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ABSTRACT

Many meshes in computer animation practice are meant to approx-
imate solid objects, but the provided triangular geometry is of-
ten unoriented, non-manifold or contains self-intersections, caus-
ing inside/outside of objects to be mathematically ill-defined. We
describe a robust and efficient automatic approach to define and
compute a signed distance field for arbitrary triangular geometry.
Starting with arbitrary (non-manifold) triangular geometry, we first
define and extract an offset manifold surface using an unsigned
distance field. We then automatically remove any interior surface
components. Finally, we exploit the manifoldness of the offset sur-
face to quickly detect interior distance field grid points. We prove
that exterior grid points can reuse a shifted original unsigned dis-
tance field, whereas for interior cells, we compute the signed field
from the offset surface geometry. We demonstrate improved perfor-
mance both using exact distance fields computed using an octree,
and approximate distance fields computed using fast marching. We
analyze the time and memory costs for complex meshes that include
self-intersections and non-manifold geometry. We demonstrate the
effectiveness of our algorithm by using the signed distance field for
collision detection and generation of tetrahedral meshes for physi-
cally based simulation.

Index Terms: Computer Graphics [I.3.5]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and
systems

1 INTRODUCTION

Given a collection of 3D triangles and a query 3D location x, there
exists some triangle (and a feature on this triangle) closest to x. Dis-
tance field is a scalar function that gives the minimum distances for
points x from some region of space, such as a bounding box en-
closing the triangular geometry. Distance fields sampled on regular
3D grids are a popular datastructure in computer graphics [21], and
have been used in many applications, such as collision detection
and morphing. Distance fields can be signed or unsigned. Signed
distance fields store the sign specifying whether the query point is
inside/outside of the object. Sign is only meaningful, however, if
the input mesh is a watertight mesh with manifold geometry. If the
input is a general “triangle soup”, the sign is not well-defined and
in principle only an unsigned distance field can be computed.

We present an approach to both define and compute a signed dis-
tance field for any input triangular geometry, including geometry
containing self-collisions, gaps, holes or inconsistently oriented,
disconnected, non-closed, noisy or duplicated geometry (see Fig-
ure 2). Such geometry is very common in computer graphics prac-
tice, for example, with 3D characters, mechanical components, and
surgery simulation. Unlike most signed distance field computation
methods that assume a well-defined watertight manifold input mesh
and then optimize the distance field computation, we address the
problem of how to first define the sign for any triangular geometry,
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Figure 1: Signed distance fields for non-manifold geometry.

and then compute the signed distance field efficiently. Our approach
is not specific to any distance field computation method. We define
and rapidly compute exact signed distance fields using an octree,
and approximate distance fields using fast marching [39]. Exact
signed distance fields are useful, for example, in collision detection,
where inexact signed distance fields will lead to missed collisions
if the distance field is queried against a bounding volume hierarchy.
Fast marching only gives approximate distance fields, and is advan-
tageous for speed, especially with geometrically complex meshes.

Our method first computes an unsigned distance field to the input
geometry. It then extracts a manifold offset isosurface, using the
marching cubes algorithm with topological guarantees [26]. The
offset surface distance σ is the only parameter that the user needs
to adjust. This parameter has an intuitive meaning: geometry im-
perfections smaller than σ are considered “noise” and are automati-



Figure 2: Non-manifold, self-intersecting and inconsistently oriented input
meshes.

cally fused together, whereas gaps larger than σ are above the “engi-
neering tolerance” and contribute to the signed distance field. The
resulting isosurface in general consists of several disjoint (poten-
tially nested) components, and we automatically remove compo-
nents completely contained in other components (interior compo-
nents), using a pseudonormal test [5]. Because the remaining com-
ponents form non-nested manifold watertight surfaces that enclose
well-defined solids, one could compute the signed distance field di-
rectly from their geometry [6]. However, at high resolutions, offset
surfaces usually contain many more triangles than the input mesh,
which results in signed computations much slower than unsigned
field computation. We accelerate the signed computation by two
orders of magnitude by proving that the exterior signed distance
field is simply a shifted original unsigned distance field, which can
therefore be re-used in the exterior region. We exploit the mani-
foldness of the offset surface to quickly identify the interior grid
points, and then compute the signed distance field only for the in-
terior grid points. The final distance field is accurate with respect
to the isosurface geometry. Our method is very efficient for meshes
where the exterior space is much larger than the interior space, as
is the case with many mechanical components, characters and med-
ical meshes. We use our signed distance fields to perform colli-
sion detection between objects with non-manifold triangular geom-
etry. Our signed distance fields can also serve as input to isosurface
meshers that require well-defined inside/outside of objects, such as
those available in the CGAL library [1]. This makes it possible to
create quality anisotropic tetrahedral meshes for non-manifold ge-
ometry (Figure 9), suitable, say, for physically based simulation.
The required number of parameters for such meshing is minimal in
our method: we need a single offset surface parameter σ, and stan-
dard mesh quality (minimum angle, radius, etc.) parameters of the
3D tet mesher library. Our contributions include:

• an efficient approach to both define and compute a signed dis-
tance field for arbitrary input geometry,

• algorithm for removing nested interior isosurfaces,

• mathematical proof that the distance field of an offset surface
equals to a shifted distance field of the original (non-manifold)
surface,

• rapid global sign determination via S-shaped traversal.

2 RELATED WORK

Many efficient algorithms are available to compute unsigned and
signed distance fields for manifold watertight meshes; see, for ex-
ample, the survey [21]. To accelerate distance computation, hier-
archical data structures can cull branches that cannot contain the
shortest distance [17, 45]. Fuhrmann [16] computed distance fields

by analyzing prisms emanating from each triangle along the nor-
mal direction. Similarly, the characteristic/scan conversion (CSC)
method [28] computes the exact distance field up to some max-
imum value by scan converting distance fields of individual ver-
tices, edges and faces. The [15, 43] accelerate the CSC method
with an efficient GPU implementation. To speed up the hardware-
assisted distance field computation, [47, 48] explores a Voronoi-
based culling and clamping algorithm and [46] presents an inter-
active algorithm for surface distance maps with the affine transfor-
mation. Based on GPU, distance fields can also be computed on
adaptive grids [8, 34], or on local narrow bands for complex geom-
etry [12]. Fast marching method, a propagation method that nu-
merically solves the Eikonal equation, updates the distance voxel-
by-voxel with increasing distance [39, 40]. Linear computational
complexity for the fast marching method has been demonstrated
by [13, 49]. Similarly, jump flooding algorithms can compute ap-
proximate distances in constant time for an input set of seeds [36].
Several robust algorithms have been proposed to determine the sign
for triangular manifold surfaces [2, 5, 43]. All of these algorithms,
however, require the input mesh to be manifold and watertight for
the sign to be defined. In our work, we address the problem of how
to define the sign for non-manifold or non-closed geometry, and
then rapidly compute the resulting signed distance field.

For “polygon soup” geometry, [32] determines the sign at each
grid point with ray stabbing and voting. However, ray stabbing is a
global operation and could assign incorrect signs in regions where
the surface has high variation or self-overlaps. This problem can
be partially overcome by observing that the grid points far from the
surface exhibit less sign variation [44]. Similarly, [30] determines
the sign by counting the intersections of voxel edges with the ge-
ometry, to successfully resolve self-intersections of closed manifold
meshes. Robustness can also be improved using ray voting against
ε-bands of the unsigned distance field [29]. Ray voting methods
in general, however, have difficulties handling structured outliers in
the geometry. Space can also be partitioned into polyhedral regions
and then the interior solid region is determined based on region
adjacency [31]. However, unlike our work, this method does not
support open objects (shells) or intersecting solid objects.

Another approach is to create manifold surface with surface re-
pair methods which try to resolve artifacts of the input surface
meshes. The mesh-based methods repair the input surface by re-
moving gaps [11, 35] and filling holes [24, 25, 41]. In practice,
however, the input geometry may consist of several (non-manifold)
surfaces that intersect or are in close proximity, as is the case with
mechanical components (landing gear), or 3D characters (turtle). In
such cases, it is difficult to apply the above geometric mesh-repair
mechanisms to extract a single well-defined manifold mesh, requir-
ing user interaction to resolve ambiguities. Volume-based meth-
ods usually can resolve more general complex configurations, but
they usually also introduce distortion in trouble-free parts [10, 22].
The input mesh can be modified only locally within the neighbor-
hood of undesired configuration [4]. CAD models can be repaired
while avoiding the global sampling problems of the volume base
method [9]. This method, however, requires the input geometry to
consist of triangular manifold meshes; we make no such assump-
tion. Similarly, the method of [42] requires the input triangle orien-
tation to be consistent; otherwise, suboptimal results are produced
(see Section 3.3 in [42]).

Several methods have been proposed to reconstruct surfaces
from implicit functions [19, 42, 50]. Robustness to noisy data [23]
and unoriented data [3] has been improved. Implicit functions
are commonly used to track fluid surfaces [7, 30]. The goal of
these methods is accurate reconstruction of surfaces, and therefore
these methods generally employ implicit functions in narrow bands
around the surface. In our work, we compute global signed dis-
tance fields, both inside and outside the object, sampled on regular



3D grids. Global signed distance fields can be computed directly
from isosurfaces of unsigned distance fields [6]. We greatly ac-
celerate such global signed distance field computation by proving
that the distance field can be re-used in the exterior region. We
also give an efficient algorithm to remove interior nested isosurface
components (Section 3.1), as well as an S-shaped traversal algo-
rithm (Section 3.3) to rapidly determine the sign globally, with a
minimal number of pseudonormal tests.

Given a distance field, the marching cubes algorithm [26, 27],
or dual methods [38] can robustly extract a closed, manifold and
intersection-free triangulated surface. Unless the distance field is
signed, this surface will contain interior components, which may
not be desirable. The resulting mesh is also typically high resolu-
tion and follows a regular pattern. If such a surface is used to create
a 3D tetrahedral mesh directly (e.g., using TetGen [18]), one typ-
ically obtains a highly detailed tet mesh whose resolution cannot
be easily adjusted. Our signed distance fields can serve as input to
anisotropic tet meshers that mesh the volume enclosed by an iso-
surface, such as those implemented in the CGAL [1] library. This
makes it possible to create “cage” tet meshes enclosing input non-
manifold geometry, useful, e.g., for level-of-detail simulation, or
the multigrid method [33].

Recently, Jacobson et. al [20] presented a robust approach to
compute tetrahedral meshes for “polygon soup” input geometry,
using generalized winding numbers and constrained Delaunay tri-
angulation. Although the method is robust to many polygon soup
geometries and can preserve the input mesh, it requires consistent
orientation of the input triangles whereas our method does not. Du-
plicated geometry will result in incorrect winding numbers and may
cause ambiguities. The most important difference, however, is that
the winding number field is not a signed distance function to any
particular geometry. Multiplying an unsigned distance field with
the winding number (or its sign) does not give a signed distance
field. The resulting function is not even continuous: it has, for ex-
ample, a discontinuity when leaving the open container in Figure 7
(b). As such, this method does not address our problem (signed
distance field computation). Our implicit functions are signed dis-
tance fields with respect to some meaningful geometry (the isosur-
face), with all the resulting benefits: continuity, unit gradient, and
the field absolute values are exact distances to some meaningful
geometry (the isosurface). We compare our method to [20] in Sec-
tion 4.

3 COMPUTING THE SIGNED DISTANCE FIELD

Given the input “triangle soup” geometry Ω, a box where the dis-
tance field is to be computed, and grid resolutions in x,y,z, we first
compute the unsigned distance field. Our implementation is accel-
erated using an octree and multiple cores for exact computation,
and uses the fast marching method for approximate distance field
computation. In exact computation, we compute exact distance to
the nearest triangle. The octree in the exact method only serves to
accelerate the distance queries. The octree and fast marching are
orthogonal to our method; we apply them equally to unsigned and
signed distance field computation.

3.1 Offset surface and removal of interior components

We proceed by defining an offset surface of the unsigned distance
field

Sσ =
{

X ∈ R3 |dU (X ,Ω) = σ

}
, (1)

where the function dU (X ,Ω) returns the unsigned distance from
point X to geometry Ω, and σ ≥ 0 is an offset. Typically, we set
σ = 3h, where h is the distance field grid spacing, but other val-
ues can be chosen to preserve or remove local detail. We then ex-
tract a triangular mesh of Sσ, by applying the marching cube algo-
rithm [26] to the unsigned distance field. This algorithm is guar-

Figure 3: Offset surface Sσ for the Boeing 777 landing gear. Interior compo-
nents (848 total) are shown green.

anteed to generate a manifold offset surface for any input. We ob-
serve that the offset surface in general consists of several disjoint
connected components, which may be nested:

Sσ =
(
qi E i

σ

)
q

(
qi Ii

σ

)
, (2)

where E i
σ are connected components that are not enclosed by any

bigger components (exterior components), and Ii
σ are all the other

components (interior components). Note that q denotes the “dis-
joint union”, i.e., set union with the additional understanding that
the operands are disjoint. The marching cube algorithm will create
both the E i

σ and Ii
σ surfaces (Figure 3), and we need to remove the

latter. We first detect all the connected components of Sσ using a
union-find datastructure. For each component, we then efficiently
determine if it is of type E or I, as follows. First, compute a tight
bounding box for each component, and sort them according to their
volumes. Starting from the component with the smallest bound-
ing box volume, we check it against all the other components with
a larger bounding box volume (starting from the largest one). If
the smaller bounding box is not totally enclosed by the bigger box,
there exists a point on the smaller component that is outside the big-
ger component, and the two components are therefore not nested.
Otherwise, we pick a random vertex on the smaller component, and
test if it is inside the bigger component. We do so by finding the
nearest site on the larger mesh and then perform the pseudonormal
test [5]. Testing a single vertex is sufficient because the components
are disjoint; they are either nested or enclose disjoint volumes.

Once a surface is known to be of type I, we can remove it from
all future pairs. At the end of this process, all surfaces of type E
have been identified, and we can define

Eσ =qi E i
σ. (3)

The time to compute Eσ was small compared to the signed distance
field computation: under 2 minutes in our most complex example
(landing gear), and much shorter in the other examples.

We note that the exterior component Eσ could be found using a
voxel flood-fill from the bounding box boundary. However, such an
approach slows down with increasing resolution. Also, due to geo-
metric detail close to the “surface”, multiple components of Sσ may
intersect the same surface voxel (landing gear), so decomposition
into connected components and determination which are interior is
still needed. Our proposed method is very fast: for each component,
only a single vertex must be tested (single pseudonormal test).

3.2 Unsigned distance field re-use

Our ultimate goal is to compute the signed distance field for the in-
put mesh Ω. Currently, we have the manifold exterior offset surface



#tri resolution unsigned field memory #isosurface tri #interior components naive signed field signed field
excavator bucket 12,825 10243 12 min 26.4 GB 4,826,772 4 576 min 9 min

dragon 871,414 10243 103 min 27.0 GB 2,532,564 27 354 min 7 min
skeleton 379,184 10243 86 min 14.1 GB 812,572 119 116 min 1 min

landing gear 1,847,976 10243 53 min 29.0 GB 4,167,414 848 290 min 11 min
turtle 3,654 10243 6 min 24.9 GB 3,145,624 268 393 min 11 min

Table 1: Distance field computation performance. “Naive signed field” refers to computing the signed field directly from Eσ [Barbič and James 2008], whereas
“signed field” refers to our method, which can be seen to be significantly faster. Time to construct Eσ is included. All computations use eight cores.

#tri resolution unsigned field memory #isosurface tri #interior components naive signed field signed field
excavator bucket 12,825 10243 68.5 min 29.1 GB 4,857,930 73 94.5 min 8.1 min

dragon 871,414 10243 85.1 min 30.0 GB 2,597,974 37 89 min 4.6 min
skeleton 379,184 10243 81.5 min 29.1 GB 844,394 138 81.9 min 1.7 min

landing gear 1,847,976 10243 73 min 30.4 GB 4,199,760 746 90.1 min 8 min
turtle 3,654 10243 83 min 29.1 GB 2,930,126 272 96 min 4.9 min

Table 2: Distance field computation performance with the fast marching method. The time to initialize marching via exact distance field computation in a
narrow band around Eσ is included. All computations use a single core.

Eσ, and the unsigned distance field for Ω. One could now compute
a signed distance field for Eσ, using an octree and the pseudonor-
mal test [5], or using fast marching [39]. However, we observed
that such an approach is computationally slow in practice, signifi-
cantly slower than the unsigned computation (see Tables 1 and 2,
“naive signed field”). Instead, we prove the following lemma.

Lemma 3.1 If X is a point in the exterior region of Eσ, then the
signed distance dS equals

dS(X ,Eσ) = dU (X ,Ω)−σ ≥ 0. (4)

Let Z and P′ be the closest sites to X on surfaces Eσ and Ω,
respectively. Let P be the closest site to Z on Ω. Because Eσ is
manifold, XP′ intersects Eσ; let Z′ be any intersection point.

Figure 4: Proof illustration

Proof: Triangle inequality gives

dS(X ,Eσ)≥ |XP|− |ZP|
≥ dU (X ,Ω)−σ. (5)

Suppose dS(X ,Eσ) > dU (X ,Ω)−σ.
Then we have

|XZ|> |XP′|− |ZP|= |XZ′|+(|Z′P′|− |ZP|). (6)

Because Z′ ∈ Eσ, we have |Z′P′| ≥ σ = |ZP|. Therefore, |XZ| >
|XZ′|, contradicting that Z is closest to X on Eσ. �

Therefore, in the exterior region of Eσ, we can simply re-use
our previously computed unsigned distance field dU (X ,Ω), lead-
ing to large computational savings (two orders of magnitude, see
Tables 1 and 2, “signed field”).

Figure 5: Counter-example

We also tried extending
Equation 4 into the inte-
rior of Eσ (or at least into
a narrow band on the in-
terior side of Eσ), but dis-
covered a counter-example.
Figure 5 gives a counter-
example where σ > 0 and
0 < a < 2σ are arbitrary,
and ε =

√
σ2−a2/4. The

point X can be made arbi-
trarily close to Eσ (ε > 0 can
be made arbitrarily small), yet dS(X ,Eσ) 6= dU (X ,Ω)−σ. This ex-
ample also rules out another seemingly “intuitive” equality, as we
have |dS(X ,Eσ)| 6= dU (X ,Ω)+σ.

Figure 6: Fast inside/outside determination using boundary voxels. Left:
voxelized mesh and the boundary voxels (red). Right: “snake”-like traversal.

Therefore, we cannot re-use the unsigned field in the interior
of Eσ, and must recompute it. In determining the sign, we can,
however, use the following lemma to accelerate the computation.

Lemma 3.2 If a point X satisfies dU (X ,Ω) < σ, then X must be in
the interior of Eσ.

Proof: Suppose X is exterior to Eσ. Then by Lemma 3.1, we have

dS(X ,Eσ) = dU (X ,Ω)−σ < 0, (7)

which contradicts the assumption that X is exterior to Eσ. �
Lemma 3.2 makes it possible to avoid a pseudonormal test for

any grid point with dU (X ,Ω) < σ, which applies to approximately
half of the boundary voxel grid points during the S-shaped traver-
sal (Section 3.3). Note that the pseudonormal test can be replaced
with any other test to determine the sign, e.g. using winding num-
ber [20]; this is orthogonal to our method. In any case, Lemma 3.2
makes it possible to decrease the number of sign computations. We
also note that the converse of Lemma 3.2 is not true. The counter-
example is shown in Figure 5, where dU (Y,Ω)≥ σ, but Y is in the
interior of Eσ.

3.3 Sign determination and interior distance field

Our remaining task is to compute the signed distance field in the
interior region of Eσ. We first efficiently compute the sign for all
the grid points. To do so, we first voxelize Eσ, and tag all the dis-
tance field voxels which intersect Eσ as boundary (Figure 6, left).
We then compute unsigned distances and closest features (vertex,
edge, or face) on Eσ for all the vertices of the boundary voxels. For
exact distance field computation, we do so by computing an octree
to Eσ, and then use it to compute distances and closest features. For



fast marching, we compute the exact distance not just for boundary
voxel vertices, but also for vertices of neighboring voxels (call this
set of vertices I), so that marching (below) can be properly initial-
ized. We do so by traversing all the triangles of Eσ. To ensure cor-
rect 3D instances everywhere on I, we “rasterize” [28] the distance
function of each triangle to the vertices of intersecting voxels, their
neighbors and neighbor’s neighbors, storing the minimum distance.

Next, we perform a S-shaped traversal (Figure 6, right) over all
the grid points to determine the sign. For multicore computation,
we divide the grid into distinct (and equal in size, modulo #cores)
slices, based on the z-coordinate, and process each slice on an in-
dividual core. During the traversal, we maintain a boolean flag that
corresponds to whether the currently visited grid point is inside or
outside of Eσ. The traversal starts at the distance field box corner,
and the flag is initialized to outside. When a grid point is visited,
we need to update the flag. However, if the grid point does not be-
long to a boundary voxel, the line segment joining the previous and
current grid point cannot intersect Eσ, otherwise, the current grid
point would belong to a boundary voxel. Therefore, in this case, we
can keep the old flag value (whether outside or inside), without ex-
plicitly performing an inside-outside test. If the grid point belongs
to a boundary voxel, we first check the condition dU (X ,Ω) < σ of
Lemma 3.2. If satisfied, the grid point is in the interior of Eσ. Oth-
erwise, we perform the inside/outside test by using the previously
computed nearest site on Eσ and the pseudonormal test [5]. We
update the boolean inside/outside flag accordingly.

At the end of the S-shaped traversal, the sign is known for all the
grid points. Finally, we compute the distances for interior points.
For fast marching, we do so by initializing the marching using the
distances and sign computed in the narrow band in the first step
above, and then march into the interior. For exact distance fields,
we perform another S-shaped traversal, skipping the exterior points
and computing the distances for the interior points using the octree.
S-shaped traversal order is beneficial so that we can use the triangle
inequality to provide a good initial upper bound on the distance
for the octree traversal, |dS(X + H,Eσ)− dS(X ,Eσ)| ≤ |H|, where
H ∈ R3 is an arbitrary vector. In our S-shaped traversal, X and
X +H are adjacent grid points.

After we compute the signed distance field for Eσ, we can off-
set it by −σ, producing the final signed distance field. We note that
this last offsetting step is optional (Figure 10), and works best when
the input non-manifold surface is intended to approximate a closed
mesh. If the input surface is a non-manifold shell, Eσ enlarges it
into a volume with a manifold boundary; this is useful, e.g., to de-
fine a collision volume with well-defined repulsive normals.

4 RESULTS

Our experiments were performed on an Intel Xeon 2.9 GHz CPU
(2x8 cores) machine with 32GB RAM, and an GeForce GTX 680
graphics card with 2GB RAM. Table 1 gives the performance of
our signed distance field computation on five non-manifold meshes.
All exact signed distance field examples use eight cores for both
unsigned and signed distance fields, whereas fast marching uses a
single core. Figure 1 shows the distance field results for the five
models. The Boeing 777 landing gear, the turtle and the skeleton
have self-intersections in the input mesh. The triangles of the turtle
and skeleton were not consistently oriented in these meshes which
we downloaded from the Internet, which is not a problem for our
method as consistent input mesh orientation is not required. Our
distance field plausibly resolves non-manifold geometric detail and
thin features. Table 3 analyzes scalability under increasing reso-
lutions. In Figure 11, we give an example illustrating a plausible
signed distance field computed for non-manifold input geometry.

We have applied our distance field computation algorithm to
collision detection and tetrahedral mesh computation. Figure 8
illustrates collision detection performed by testing one object’s

Figure 7: Comparison to generalized winding numbers. Input mesh (a)
is a box with a square hole cut from the top face. The field obtained by multi-
plying the unsigned distance field by the sign of the thresholded generalized
winding number [20] is not continuous across the opening of the box (b). We
can treat the box as open space by setting the offset surface value smaller
than half of the width of the hole (c), or closed space otherwise (d).

pointshell against the signed distance field of the other object [6].
Figure 9 demonstrates the tetrahedral mesh computed for the tur-
tle model, by using our signed distance field as the input to the
anisotropic mesher in CGAL [1]. As commonly done in computer
graphics, the original non-manifold triangle mesh geometry can
then be animated by performing a FEM deformable object simu-
lation on the tetrahedral mesh.

We compare our signed function to a modified algorithm of [20]
in Figure 7. The input mesh is a 3D box with a square hole cut
from its top face. The size of the hole a is adjustable. Jacobson et.
al [20] computes the inside-outside segmentation based on a graph-
cut over the generalized winding number, which here is greater than
0.5 everywhere inside the box, regardless of a. Therefore, the entire
box is assigned the interior sign. Our method, however, treats the
gap a as either a genuine gap or an artifact, depending on the value
of the isosurface input parameter σ relative to a. If σ is small, our
method will treat the gap as genuine and the box as open; if σ is
large, the box will be closed. Our method therefore provides con-
trol (via parameter σ) over what features are considered too small
and can be neglected, versus features that are above the “engineer-
ing tolerance” σ. It is not easily possible to convert the winding
number field into a signed distance field. Because the sign of the
thresholded generalized winding number is not continuous, the im-
plicit function obtained by signing the unsigned distance field with
the sign of the thresholded generalized winding number is not con-
tinuous (Figure 7, b). Similarly, multiplying the winding number
field with the unsigned distance field, or using the winding field
directly, gives an implicit function that does not have unit gradient
and whose values are not distances to some geometry; it is therefore
not a signed distance function.

Performance for exact signed distance fields computed using
the octree is provided in Table 1. Our method is not limited to
octree-based distance field accelerations, but can be used with any
uniform-grid distance field computation method. Regardless of
what algorithm is used to compute the unsigned distance field, we
can always use Equation 4 to avoid recomputing the distance field
outside of the manifold offset surface. This speedup also applies



Figure 10: Signed distance fields obtained under different offsets σ, followed by a shift-back by −σ. It can be seen that the method progressively treats larger
voids as solid as σ is increased (“engineering tolerance”). In (b) and (c), observe that the walls of the main vertical landing gear support structure (green in (a))
remain equally thin. In (e), σ is so large that the entire interior of the hollow support structure is filled.

resolution time (unsigned) time (signed)
128x128x128 2.25 min 0.05 min
256x256x256 5.42 min 0.15 min
512x512x512 22 min 1.5 min

1024x1024x1024 105 min 9 min

Table 3: Computation times (dragon) vs distance field resolution.

Figure 8: Collision detection using the computed signed distance fields.
Sixteen non-manifold dragons falling onto the ground. Distance field resolu-
tion is 1024x1024x1024.

to approximate distance field computation methods such as vector
distance transform [37] and fast marching transform [40]. Table 2
provides computation times for fast marching with second-order fi-
nite difference approximations to the partial derivatives, computed
using the publicly available implementation of [14]. The marching
times are dominated by maintaining a priority queue of grid points,
largely depend on grid resolution, and are less dependent on in-
put geometry complexity than the octree exact implementation (see
“unsigned field” column in Tables 1 and 2). Our method yields a
substantial speedup in the computation of the signed field, both for
exact computation and fast marching, because we can avoid travers-
ing the exterior space of Eσ. Parameter σ can be used to provide a
cut-off for the geometric size that is deemed significant (Figure 10).

5 CONCLUSION

We presented a simple and robust approach to define and com-
pute a signed distance field for non-manifold input geometry. Our
approach is compatible with any uniform-grid distance field com-
putation method. Compatibility with adaptive-grid distance field
method needs future investigation. Our distance field is accurate
with respect to the offset isosurface. The interior signed distance
field is computed from the polygonal offset surface computed us-
ing marching cubes, which is an approximation to the analytical
offset surface, and may introduce a small amount of discretization
error in the distance field. Our method has a single parameter: the
isosurface σ value. Small and large values of σ will result in loss
of geometric detail. If an automated choice of σ is desired, σ = 3h
produced good results in practice. A single global parameter σ may
fuse geometrically close parts, despite them being semantically dis-

F

Figure 9: Tetrahedral meshes created from a signed distance field computed
from non-manifold self-intersecting geometry.

Figure 11: Signed distance field for non-manifold input. (a) Two boxes
share an edge. (b) Blue: input geometry. Black: analytical offset surface at
offset σ. Dashed red: manifold surface obtained by shifting the black offset
surface by−σ (our result). It can be seen that this surface matches input ge-
ometry, but regularizes it in the vicinity of the non-manifold “pinch” geometry.
(c) and (d): Computed signed distance field (resolution is 256×256×256).

tant. We resolve the problem with careful σ tuning (see legs of turtle
in Figure 1(e)), which fortunately is very fast in practice since the
isosurface can be recomputed and visualized rapidly before com-
puting the signed distance field. In our work, we remove the interior
components Ii, but if the intent is to model hollow objects, interior
components can be kept. Only a trivial change is required: perform
pseudonormal tests at voxels intersecting interior geometry. Adap-
tive σ based on the local features of the geometry could be useful
future work. We applied our method to polygonal input; but our
method could also be applied to more general input, such as point
clouds, polygonal lines or parametric curves.
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