Real-time Large-deformation
Substructuring

Jernej Barbic, Yili Zhao

University of Southern California



Model Reduction + FEM +
Domain Decomposition

1435 Domains

11,972 Total DOFs

5 FP5




1435 Domains

11,972 Total DOFs

5 FP5




Assumptions

3D volumetric mesh
Geometrically nonlinear FEM

Boundary and initial
conditions given

Want to simulate quickly,
with rich deformations
and local detall




model
reduction

7600 tetrahedra 45 modes,
3 fps 150 fps



Problem: large basis
required for detail

Coupled equations
Complexity is O(r3)

Slow for r > 100

r =45 modes



Domain Decomposition

1. divide the object
Into domains

2.reduce each domain

3. couple domains with
proper forces

the domains



Richer deformations for
same computational effort

global basis our result
r=45 r= 240



Related Work:
FEM with Reduction

Several methods [Metaxas and Terzopoulos 1992]
Single-domain [Barbic and James 2005]
simulations

[An and colleagues 2008]
[Kim and James 2009]

[Kharevych and colleagues 2009]

[Nesme and colleagues 2009]



Related Work:
Domain Decomposition

Old. established method [Patnaik and colleagues 1994]

[Storaasli and Bergan 1987]

interior {rij
Component mode /-
synthesis / :
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boundaxy (r-1,r) (r=1} C:—_’—],\ )
Only small domain |
deformations

[Craig and Bampton 1968] ,,




Related Work:
Domain Decomposition
in Graphics

Linear domain [James and Pai 2002]

deformations [Huang and colleagues 2006]

Spatially-adaptive  [wicke and colleagues 2009]
model reduction .
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Related Work:
Model Reduction +
Domain Decomposition

Embedded skeleton

Connect domains
with penalty forces

Concurrent work

[Kim and James 2011]

12



Model Reduction



Reduction-Order Deformations

u = Uq

3n

r << 3n

Ir

Mode 1
= Column 1 of U

Examples:

Linear & nonlinear modal analysis,

PCA, polynomial deformers,
FFD/embedded, splines, subdivision, etc.



Model Reduction

A high-dimensional ODE: I — F(u, Li,l‘)

u==Ugqg

T
Pre-multiply with {J

v
Low-dimensional q — l]TI;'(l]q7 Uq, t)

approximation:

Elasticity, fluids, voltages, etc.
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Kinematics
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The Decomposition and
Domain Graph

| —e—@

A
Interfaces are
edges in the
domain graph

(J

root
TTITT T

Assumption: no cycles
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The Decomposition and
Domain Graph
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Compute Modes for Domains

Boundary
condition:

fix vertices
at interface
to parent

(red)

Note:
Domains can
be rigid
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How to
define a
consistent,
connected
model ?
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Degrees of Freedom

240 DOFs
(20 each
domain)
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Assumption: interfaces undergo
mostly rigid motion

94

— mq;,
._L» qs Sy)

Frames

rest deformed

22



Fit Best Rigid Transformation
to Interface Vertices

Use polar 4_?/,/’“\\()(, R)

decomposition . \\\/
REST O
[Mueller and INTERFACE o
colleagues 2005] DEFORMED
INTERFACE
A=ReS Can be done
4 4 entirely in the

rotation symmetric reduced space!
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No constraints

Frames are uniquely
determined by q
(q = “joints™)

“Minimal’ formulation
[Featherstone 1987]

qs

94
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Fix interfaces with blending

no blending CO blending
(domain gaps visible)
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Dynamics

How to evolve g in time ?
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Equations of motion

Md; + D;q; ‘|‘fmt( )

q;

ext gystem interface
Y

Simulate each
domain in its
local coordinate
system
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External Forces

Md; + D;q; ‘|‘fmt( )

User Forces
Wind

Gravity

ext
l

system interface
+fi

F

_/
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System Forces
Mg; + D;q; + fmt( P = ext 4 fisystem 4 fiinterface

| 0 forces

Z A2 1 due to frame

0 acceleration
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System Forces

How to compute
frame acceleration?

[
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Polar Decomposition
Gradient and Hessian

Let A(t) be 3x3 matrix that depends
on a scalar parameter.

For any t, perform polar decomposition:

A(®) = R(9) S(1 Lf(t)
t ot L

rotation symmetric
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Polar Decomposition
Gradient and Hessian

A(t) = R(t) 5(t)

If A(t), A’(t), A”(t) are known,

R”(t)_=3 We derive formulas
S ’(’t) ‘_-? in the paper.
R”(t) =" Code is on our website.

S”(t) = ?
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Interface Forces

Mdg;,+ D;qg; + fmt( ) ext 4 fsystem fiinterface

Due to the

mass inertia of the

attached subtrees. lum eccll
attl%%s : attached
subtree subtree

Approximation:
interface lumping

Exact: two-pass recursion
[Featherstone 1987] 33



Results
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Space Station
dynamics: 75 fps, 2500x speedup

107,556
voxels

48 domains

921 DOFs
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DragOn with self-collision detection
dynamics: 75 fps, 500x speedup

160,553
tetrahedra

40 domains

454 DOFs
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Live Demo
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Conclusion

Domain Decomposition + Model Reduction
Local Detail at Interactive Rates

Gradient and Hessian of Polar Decomposition
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Future work

* Loops

e Arbitrary-depth hierarchies
* Deformable interfaces

* Joints (articulation)

* Implicit integration of I 77777
system forces Deformable Structure

with Loops
* Multicore implementations
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Extra slides



Model Reduction + FEM +
Domain Decomposition

41 Branches
+ 1394 Leaves

1435 Domains

triangle mesh volumetric mesh
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Computing Frames
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Computing Frames

e

Where should

this domain
go?

REST
DEFORMED
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Computing Frames

,_\(xij,R,-j)

\

DEFORMED
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With and without blending

no blending
(domain gaps visible)

CO blending
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Accuracy of interface
mass lumping

I | | | ] || | 1 | 1 1 Y ' 4 |
0 50 100 150 200 250 300
frame
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Deviation of
interfaces
from rotation

f volumetric mesh domains,
colored like the curves

6%}

N
R

ij
N
R

”A“—Rij”[z/ ”Aij”[:
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The Decomposition and
Domain Graph

Assumption: no loops 49



Interfaces

Each domain has an interface to its parent domain.

| T—eo——0

A

Interfaces are
edges in the
domain graph

()
root




