFs, so that S and R are independent of each other. Observe
that R has 3 DoFs because it is a rotation matrix in 3D, and S also has
3 DoFs because it is a symmetric matrix; and therefore the space of
local surface modifications is 6-dimensional. In our implementation,



we use the exponential map and the Rodrigues’ rotation formula to
parameterize R into a 3-dimensional vector θ . We also represent the
symmetric matrix S as a 3D vector s.

Difference to Polar Decomposition We note that there is an
alternative approach to changing the local frame. Namely, one can
perform polar decomposition of D ∈ R3×3 directly by D =UA, where
U is a 3×3 rotation matrix and A is a 3×3 symmetric matrix [22]. One
then modifies U into some Ū and A into some Ā, and the new frame then
becomes D̄ = ŪĀ. However, according to our experiments, this method
does not produce an effective search direction for shape optimization
(Figure 17, h; see also our video). The issue is very similar to
the incompatibility problem of [12], which directly used the first and
second fundamental form entries as the deformable DoFs, changing
their values arbitrarily without satisfying Gauss-Codazzi equations.
We now provide a brief analysis on why both [12] and [22] produce
suboptimal search directions in shape optimization. To decrease the
optimization objective towards convergence, there are two necessary
properties: (i) compatibility: the shape deformation DoFs should be
compatible so that there exists a local surface satisfying the produced
fundamental forms; (ii) DoF decoupling: the DoFs should be decoupled
so that they do not interfere with each other. The method of [12] fails
condition (i) because arbitrarily-chosen first and second fundamental
forms do not satisfy local compatibility conditions. For the polar
decomposition method in [22], the key difference to our method is
that in our method, the change of shape is encoded as a differential
rotation and a differential strain relative to the triangle’s input shape.
In the polar decomposition method, one instead models the rotation
matrix U and symmetric matrix (strain) A from the “canonical triangle”
(with vertices (0,0,0),(1,0,0),(0,1,0)) onto the deformed triangle, and
so already in the neutral shape, one has a large rotation and strain.
When the “polar decomposition” degrees of freedom are presented to
the shape optimizer, they are too nonlinear and the optimizer makes
poor progress, and often locks. An issue here is that if one alters the
symmetric matrix A in polar decomposition to Ā, this changes the local
surface frame from UA to UĀ and therefore the relative local surface
frame transforms by UĀ(UA)−1 = U(ĀA−1)UT . Observe that ĀA−1

is not a symmetric matrix, and therefore, it actually contains another
rotation. And so, by modifying A into Ā we are in effecting introducing
yet another rotation, ie, the deformation degrees of freedom are not
“cleanly” decoupled (failure of condition (ii)). In contrast, our DoFs R
and S directly give the modification of the local frame, and therefore the
symmetric matrix S is always the change in the parameterization domain
and will not introduce any rotation. In practice, our method can indeed
solve for a good search direction to decrease the objective efficiently,
whereas [12] and [22] stall in the optimization process (Figure 17, g,
h; see also our video). Finally, a related question that may arise is
how our method compares to the numerous shape deformation methods
that use the deformation gradient and its polar decomposition. Namely,
these methods use a 3× 3 matrix to locally model the deformation
mapping between the undeformed surface and the deformed surface,
as opposed to using the parameterization gradient mapping from the
UV space to the surface, as in our work and in [22]. Observe that when
performing polar decomposition of the 3×3 deformation gradient, one
obtains a 3×3 rotation matrix (having 3 inherent DoFs), and a 3×3
symmetric matrix (having 6 inherent DoFs), for a total of 3+ 6 = 9
local deformable DoFs. So, this leads to redundant DoFs; and actually,
our method could be seen as an approach to remove this redundancy and
produce an optimization-ready, minimal set of local surface deformable
DoFs.

3.1.2 Elastic Energy

Another component of our modeling system is elastic energy. We
use elastic energy to define the “best matching” global surface to the
prescribed plastic fundamental forms. We define the best matching
surface as the surface that is in static elastic equilibrium under the
plastic fundamental forms. I.e., this is the surface that gets “as close
as possible” to the desired plastic fundamental forms, as measured in
elastic energy relative to the plastic fundamental forms. Note that we

Fig. 5. Element-wise differing rotations: In the discrete configuration,
we use element-wise differing rotations to modify the surface normals,
leading to a change of the second fundamental forms. Here, d1 and
d2 represent the triangle normal in the initial input mesh and ni is the
mid-edge normal to edge i. After applying R1 and R2, the triangle normals
change to d̄1 = R1d1 and d̄2 = R2d2. The new mid-edge normal n̄i is the
average of d̄1 and d̄2.

use ˜ to denote the output mesh quantities, i.e., those of the mesh in
static elastic equilibrium.

Similarly to [12], for simplicity, we assume that the shell’s material
is homogeneous and isotropic, and adopt the St. Venant-Kirchhoff thin-
shell constitutive law. We note that most of the in-plane deformation
is already handled by the plasticity in our method, and therefore the
elasticity only undergoes small in-plane strain, justifying the choice of
St. Venant-Kirchhoff. The elastic energy density, with respect to a unit
surface area in the UV space and including both stretching and bending
terms, can then be approximated ([41], [12]) up to O(h4) by

W (u,v) = (
h
4
||ā−1ã− I||2SV +

h3

12
||ā−1(b̃− b̄)||2SV )

√
det ā (6)

where || · ||2SV is the ”St. Venant-Kirchhoff norm”

||M||2SV =
c1

2
tr2M+ c2tr(M2), (7)

and c1,c2 are material parameters related to Young’s modulus E and
Poisson’s ratio v,

c1 =
Ev

1− v2 , c2 =
E

2(1+ v)
. (8)

The elastic energy of the entire surface is∫
Ω

W (u,v)dudv. (9)

The elastic energy enables us to convert the plastic first and second
fundamental forms (encoding a desired, but likely impossible shape)
into a least-perturbed feasible output shape (static equilibrium under
the plastic fundamental forms). We found that it is important to use
an elastic energy that stems from differential geometry and discretizes
the bending energy in a manner not biased to the particular orientation
of mesh edges, such as the energy given by Equation 6. Namely, we
first attempted to use a simpler elastic bending energy, specifically, the
hinge-based energy [18]. However, this produced substantial artifacts
and the output mesh was not invariant with respect to the mesh edge
orientation (Figure 3). Using the energy defined based on fundamental
forms (Equation 6) produced no such bias [12]. Therefore, we decided
not to use the hinge-based energy. As per the choice of the elastic
energy “norm” in Equation 7, one can theoretically choose any suitable
norm, but this choice is not very important as the elastic deformations
are relatively small compared to plastic deformations. In this paper,
we choose to use the SV norm [12] because it works well and is most
relevant to our work.

3.2 Discretization
We approximate the mid-surface r with a triangle mesh with n vertices
and m triangles. In the following paragraphs, we use bold symbol to
represent the global mesh quantities, and non-bold text to represent



the quantities for a single vertex or element. In the discretization, the
positions of mesh vertices xxx = [x1, . . . ,xn] ∈ R3n define the embedding
rrr. We assume that the first and second fundamental forms are constant
over each triangle. We can now give a discrete form for Equations 2
and 6.

3.2.1 Discrete Shell Model

Let fi jk be a triangle with vertices xi,x j,xk, and let T be the “canonical”
unit 2D triangle with vertices (0,0),(1,0),(0,1). Then, locally the
triangle fi jk is embedded by the affine function

ri jk : T → R3, ri jk(u,v) = xi +u(x j− xi)+ v(xk− xi). (10)

The Euclidean metric on fi jk produces the first fundamental form

ai jk =

[
||x j− xi||2 (x j− xi) · (xk− xi)

(x j− xi) · (xk− xi) ||xk− xi||2
]
. (11)

The 2×2 matrix ai jk is always symmetric positive semi-definite. The
second fundamental form can be discretized as

bi jk = 2
[
(ni−n j) · (xi− x j) (ni−n j) · (xi− xk)
(ni−nk) · (xi− x j) (ni−nk) · (xi− xk)

]
, (12)

where ni is the mid-edge normal on the edge ei opposite to vertex i [12].
If ei is a boundary edge, ni equals to the face normal. Otherwise, ni is
the average of the normals of the two faces incident at ei. Matrix bi jk
is always symmetric but not in general positive-definite. The discrete
fundamental forms ã and b̃ can be calculated in the same way using x̃
and ñ. We can now give a discrete formulation of the elastic energy

Wi jk =
(h

8
||ā−1

i jk ãi jk− I||2SV +
h3

24
||ā−1

i jk (b̃i jk− b̄i jk)||2SV
)√

det āi jk,

(13)
where an additional division by two is due to the canonical triangle T
having area 1

2 .

3.2.2 Discrete Plasticity

It is natural to use triangles to approximate infinitesimal local patches
of the continuous formulation. Therefore, our plasticity is defined
triangle-wise in the discrete formulation, just the same with [12]. For
each triangle, we use a 3×3 rotation matrix R to change the triangle
orientation, and a 2×2 symmetric matrix S to scale the UV space of the
triangle, which causes the triangle to deform in its plane. By Equation
5, the plastic first fundamental form of the output surface corresponding
to (R,S) can be calculated by

āi jk = ST
i jk

[
||x j− xi||2 (x j− xi) · (xk− xi)

(x j− xi) · (xk− xi) ||xk− xi||2
]

Si jk. (14)

The modification of the second fundamental form is more complicated
because it involves per-triangle rotations. As we discussed in Section
3.1.1, we use spatially varying rotations to change the mean curvature
of the surface. In the discrete setting, the different rotations applied to
neighboring triangles can change the common edge normal (see Figure
5), and thus change the second fundamental form at the triangle:

b̄i jk = 2ST
i jk

[
(n̄i− n̄ j)

T Ri jk(xi− x j) (n̄i− n̄ j)
T Ri jk(xi− xk)

(n̄i− n̄k)
T Ri jk(xi− x j) (n̄i− n̄k)

T Ri jk(xi− xk)

]
Si jk,

(15)
where n̄ represents the modified mid-edge normal in the plastic config-
uration. It should be noted that one will in general not be able to find a
global set of vertex positions that exactly match these local per-triangle
fundamental forms, especially under arbitrary user constraints. Like
many previous geometry processing methods [25, 35, 37, 39], we recon-
struct the vertex positions by solving an optimization problem (Section
4). An important tool in this process is the plastic strain Laplacian
(Section 4.3), which biases the solution to smooth outputs.

4 PLASTIC-ELASTIC SHAPE DEFORMATION

Given an input triangle mesh, our goal is to deform the input mesh to
match the user-defined target positions (landmarks), while ensuring
smooth deformation. The position-based landmark constraints are
freely defined and set by the user. As explained in Section 3, we
model plasticity by defining a 3× 3 rotation matrix R and a 2× 2
symmetric scaling matrix S for each triangle. This means that each
triangle has 6 “deformable DoFs”. Namely, they are the exponential
map representation θ = log(R) ∈ R3, and the symmetric part s ∈ R3

of S. Finally, we group the DoFs of all triangles into a global vector
ppp ∈ R6m, which defines our “plasticity”. Note that in principle, a
user could set these plastic degrees of freedom directly. However, in
our paper, we optimize the plastic degrees of freedom so that some
higher-level user goal is satisfied, such as matching prescribed positions
of a subset of the vertices. We will now show how to perform this
optimization.

4.1 Computing Vertex Positions From Plastic Fundamental
Forms

By applying ppp to input fundamental forms aaa,bbb, we generate the plas-
tic fundamental forms āaa, b̄bb (Equations 5). Then, we compute output
vertex positions by minimizing the mesh elastic energy under plas-
ticity given by āaa, b̄bb. As is well known, elastic energy is invariant to
global rotations and translations, and there are therefore an infinite
number of minima meshes. To uniquely determine the output mesh,
we freeze a few selected vertices, which is commonly done in existing
methods (e.g., [39]); these “fixed vertices” will be enforced using the
Ec quadratic energy below. In our implementation, if the landmarks
already include anchored (i.e., permanently fixed) vertices, we simply
select those vertices and treat them as fixed vertices. If the landmarks
do not include any anchored vertices, we fix one arbitrary vertex that
is not intended to move during the optimization, to remove a global
translation. Therefore, output mesh vertex positions x̃xx can be computed
as

argmin
x̃xx

Ee(x̃xx, ppp)+Ec(x̃xx) (16)

where Ee = ∑
i jk

Wi jk is the total elastic energy, Ec = ||CCCx̃xx− ddd||2 is the

quadratic position-based constraint energy, CCC is a constant matrix that
selects fixed vertices, and ddd is the fixed position vector. Minimizing
Equation 16 is equivalent to solving for the stationary point of:

fff e(x̃xx, ppp)+ fff c(x̃xx) = 0, (17)

where fff e = ∂Ee/∂ x̃xx is elastic force, and fff c = ∂Ec/∂ x̃xx is constraint
force.

4.2 Shape Optimization To Match User Landmarks
Equations 16 and 17 establish a unique relationship between ppp and
x̃xx, i.e., they implicitly define a mapping x̃xx = x̃xx(ppp). We now define a
“higher-level” optimization problem that finds the “best” smooth ppp, and
the matching x̃xx, under which the user constraints (i.e., the landmarks)
are satisfied:

argmin
ppp,x̃xx

E`(x̃xx)+α||LLLppp||2 +β ||ppp− ppp0||2

s.t. fff e(x̃xx, ppp)+ fff c(x̃xx) = 0.
(18)

Here, the term E`(x̃xx) is the quadratic landmark energy whose mathemat-
ical form is the same as that of Ec, except that it applies to landmarks.
LLL is a Laplacian operator on the surface mesh (explained in detail in
Section 4.3), and ppp0 is the value of ppp corresponding to the input mesh,
i.e., identity matrices for sss and zeros for θθθ . The intuition behind
the Optimization Problem of Equation 18 is that the “s.t.” equality
enforces the relationship between ppp and x̃xx. Under such a condition,
the energy of the first line is minimized. This energy keeps plasticity
smooth (the Laplacian term), deforms the output mesh to meet the
landmarks (the E` term), and keeps the output similar to the input (the
||ppp− ppp0||2 term). Parameter α > 0 is the weight of the smoothness



(a) Neutral (b) β = 0 (c) β = 10−4α (d) β = 10−3α (e) β = 10−1α (f) β = α (g) α → 0,β = 0

Fig. 6. Exploring parameters α and β in Equation 18: Parameter β permits us to control the tradeoff between smoothness of the applied
deformations (low β ) vs minimizing the amount of deformation relative to the input shape (high β ). Wang et al. [39] and other elastic-energy-based
methods correspond to choosing a high value of β , hence they produce spikes when the landmarks dictate large strains. In (g), decreasing both
α and β to 0 produces an ill-conditioned optimization and creates unnatural distortions, establishing that the Laplacian term is needed for stable
optimization.

Fig. 7. The unfolding process of two neighboring triangles on the input
mesh.

energy, which enforces the smoothness of ppp, i.e., smooth changes of
plasticity from triangle to triangle, as well as serves as a regularization
term. Setting α → 0 will lead to an ill-conditioned optimization prob-
lem and a bad-quality line search direction (see Figure 6). The term
||ppp− ppp0||2 allows the user to impose a bias that prevents excessively
large plastic deformations, which improves numerics (next paragraph).
Parameter β ≥ 0 is usually smaller than α. Setting β = 0 will discard
the volume-preserving tendency, and grow the object smoothly without
any penalization (Figures 6 and 17).

To solve our optimization problem, we employ a Gauss-Newton
solver. We do a line search for ppp to decrease the objective and solve for
the static equilibrium (Equation 16) to get the corresponding x̃xx. This
part of our paper is the same as in [37], and we refer the readers to it for
details. We found that the condition number of the objective Hessian
matrix becomes large when the mesh is complex, and this will affect
the quality and speed of our line search. Adding the term ||ppp− ppp0||2
can improve the condition number greatly, and accelerate the overall
performance. Another option to improve the convergence of the Gauss-
Newton solver is to update the input shape using the output vertex
positions of the previous iteration at each Gauss-Newton iteration,
which is commonly done in previous methods [16, 17, 30]. Concretely,
this entails setting the input shape xxx to x̃xx of the previous iteration. When
employing such a strategy, it is also necessary to simultaneously reset
ppp to ppp0. This is because ppp should now reflect the fact that there is now
no plasticity with respect to the new xxx. Due to the existence of the
||ppp− ppp0||2 term, our method can still be biased towards the input mesh.
In our implementation, we use an inexact Hessian [12] and project the
local Hessians to the cone of symmetric positive semi-definite matrices
prior to assembly, which further improves performance.

4.3 Smoothness of Rotations and Strains

We now explain how we define our Laplacian LLL. We must separately
define Laplacian matrices for sss and θθθ . The technical difficulty in defin-
ing the Laplacian of sss is that the 2×2 scaling matrices S are expressed

in the local UV space of each triangle. Although the scaling opera-
tion itself is well-defined at each triangle, each triangle in our work
uses its own UV parameterization space [12]. We do this because this
avoids the need for a global UV parameterization. The expression of
the scaling operation as a 2× 2 matrix depends on the choice of the
UV coordinate system at the triangle. This UV coordinate system is
arbitrarily rotated at each triangle, which of course changes the entries
of S. Therefore, one cannot simply apply some standard Laplacian to
each scalar component of sss. Let i and j be two neighboring triangles in
the input mesh; denote their 2-dimensional orthogonal UV coordinate
systems by ϒi and ϒ j, respectively. Let the vertices of triangles i and
j be A,B,C and B,D,C, respectively (Figure 7). Note that the two
triangles are not in the same plane in the input mesh. We therefore first
“unfold” triangle j, using a rotation around edge BC, so that vertex D is
in the plane of triangle i. Now, coordinate systems ϒi and ϒ j are in the
same plane. Next, we calculate the rotation matrix Q ji that transforms
material coordinates from ϒ j to ϒi. We use Q ji to transform S j into the
coordinate system of triangle i. In this manner, we consistently define
the Laplacian operator at triangle i as

Ls;i(s) = ∑
j∈N (i)

mat(si)−Q jimat(s j)QT
ji, (19)

where N (i) represents the triangles adjacent to triangle i, and mat(s)
converts vector s ∈ R3 back to its 2×2 matrix form.

The rotation matrix R is always given in the global coordinate sys-
tem, and hence no special treatment is required; we directly apply the
triangle-wise Laplacian:

Lθ ;i(θ) = ∑
j∈N (i)

θi−θ j, (20)

where θ = log(R) ∈ R3 is the exponential map representation of the
rotation R. It should be noted that, due to the nonlinearity of log, this
Laplacian is not invariant under global rotations, i.e., if one multiplies
every local R with a constant global rotation, the Laplacian energy
changes. However, our rotation field is local with respect to the input
shape. Due to performance considerations, we use this simple method
and found that it works well in all the examples. If a large global
rotation is needed, we can insert an additional pre-optimization step;
namely, we can use shape matching [27] to align the orientation of
the input mesh to the landmarks. Note that landmark positions are
available both on the input mesh and as target position, i.e., they are in
correspondence, and hence algorithms such as ICP are not needed.

Discussion Observe that our choice of deformable degrees of
freedom R and S made it possible for us to carefully design a Laplacian
smoothness energy that does not penalize large scaling at all. Namely,
the object can scale globally in size to meet the user constraints while
the smoothness energy is always 0. Previous methods that penalize



(a) Neutral (b) Ours (c) Ours vs ShapeOp (d) ShapeOp (e) Primo (f) ARAP

Fig. 8. Large strain editing of a bending tube: Similar to [37], we use landmarks (red dots) to grow a bending tube in its middle region. Our
method produces a symmetric and smooth ”arch”. In (c), we compare our method (yellow tube) with Shapeop [15] (green tube), implemented using
ShapeOp’s “similarity”, “closeness” and “bending” constraints. ShapeOp’s output visibly loses volume near the two ends of the tube, which was also
observed in [37]. In (d), we replace ShapeOp’s “similarity constraints” with “triangle strain constraints”; the resulting contour is not as smooth as ours.
Primo [8] and ARAP [32] suffer from sharp spikes. We tuned the parameters of both ShapeOp and Primo and tried various settings and the results
were not improved.

(a) Neutral (b) Ours (c) ShapeOp (d) Curvature change

(e) Primo (f) ARAP (g) Elastic (γ = 1) (h) Elastic (γ = 103)

Fig. 9. Large strain editing of a horse: We apply a single landmark (red dot) to add a “hump” to the horse, while preserving the rest of the shape.
(a) is the neutral shape. Our method produces a smooth large deformation shown in (b). In (c), ShapeOp [15] distorts a hoof, generates a strange
stretched belly and produces a non-smooth hump. We tried different types of constraints, tweaked the parameters, and a better result could not be
produced. In (d), we give the histogram for the change of the mean curvature across the mesh vertices. Our method has a smaller mean value and
standard deviation, which implies that it is smoother, whereas ShapeOp has more outliers that have large curvature changes. In (e) and (f), Primo [8]
and ARAP [32] produce spikes. In (g) and (h), we provide a comparison with direct elastic simulation [12]. Here, γ is the ratio of bending stiffness
relative to our method. When γ = 1, forward elastic simulation produces a sharp spike on the back of the horse. When γ = 103, the result still has
sharp artefacts in the back, and we can observe self-intersecting triangles.

the difference between the current shape and the rest shape cannot do
this because they intend to preserve volume. This is also not easily
doable in methods that incorporate fundamental forms explicitly [24,39]
or implicitly [22]; the issue here is that the entries of the first and
second fundamental forms change under uniform scaling of the object.
Obviously, uniform scaling does not change the inherent shape of
the object, and our method can discover such a behavior, achieving
a very good compromise between maintaining the original shape and
satisfying user constraints. These observations are demonstrated in
Figure 17. In a nutshell, our method easily and without penalization
introduces (spatially varying) uniform or non-uniform scales, combined
with (spatially varying) rotations as needed.

5 RESULTS AND COMPARISONS

We implemented our method in C++, and used Knitro [4] for computing
static equilibrium. We present several examples that demonstrate shape

deformation involving large rotations and strains while meeting non-
trivial user constraints (Figures 1, 2, 8, 9, 10, 16, 17). Specifically,
Figure 1 shows that our method scales the surface non-uniformly while
maintaining the smoothness everywhere. Figure 2 shows that our
method simultaneously handles large rotations and strains, and reaches
the target gradually and smoothly. Figures 8 and 9 show that our method
grows the surface mesh smoothly to meet the landmarks. In Figures 10,
our method stretches a part of object while keeping the intrinsic shape
unchanged, i.e., the surface will not shrink in transverse directions,
which is significant in some applications. Figure 16 shows that our
method can be applied to creating 3D triangle meshes of personalized
human organs based on MRI scans. Figure 17 shows that our method
discovers the smooth deformation of uniform scaling by two landmarks,
and simultaneously handles large bends and stretches. We also gave a
mesh quality test in Figure 11 and tested our model using standard shape
deformation benchmarks (Figure 12) [9]. Figure 13 shows that our



(a) Neutral (b) Ours (c) [Esturo et al. 2014]

Fig. 10. Comparison to [Esturo et al. 2014] [25]: We compared our
method with [25], which also aims at addressing the “spikes” present in
the previous methods. The side and rear of the beetle car surface are
fixed, whereas a vertex on the engine hood is moved as landmark to
lengthen the car. We also constrain the front window to same location
for comparison. In (b), our method successfully lengthens the car while
keeping the original car width unchanged. The front part of the car
around the landmarks is still smooth. In (c), the method of [25] greatly
departs from the car’s intrinsic shape. The car shrinks, which is typically
not intended in car design.

(a) Ours (b) Ours (sparse mesh on the bottom)

(c) Ours (sparse mesh on the right) (d) [Wang et al. 2012]

Fig. 11. Mesh quality test and comparison to [Wang et al. 2012] [39]:
In (b) and (c), the mesh vertex density in the green area is 50% smaller
than in the blue area. Our method produces similar deformations and
preserves torus symmetry under the spatially varying mesh vertex den-
sities. In (d), we compare our method to [39]. The torus is stretched
and the method of [39] does not address large-strain mesh deformation
editing: it produces spikes at the constraints even in densely-sampled
regions (see (d)). However, our method produces smooth large-strain
deformations in all cases (a,b,c).

method produces smooth twisting shapes and textures given rotational
constraints. Figure 15 shows that our method also works in 2D, even
when the landmark constraints are not on the boundary.

Comparisons To illustrate the effectiveness of our method, we
compare to several related methods. We compare our method with
ARAP [32] in Figures 8, 9, 16, and 17. As shown in these figures,
ARAP suffers from sharp spikes under large-strain deformation. We
compare our method with ShapeOp [15] in Figures 8, 9, 15, 16, and 17.
ShapeOp produces suboptimal results given identical inputs. In Fig-

Fig. 12. Benchmark test: Our method works well on the standard shape
deformation benchmark [9]; there are not any artefacts. This benchmark
is easy for our method because it mostly consists of large rotations and
only involves small strains.

(a) Neutral (b) Corner fixed (c) Edge fixed

Fig. 13. Rotational constraints: We impose a constraint that the central
quad of a checkerboard is rotated. (a) is the neutral shape. We fix the
four corners in (b), and four boundary edges in (c), and solve for the
mesh deformation subject to the rotational constraint in the center of the
square. Our method successfully produces smooth twisting shapes and
textures.

Fig. 14. Comparison to using a full local affine transformation
and a Laplacian operator to penalize the difference of neighboring
affine transformations. The method of first row [2,3,23] suffers from
excessive and uncontrolled shear; self-intersections; and spikes, and
wiggle artifacts, respectively from left to right.

ure 8, ShapeOp cannot grow the bending tube smoothly, whereas our
method can. In Figure 9, ShapeOp distorts the hoof and belly. In
Figure 15, ShapeOp produces a result with self-intersecting triangles.
In Figure 16, the output of ShapeOp has unnatural wiggles and wrin-
kles, and spikes near landmarks. In Figure 17, ShapeOp produces
an unnatural distortion, even when using a spatially varying stiffness.
Note that the ShapeOp library implements many different deformation
constraints. In our comparisons, we use their “closeness constraints”,



(a) Neutral (b) Stretch (Ours) (c) Jump (Ours) (d) Jump (Ours) (e) Jump (ShapeOp)

Fig. 15. 2D shape deformation with large strains: Our method successfully deforms the gingerman in 2D without any artefacts. (a) is the neutral
shape with handles (red dots). In (b), we stretch the legs drastically and the gingerman’s head does not shrink [21]. In (c), we move the handles of
four limbs to pose the gingerman and our method produces a smooth result without any unnatural distortion. In (d) and (e), we compare our method
with ShapeOp [15], implemented using ShapeOp triangle strain constraints and closeness constraints. We observe that ShapeOp produces a shape
with self-intersecting triangles near the constraints, whereas our method does not.

“triangle strain constraints”, “similarity constraints” and “bending con-
straints”. For all the results provided, we tweaked constraint weights
and tried multiple parameter settings, and a better result could not be
produced. We provide the comparison to Primo [8] in Figures 8, 9, 16,
and 17. Similarly to ARAP, although we swept the entire range of
bending stiffnesses, Primo produces non-smooth artefacts under land-
marks that impose large strains. We compare our method with direct
elastic simulation [12] in Figure 9. Increasing the shell thickness or
bending stiffness cannot remove the artefacts of [12]. In Figure 11, we
compare our method with [39]. We found that the method of [39] pro-
duces spikes around the landmark because it does not take deformation
smoothness into consideration. We also compare our method with [25],
who mitigates non-smoothness artefacts by penalizing the magnitude
of the energy gradient. However, as shown in Figure 10, the method
of [25] lengthens the car but also shrinks it. In contrast, our method
can keep the original car width unchanged.

Our method has two critically important components, namely (1)
our new local deformable DoFs, and (2) the Laplacian regularization
term. A question that may arise is whether the Laplacian regularization
term alone, when combined with an existing local shape deformation
modeling approach, could produce results similar to ours, given that
Laplacian regularization permits arbitrary object scalings. First, we
observe that the ShapeOp “similarity” constraints only have 4 DoFs: 3
DoFs for rotation and 1 DoF for uniform scaling. Therefore, they can
only rotate and uniformly scale the object. So, if one adds Laplacian
regularization to ShapeOp, then the shape deformation will be limited to
local rotations plus uniform scales. This simply does not have sufficient
degrees of freedom for general use, as it excludes non-trivial shears. A
better approach would be to permit general local linear transformations,
modeled by a 3×4 matrix, consisting of a 3×3 linear transformation,
and a translation vector; and then apply Laplacian smoothing to the
12 entries. In this way, the deformation system has sufficient DoFs to
express general deformations. Precisely such an approach has already
been presented in [2,3,23]: the method optimizes for a 3x4 affine trans-
formation T = [A t] ∈R3×4 at each vertex, mapping x 7→ Ax+ t, where
A ∈ R3×3 is an arbitrary optimized linear transformation, and t ∈ R3 is
an arbitrary optimized translation. The method minimizes an energy
that is the sum of the differences in the [A t] matrices between adjacent
vertices (i.e., this is the standard “umbrella” Laplace operator applied to
the entries of [A t]), plus the landmark energy (i.e., satisfaction of user
constraints). We compare to this method in Figure 14. As can be seen,
our result is visibly clearly superior. So, this is a case where an existing
(widely popular) fully-expressive local deformation method was used
with Laplacian regularization that permits unrestricted smooth shape
deformation; and the results are visibly worse than in our method. Note
that a similar observation was previously made by [37]: the method
of [2, 3, 23] only works well when given dense correspondences such
as wrapping a mesh against a complete target mesh in ICP problems.
If there is only a small set of deformation landmarks (as in our pa-

per), then the method of [2, 3, 23] produces artifacts. This comparison
demonstrates that the Laplacian regularization is not the key “secret
sauce” to these problems, and demonstrates the value of our 6-DoF
deformable degrees of freedom.

Quantitative measurements To measure our method quantita-
tively, we compute the discrete mean curvature for vertices [14] on both
the neutral mesh and the deformed mesh, and calculate the difference.
We visualize these changes using a histogram across all mesh vertices
(Figures 9 and 16). Compared to ShapeOp [15], our results have a
lower mean value and standard deviation. Furthermore, ShapeOp has
outliers with large curvature changes. Other methods (ARAP, Primo)
have even worse histograms; actually, the “spikes” are precisely the
large curvature changes and manifest as outliers on the histograms.
Therefore, our method better maintains the original inherent shape, and
produces smoother results without spikes or wiggles.

Table 1. The setup and performance of each example. The first half
of the table shows the number of vertices (#vtx), the number of triangles
(#tri), and the number of landmarks (#land). In addition, the table also
lists the performance of each example. Column #iter denotes the number
of Gauss-Newton iterations performed in each example. Column εland
gives the errors of landmark constraints, given that the diagonal length
of the bounding box of the mesh is 100 for all examples. Finally, column
topt shows the optimization time cost per iteration.

#vtx #tri #land #iter εland topt

squarespike 441 800 84 13 0.35 0.7s
sphere 642 1,280 6 5 0.57 0.6s
beetle 941 1,678 56 10 0.25 1.8s
arch 1,756 3,508 200 13 0.22 3.6s
bunny 2,503 4,968 9 5 0.23 4.1s
muscle 3,288 6,572 650 5 0.21 9.2s
cylinder 4,802 9,600 482 20 0.01 11.6s
cactus 5,261 10,518 864 14 0.05 15.5s
twist bar 6,084 12,106 962 15 0.15 20.7s
horse 8,431 16,843 21 9 0.16 8.5s
gingerman 10,139 19,800 5 12 0.15 10.8s
fish 10,786 21,568 26 12 0.14 11.1s
swallow 11,970 23,936 24 8 0.41 19.2s

Table 1 gives the performance of each example. We also measured
the time cost per iteration of the volumetric method [37] for the muscle
example. For muscle, it takes 59s per iterations and 4 iterations in total,
which is 6x slower per iteration and 5x slower in total than our method.
The performance bottleneck mainly comes from computing the Jaco-
bian and Hessian matrices of the complex elastic energy in Equation 6,
and linear solving for search directions in the Gauss-Newton solver.



(a) Neutral (b) Ours (c) ARAP (d) Primo (e) Curvature change

(f) Ours (g) ShapeOp (γ = 1) (h) ShapeOp (γ = 102) (i) ShapeOp (γ = 104) (j) ShapeOp (γ = 106)

Fig. 16. Deforming a muscle to match medical (MRI) landmarks: The muscle is attached to the bone (not shown) on the left side. (a) is the
neutral shape. In (b), we deform the template muscle to match the landmarks from a MRI scan, which causes large strains. The muscle MRI
data was provided by the project [37]. In (c) and (d), we compare our method with ARAP [32] and Primo [8], under identical inputs. Both of these
methods suffer from sharp spikes under large strains. From (g) to (j), we compare our result with ShapeOp [15] in a similar manner to [37]. Here, γ is
the ShapeOp strength of the ShapeOp “closeness constraints” relative to the ShapeOp “bending constraints”. Low values of γ cannot satisfy the
landmark constraints, and therefore we use γ = 102,104,106 to meet the constraints. It can be seen in (h), (i), (j) that the result of ShapeOp has
unnatural wiggles and wrinkles on the surface of the muscle. The mesh is also spiky near landmarks.Tuning the parameters cannot improve the
results. In (e), we provide a histogram of the mean curvature change for the mesh vertices. Our method has a lower mean value and standard
deviation than ShapeOp. In contrast to [37], our method does not need a tetrahedral mesh and operates directly on the surface DOFs, whose
number is substantially smaller than that of the volumetric mesh. We experimentally compared the performance: our method is 6× faster in the
running time per iteration, and an overall 5× faster than [37] to produce a result of equivalent quality.

6 CONCLUSION

We demonstrated how to model large spatially varying rotations and
strains of surfaces, by modifying the first and second surface funda-
mental forms in a compatible manner. This is done using local spatially
varying 3× 3 rotation matrices (3 DoFs; providing bending and a
global orientation), and 2× 2 symmetric matrices (3 DoFs; provid-
ing arbitrarily-oriented (large) stretches in the UV parameter space).
Together, these six degrees of freedom form a new set of differential
deformable surface degrees of freedom, and we demonstrated that
for shape optimization, they perform better than polar decomposition.
Our formulation could be extended to other manifolds embedded in
higher-dimensional spaces, for example, curves in three dimensions; or,
more generally, m-dimensional manifolds embedded in Rn, for m < n.
If local rotations across the surface accumulate beyond 2π, the spa-
tially varying rotation field may have a discontinuity where the rotation
“jumps” by a multiple of 2π. While we did not run into this issue in

our examples, this is a well-known problem in modeling rotational
fields on surfaces, and there are standard solutions for it. While our
method produces quality shapes that contain large strains and rotations
and that precisely meet user constraints, the price to pay is that the
method runs offline and is not interactive. This is because our method
needs to solve an optimization problem for the plastic strains, which
necessitates solving large sparse systems of equations and evaluating
many energy, force and Hessian terms. The predominant bottleneck
of our method is the solution of large sparse linear systems during
the optimization process. We used inexact Hessians [12] to speed up
these solves; further speedups could be obtained using multigrid or
specially designed preconditioners for our problem. We also improved
the state of the art of modeling plasticity of surfaces, by identifying
that plastic fundamental forms need to be selected in a compatible
manner, and gave an algorithm to do so. Our method is designed for
the case where the thin-shell can (and needs to) locally undergo large



(a) Neutral (b) Ground truth (scale×1.5) (c) Ours (single landmark) (d) ShapeOp

(e) ARAP (f) Primo (g) [Chen et al. 2018] (h) [Kircher et al. 2008]

(i) Varying stiffness (j) ShapeOp (varying stiffness) (k) Neutral (l) Ours (bending the ears)

Fig. 17. Our method deforms the object in a manner that preserves the intrinsic shape: (a) is the neutral shape. From (b) to (j), we fix a
landmark on the left bunny “foot”, and use a single additional landmark on the left ear to attempt to uniformly scale the entire mesh 1.5× . (b) gives
the mesh produced by a simple geometric global uniform scale of 1.5× performed using Maya’s scaling operation; we consider this to be the “ground
truth”. In (c), without knowing in any way that the target is a global uniform scale, our method successfully grows the entire bunny globally, producing
a result that is nearly identical to the ground truth. In (d),(e), and (f), ShapeOp [15], ARAP [32], and Primo [8] all distort the bunny unnaturally. In (g),
we use fundamental forms directly as plastic DoFs [12] and the solver obtains a bad search direction leading to a broken mesh. In (h), we use polar
decomposition as plastic DoFs [22], and the mesh has self-intersections at the ear (red triangles); the optimization also stalls and fails to make
progress. In (i) and (j), we implemented ShapeOp with spatially varying stiffnesses that have the largest values near landmark constraints; but the
method still cannot reproduce the ground truth. Subimages (k) and (`) give a different experiment: in (`), the bunny has fixed landmarks (red dots) at
the bottom and the base of the ears. Two landmarks are positioned to command both ears to simultaneously largely bend and stretch to reach the
target position. Our method produces a smooth and reasonable deformation. This experiment demonstrates that our method can simultaneously
handle large bends and stretches.

spatially-varying rotations and stretches, without any penalization of
such behavior. While this may not always be the desired outcome of
shape deformation, it is an interesting and relevant usage case that
previous methods did not address.
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[25] J. Martinez Esturo, C. Rössl, and H. Theisel. Smoothed quadratic energies
on meshes. ACM Transactions on Graphics (TOG), 34(1):1–12, 2014.

[26] M. Müller and M. Gross. Interactive Virtual Materials. In Proc. of
Graphics Interface 2004, pp. 239–246, 2004.

[27] M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Meshless Defor-
mations Based on Shape Matching. In Proc. of ACM SIGGRAPH 2005,
pp. 471–478, Aug 2005.

[28] J. F. O’Brien, A. W. Bargteil, and J. K. Hodgins. Graphical modeling and
animation of ductile fracture. In Proceedings of ACM SIGGRAPH 2002,
pp. 291–294, 2002.

[29] P. Petersen. Classical differential geometry. Lecture notes, available from
the authors webpage: http://www. math. ucla. edu/˜ petersen/DGnotes.
pdf, 2016.

[30] J. Schmid, A. Sandholm, F. Chung, D. Thalmann, H. Delingette, and
N. Magnenat-Thalmann. Musculoskeletal simulation model generation
from mri data sets and motion capture data. Recent Advances in the 3D
Physiological Human, pp. 3–19, 2009.
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[35] R. W. Sumner and J. Popović. Deformation transfer for triangle meshes.
ACM Trans. on Graphics (SIGGRAPH 2004), 23(3):399–405, 2004.

[36] P. Volino, N. Magnenat-Thalmann, and F. Faure. A simple approach
to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans.
Graph., 28(4), Sept. 2009.

[37] B. Wang, G. Matcuk, and J. Barbič. Modeling of personalized anatomy
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