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Fast self-collision detection
for reduced deformable models
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Self-collisions: definition

Deformable model is
self-colliding iff

there exist non-neighboring
intersecting triangles.




Self-collision detection (SCD)

INPUT:

Triangle mesh + a deformation

OUTPUT:

List of colliding non-neighboring triangles



Self-collision detection is
O(N?) in the worst case
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Under a structured deformation field,
model is less prone to self-contact

FPZ: 120.0 Hz
Max possible FPS: 821.0 H=z

Timestep: 22030

Linear modal
simulation




Intuition
If the mesh does not deform enough,
it cannot self-collide.

Do not need to look at all triangles
—> sublinear cost.



Reduced-order deformations

u = Uq

3n

r << 3n

|r

Mode 1
= Column 1 of U

Examples:

Linear & nonlinear modal analysis,

PCA, polynomial deformers,
FFD/embedded, splines, subdivision, etc.



Reduced-dimensional
configuration space
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Subspace Self-Collision
Culling

Arbitrary triangle models
and low-rank deformations

Fast culling for
moderate deformations

Supports continuous collision detection

SCD without looking at all the triangles!
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Related Work:

Bounded-Deformation Trees
[James and Pai 2004]

~ // Nor —

Exploit deformation structure
for inter-object collision
detection

Cannot be applied to SCD
directly




How can two
points collide?
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Low-rank
deformations
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Contact condition

(Uo—Uy)q=(p1 —po)
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Three equations for r unknowns

(Uo—U1)q=(p1 —po)
— Y
3xr r 3

Compute min-norm
. >|<
solution (] .
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Three equations for r unknowns

(Uo—U1)q=(p1 —po)

Compute min-norm
. >|<
solution (] .

f{lall <llq’

the two points
cannot collide.

’
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Global collision bound

R = min|[q*(x,y)|]
XFY

Self-collision-free if

lq|l <R
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Hierarchical Subspace
Self-Collision Culling



Related work:
Bounding volume hierarchies

Hubbard 1995]

‘Gottschalk et al. 1996]

'van den Bergen 1997]

Bridson et al. 2002]

‘Teschner et al. 2002]
AABBs AABBs

Level | Level 3

‘Govindaraju et al. 2005]
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Bounding volume hierarchy

root
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Bounding volume hierarchy

V

8
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Self-collision detection

Test the tree against itself :
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Certificates
Ro

R /‘\932
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Kinetic data structures
[Guibas 2004]

No collisions

in subtree if

lq|] <R;
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Use the certificates
to accelerate tree traversal

12%
7 N Ry

cull if [|q]| < R,

24



Certificates
useful even
with self-contact

Self-contact

Far from
self-contact;
culled
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Supports continuous SCD

reduced

space
q

v 4

Speedup (bunnies):
Discrete SCD: 29X
Continuous SCD: 32X
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Handles nonsmooth geometry

Rest Smooth Noisy

— 7
~

Largest deformation
culled by root node
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Related work:
Curvature bounds and
normal cones

'Volino and Magnenat-Thalmann 1994]
Provot 1997]

(Grinspun and Schroeder 2001]
'Schvartzman et al. 2009]

‘Tang et al. 2009]
'Schvartzman et al. 2010]
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Certificate
precomputation
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Two triangles
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Two triangles

Min ||q]| s.t. contact:

minimize ||q||*, overall q,0.f1.%.0%, B,
subjectto a; +B;i+7% =1, ; >0, 3; >0, 73,>0,i=1,2,

a1pi + Bipi +np; + (U] +Bi1UT +1Uj ) q=
0P + Bap3 + P> + (OézUi +BU5 + ‘YzUS)Q-
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Two triangles

* Quadratic constraints, quadratic objective
* NP-hard optimization problem

 We designed a fast approximation algorithm
(tight, with a proof)
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Certificates for the hierarchy
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Certificates for the hierarchy

‘/ ‘V
A A—

R(v) = min {5314,9%5,9337,9347}

— 7
~—

non-neighboring pairs
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Hierarchical computation
of certificates

AN
‘/ \‘ w‘/ \‘z

R(v) =min {R(w), R(z), R(w,z) }
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Sublinear cost of SCD



Standard SCD
traverses all tree nodes
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= .= ARE
Collisions TVPICALLY
between EASIER Self-collisions
two objects THAN

Every triangle
Is a hot-spot, always !

A few isolated hot-spots
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Standard SCD
traverses all tree nodes

Cost m“ ‘

AABB + BVH v\/ﬂ

M \ ﬁ our method

Time

- v

Even when no self-collisions!

(N) cost
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Improved Runtime Complexity

Q(N) = O(r)

SCD without looking at
all the triangles!
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Related work: GPU methods

+ general
+ highly deformable
- inherent Q(N) cost

‘Heidelberger et al. 2004]
‘Govindaraju et al. 2005]
Sud et al. 20006]
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Results



Example: 16 bunnies

29x Speedup

Time



Example: 128 bunnies

A4 XL 4 &4
TP OPOO®
pPepprepee  15xSpeedup
EP PP "e e Bunny model:
#Modes(r): 20

#Triangles: 15k
Nonlinear reduced FEM

128 bunnies, [,915,000 triangles
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Self-collision sounds

SCD at audio rates
(44,100 timesteps / sec)

SCD is 98% of computation

double helix
16,000 triangles
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Self-collision sounds
(127x speedup)
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Self-contacts

==
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Many self-contacts

16x Speedup

#Modes(r): 30
#Triangles: 77k
Nonlinear reduced FEM
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Conclusion

Exploit reduced deformations to accelerate SCD

Q(N) = O(r)
Minimal change to standard BVH traversal

Supports non-smooth geometry
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Future work

Extension to skinning
(characters)

General deformations

Shorten precomputation time

[Lewis et al. 2000]
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Extra slides



Geometric basis
(quadratic polynomials in space)

102x speedup

52



Comparison to normal cones

[Volino and Magnenat-Thalmann 1994]

Traversed leaf AABBs

= (=2

our method normal cone
method
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Self-collision sounds (OFF)

=
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Self-collision
detection turned off
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Extremal Deformations of
Root Collision-free Certificate

- f
Y

mode 1 mode 2 mode 3 mode 4
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Ellipsoidal bounds

free R’

space
collision space collision space
lallz <R lally, <R

lally = V4! Mq



Bounds increase with tree level

R |
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