
Volume 0 (1981), Number 0 pp. 1–13 COMPUTER GRAPHICS forum

Vega: Nonlinear FEM Deformable Object Simulator

F. S. Sin1, D. Schroeder1,2, J. Barbič1
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Abstract

This practice and experience paper describes a robust C++ implementation of several nonlinear solid 3D de-
formable object strategies commonly employed in computer graphics, named the Vega FEM simulation library.
Deformable models supported include co-rotational linear FEM elasticity, Saint-Venant Kirchhoff FEM model,
mass-spring system, and invertible FEM models: neo-Hookean, Saint-Venant Kirchhoff, and Mooney-Rivlin. We
provide several timestepping schemes, including implicit Newmark and backward Euler integrators, and explicit
central differences. The implementation of material models is separated from integration, which makes it possible
to employ our code not only for simulation, but also for deformable object control and shape modeling. We ex-
tensively compare the different material models and timestepping schemes. We provide practical experience and
insight gained while using our code in several computer animation and simulation research projects.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically
based modeling

Keywords: deformable objects, finite element method, nonlinear, practice and experience, open source

1. Introduction

Researchers in physically-based modeling have presented
many 3D nonlinear deformable models and numerical
timestepping schemes. A Google search, however, reveals
that few of these models have publicly available implemen-
tations. Even when implementations are available, different
authors tend to use different code conventions and organi-
zation, making it difficult to evaluate and reuse the many
FEM deformable strategies employed in computer graph-
ics. In this practice and experience paper, we describe a
C++ implementation of the most common FEM deformable
models and timestepping schemes employed in computer
graphics. We extensively compare the different deformable
models and timestepping schemes to each other, and pro-
vide observations and insight for practical use. The code can
simulate the dynamics of 3D solid deformable objects un-
dergoing large deformations (see Figure 1), and optionally
supports static deformations where the mass inertia is ne-
glected. It is suitable both for offline applications in film, and
real-time applications in games and virtual medicine. Our

models are solid 3D volumetric meshes; we do not support
shells or strands. Vega supports linear FEM elasticity, co-
rotational linear FEM elasticity, the Saint-Venant Kirchhoff
FEM model (isotropic geometrically-nonlinear elasticity),
invertible FEM models (neo-Hookean, Saint-Venant Kirch-
hoff, Mooney-Rivlin), as well as 3D mass-spring systems.
We provide several timestepping schemes, including implicit
Newmark and backward Euler integrators, and explicit cen-
tral differences. We support tetrahedral meshes (with linear
elements) and cube hexahedral meshes (trilinear elements),
both of which are very common in computer graphics.

Our simulator is a result of several years of research in
computer animation and simulation, and we hope that it will
find usage in future research projects in these fields. The
code is optimized for speed, well-commented and easy to
modify. It supports CPU multicore computation of internal
forces and stiffness matrices. Also supported are multicore
sparse linear system solves for implicit integration. Vega is
released under the BSD open-source license, permitting free
reuse by academia and industry. The code units depend min-
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Figure 1: Large FEM deformations: The crane voxel mesh
is shown blended on top of the embedded triangle mesh,
whereas the dragon uses the external surface of the tetra-
hedral mesh for rendering.

imally on each other and are independently reusable. For ex-
ample, we separate internal elastic force computation from
integration, so that, e.g., our mass-spring system library can
be used with any of our integrators, or the user can provide
her own integrator. Similarly, any of our integrator libraries
can timestep any of our deformable models, or any physi-
cal system provided by the user. We provide documentation,
compilation instructions, example meshes, and a complete
OpenGL application example. Vega can be downloaded at
http://www.jernejbarbic.com/vega.

Figure 2: Our simulator supports tetrahedral (B) and
voxel meshes (C). The embedded triangle rendering mesh
is shown in (A).

2. Related Work

Deformable object simulation is a well-studied problem in
computer graphics. We review the FEM approaches rele-
vant to our paper; please see [NMK∗06] for a general sur-
vey. In engineering, many papers discuss linear methods,
which are limited to small deformations. One common ap-
proach to model large deformations is to employ quadratic
Green-Lagrange strain (geometrically nonlinear models).
Its isotropic version, the St.Venant-Kirchhoff (StVK) ma-
terial model, has been employed in several papers [OH99,
DDCB01, PDA01, CGC∗02]. Specialized edge data struc-
tures have been presented to decrease the computation time
of evaluating StVK internal forces [KTY09]. Co-rotational
linear FEM was introduced to computer graphics in [MG04].
It can handle large deformations by extracting local ma-
terial rotations using polar decomposition, and is a pop-
ular approach [PO09, CPSS10, MZS∗11]. In simulations
of soft tissue, common in computer graphics, mesh ele-
ments may invert during the simulation. Irving [ITF04] in-
troduced material models that can restore from inversion,
and Teran [TSIF05] showed how to compute the tangent
stiffness matrix for such material models. Many papers
then improved upon various aspects of these methods, e.g.
employing multigrid [MZS∗11], efficient material coarsen-
ing [NKJF09, KMOD09], or performing the simulation in
Eulerian coordinates [LLJ∗11].

Co-rotational, StVK and invertible FEM approaches are
commonly used in computer animation practice. The Open-
Tissue [Ope] (ZLib license) and SOFA [SOF] libraries
(LGPL) both offer linear and co-rotational FEM. Open-
Tissue also provides invertible co-rotational FEM internal
forces (without stiffness matrices), finite differences and
shape matching, whereas SOFA includes GPU computation,
composite elements and multi-scale simulation. Whereas
these libraries offer comprehensive solutions for deforma-
tions, plasticity, collision detection and rendering, our code
is less complex and focuses on FEM deformable simula-
tion and CPU multithreading. Most models and integrators
are implemented in a single {.h,.cpp} file pair, simplifying
code reuse. To the best of our knowledge, Vega (BSD) is
the only free library offering both internal forces and tan-
gent stiffness matrices for linear, co-rotational, StVK, and
invertible FEM models. The Cubica [Kim] library (GPL)
provides StVK and invertible FEM, as well as meshing
and model reduction. Popular physics engines such as Bul-
let Physics [Cou], Havok [Hav] and Nvidia Phsyx [Phyb]
do not support FEM, and typically model deformations us-
ing geometric shape matching [MHTG05]. The Physbam li-
brary [Phya] (BSD), while versatile and supporting many
physical systems, currently does not support FEM solid de-
formable objects in its public release. Hyper-sim [Erl] is
a Matlab library offering StVK, linear, and co-rotational
FEM. Commercial engineering (Abaqus [ABA]) and open-
source (CalculiX [DW]) deformable object simulation tools
can simulate large-deformation FEM models, but they do
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not support co-rotational or invertible models. Also, such
engineering software was designed for scripted, offline use,
where the functionality to compute internal forces and stiff-
ness matrices is built-in and not exposed to the end user.

3. Overview

SparseInternalForceModel
virtual void GetInternalForce(...);
virtual void GetTangentStiffnessMatrix(...);

IsotropicHyperelasticFEMForceModel
IsotropicHyperelasticFEM * isotropicHyperelasticFEM;

StVKForceModel
StVKInternalForces * stVKInternalForces;
StVKStiffnessMatrix * stVKStiffnessMatrix;

IntegratorBaseSparse
SparseInternalForceModel * sparseInternalForceModel;
virtual void DoTimeStep(...)
{

}

   sparseInternalForceMode->GetInternalForce(...);
   sparseInternalForceMode->GetTangentStiffnessMatrix(...);

   ...
   

   ...
   

ImplicitBackwardEulerSparse VolumetricMesh

TetMesh CubeMeshImplicitNewmarkSparse

Figure 3: Implementation overview: Solid lines denote
class derivation, dashed lines denote that a class serves as
input to another class.

For a detailed introduction to FEM deformable objects,
we refer the reader to [Sha90, Bar07]. In solid mechanics,
three-dimensional deformable objects are modeled by the
nonlinear partial differential equations of elasticity. After ap-
plying FEM, one obtains an ordinary differential equation,

Mü+Du̇+ fint(u) = fext(t), (1)

where u ∈ R3n contains the displacements of the n mesh
vertices away from the rest configuration, M ∈ R3n×3n is
the mass matrix, D = αM + βK(u) + D is the damping
matrix, fint(u) ∈ R3n are the internal elastic forces, and
fext(t) ∈ R3n are external forces (e.g., gravity, wind, con-
tact, user forces). The gradient of fint(u) with respect to u,
K(u) = ∂ fint(u)/∂u ∈ R3n×3n, is called the tangent stiffness
matrix. Equation 1 covers many deformable models used
in computer graphics, including FEM deformable models,
cloth and mass-spring systems. Scalar parameters α and β

and matrix D ∈ R3n×3n control damping: α sets the level of
“mass” damping (slows down deformations globally, as in
underwater damping), β sets the “stiffness” damping (damps
primarily any relative deformation velocity differences; use-
ful to remove temporal high-frequency instabilities), and D
is an additional damping matrix that can optionally be set by
the user. For D = 0, we obtain the familiar Rayleigh damp-
ing [Sha90].

A deformable object simulator must timestep Equation 1
forward in time, under some user-provided initial and bound-
ary conditions. Initial conditions include the initial posi-
tion and velocity of the deformable object. For boundary
conditions, the user typically selects an arbitrary set of
fixed vertices, i.e., vertices whose deformation is zero at all
times. The simulator must incorporate the ability to store
3D volumetric meshes, including their (potentially spatially-
varying) material properties. It must also provide the ability
to calculate matrices M,D,K(u) and internal forces fint(u).
There is a certain degree of independence in these tasks.
Calculation of internal forces does not depend on the spe-
cific numerical integration scheme to timestep Equation 1,
and vice versa. Integrators do not depend on the type of the
volumetric mesh. These observations motivated the design
of our Vega library, which provides all of these components,
and exposes and exploits independence. Our C++ classes can
be divided into three groups (Figure 3): (1) volumetric mesh
containers (green), (2) internal forces calculators (red) and
(3) integrators (blue). Each of the classes is a stand-alone
unit that can be reused independently of the rest of the code.

Volumetric mesh containers store the 3D locations of the
mesh vertices in the undeformed configuration, element con-
nectivity, and the material properties of each element. Our
classes support operations such as loading and saving a mesh
to a file, calculating mesh volume, center of mass, inertia
tensor and mesh mass matrix, identifying mesh elements
neighboring a vertex, and interpolating vertex deformations
to a higher-resolution embedded rendering mesh. Such in-
terpolation is very useful in practice as it makes it possi-
ble to drive a detailed triangle mesh with a coarse simula-
tion [JBT04, MTG04]. We interpolate using the CPU, but a
GPU implementation would also be possible. The material
properties (Young’s modulus, Poisson’s ratio, and mass den-
sity) may be defined per-element. Alternatively, subsets of
the elements can be defined, and then the properties are ap-
plied commonly to all the elements in a subset. In order to
specify the 3D geometry and support such material proper-
ties, Vega introduces an ASCII file format .veg, extended
from the familiar free 3D mesh geometry format of Jonathan
Shewchuk and used by the TetGen 3D mesher [Han11].
We also provide a routine to compute the (consistent, non-
lumped) mass matrix M, which can be lumped to a diagonal
matrix if so desired (more on lumping in §7).

Internal force and stiffness matrix calculators evaluate
the internal forces fint(u) and tangent stiffness matrices K(u)
for all the material models stated in the Introduction, for any
deformation u. Our classes are:

CorotationalLinearFEM
StVKInternalForces StVKStiffnessMatrix
IsotropicHyperelasticFEM MassSpringSystem

Each class is initialized by providing a volumetric mesh and
the parameters needed for the material model. Some mate-
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rials (mass-spring system, Saint-Venant Kirchhoff) support
both tet and cube meshes, while others were only designed
for tet meshes [MG04, ITF04, TSIF05]. The resulting inter-
nal forces and stiffness matrices can be timestepped with any
numerical scheme, either one provided by our code, or any
other timestepping scheme of choice. In order to establish a
common interface to our integrators, we standardize access
to the different material models through the “SparseInter-
nalForceModel” abstract base class. This “black-box” class
merely defines the following two abstract virtual functions:

virtual void GetInternalForce(double * u,
double * internalForces) = 0;

virtual void GetTangentStiffnessMatrix(
double * u, SparseMatrix *
tangentStiffnessMatrix) = 0;

For each of our material classes, we then provide a short
wrapper class that derives from SparseInternalForceModel,
and that implements the above functions by calling the func-
tions in the material class. For example, MassSpringForce-
Model derives from SparseInternalForceModel, and is im-
plemented by calling functions from the MassSpringSystem
class. Such a construction is very useful in practice because
it decouples the integrators from the material models. Our
integrators work simply with a pointer to the abstract base
class “SparseInternalForceModel”, exploiting C++ virtual
derivation polymorphism, and are completely agnostic of
the specific material model implementation. Similarly, ma-
terial models need not be aware of integrators and are imple-
mented free of any integration-related code, making it pos-
sible to use the internal forces and stiffness matrices for any
general purpose, e.g., inverse kinematics or optimization.

Integrators timestep a deformable object (or any other
physical system) forward in time. They obtain internal forces
and stiffness matrices from an instance of a SparseInternal-
ForceModel class. Our integrator classes are:

ImplicitNewmarkSparse
ImplicitBackwardEulerSparse
CentralDifferencesSparse EulerSparse

Support classes: In addition to the “core” classes described
above, Vega also includes classes to store and perform arith-
metics on sparse matrices, load and store obj meshes, render
deformed obj meshes using OpenGL, measure C++ code ex-
ecution time, and parse custom-defined configuration files.
In order to facilitate code re-use, we provide a demo applica-
tion, which allows the user to pull on a mesh with the mouse
and see the resulting dynamic deformations in real-time.

Free-flying objects: Without any fixed vertices, the object
possesses free rigid degrees of freedom in addition to the de-
formations, which causes the stiffness matrix K to be singu-
lar. The dimension of the nullspace of K equals the number
of free rigid degrees of freedom, which is six if no vertices
are constrained, and less depending on what vertices are con-
strained. For example, if only one vertex is constrained, the

object will be able to freely rotate around that vertex (three
free degrees of freedom; nullspace of K will consist of all in-
finitesimal rotations). By constraining at least three vertices
that do not lie on the same line, all rigid degrees of freedom
can be removed. In practice, however, we usually constrain
more than three vertices if the intent is to remove all rigid
degrees of freedom. We note that our dynamic simulations
remain stable even for deformable objects that simultane-
ously undergo both free-flying rigid motion and deforma-
tions. Namely, the linear system that must be solved at each
timestep under implicit integration, is a weighted sum of
the mass matrix, damping matrix and stiffness matrix, with
integrator-dependent, positive weights. The presence of the
mass and damping matrix terms shifts the system eigenval-
ues in a positive direction, which regularizes the system.

Overview simulation times are given in Table 1 (single-
processor six-core 3.33 GHz Intel i7 CPU with 9GB RAM
running Ubuntu Linux 11.04). More detail is provided in Ta-
bles 2, 3 and 4. All our simulations use semi-implicit integra-
tion, i.e., performing a single step of the Newton-Raphson
relaxation procedure at every timestep [BW98].

4. Elastic Materials

We now describe our supported deformable models: co-
rotational linear elasticity, standard Saint-Venant Kirchhoff,
invertible neo-Hookean and invertible Saint-Venant Kirch-
hoff models, and comment on their strengths, weaknesses
and practical performance. Ultimately, each of these mate-
rials results in an implementation of the “GetInternalForce”
and “GetTangentStiffnessMatrix” routines (Section 3), and
can then be used with any of our integrators. Table 2 gives a
speed comparison of the supported deformable models.

4.1. Co-Rotational Linear Elasticity

The co-rotational linear elasticity FEM model [MG04] is a
very popular solid 3D nonlinear deformable model in com-
puter graphics. Purely linear models result in inflated volume
artifacts under large deformations. The co-rotational model
removes linearization artifacts, by assuming that the defor-
mation, at every element in the mesh, consists of a rotation
plus a small amount of “pure” deformation. The rotation
is determined via polar decomposition of the deformation
gradient F. Once the rotation is identified, the forces on an
element are computed based on only the “pure” deforma-
tion, and properly rotated to the world frame of reference.
Our implementation supports tet meshes, and includes a po-
lar decomposition library. Optionally, the caller can disable
“warping”, which yields a standard linear FEM model, with
a constant stiffness matrix K, and internal forces f lin = Ku.

Specifically, our code implements the following calcula-
tion. In the standard (i.e., non-warped) linear model, the 12-
dimensional vector f lin

e = Keue of vertex forces of an ele-
ment e is a linear function of the element stiffness matrix
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#ver #el total [msec] N #Rver #Rtri interp [msec] normals [msec] fps
dinosaur (T) 344 1,031 39.7 2 28,098 56,192 0.8 21.7 13.2
bridge (V) 3,923 1,736 480 8 16,085 16,616 0.4 8.1 1.9
bridge (T) 4,000 12,827 361 8 16,085 16,616 0.3 8.3 2.4
crane (V) 9,875 5,571 1,574 2 149,797 260,187 8.1 99.1 0.5

dragon (T) 46,736 160,553 6,783 1 46,736 77,250 0 23.1 0.1

Table 1: Simulation statistics: T=tet mesh, V=voxel mesh, #vertices (#ver), #elements (#el), total dynamics time (total; includes
internal forces and stiffness matrix evaluation and integrator time, as separately reported in Tables 2 and 3), #simulation
steps per rendered frame (N), #vertices in rendering mesh (#Rver), #triangles in rendering mesh (#Rtri), time to interpolate
deformations from volumetric to triangle mesh for rendering (interp), time to dynamically recompute the mesh normals for
rendering (normals), and the overall achieved frame rate (fps), using OpenGL, with dynamically recomputed normals. The
dragon interpolation time is zero, because that model uses the outer surface of the volumetric mesh as the rendering mesh. All
timings are in msec per time step, using a single core, for the StVK material model integrated with implicit Newmark.

co-rotational linear FEM StVK invertible StVK invertible Neo-Hookean mass-spring system
INT STM INT STM INT STM INT STM

dinosaur 2.1 14.5 18.5 0.1 3.5 0.1 3.2 0.1 0.3
bridge (V) – 136 256 – – – – 1.2 5.3
bridge (T) 32.1 99.8 191 0.8 40.1 1.6 41.3 0.8 4.1

crane – 443 828 – – – – 3.1 20.1
dragon 484 1,219 2,737 15.5 582 21.2 599 17.1 70.8

Table 2: Internal force (INT) and stiffness matrix (STM) evaluation times, in milliseconds per time step, using a single core.
Co-rotational FEM timings are reported total for INT+STM, because they cannot easily be separated in the implementation.

Ke ∈ R12×12 and the displacement ue = xe− x0
e ∈ R12 of its

vertices from their rest position x0
e ∈ R12. After calculating

the rotational component Re of the element deformation gra-
dient using polar decomposition, one assembles a 12× 12
block-diagonal matrix R̂e, with four 3× 3 blocks Re. One
then obtains co-rotational vertex forces by applying Ke to
the rotation-canceled deformations, followed by a rotation,

fe = R̂eKe(R̂T
e xe−x0

e) = R̂eKeR̂T
e ue + R̂eKe(R̂T

e − I)x0
e . (2)

Note that for ue = 0, we have Re = I, and fe = 0, as expected.
For implicit integration, we use a stiffness matrix assembled
from the warped stiffness matrices R̂eKeR̂T

e of each tetrahe-
dron, which is a very common choice in computer graph-
ics [MG04, PO09]. Although this choice in practice gives
stable simulations (except in cases of extreme velocities),
we note that this matrix is not the exact gradient of the in-
ternal forces (d fe/due 6= R̂eKeR̂T

e ), because the gradients of
Re with respect to ue are ignored. This limitation has been
recently addressed by [CPSS10] and [Bar12]; an implemen-
tation is available in Vega. All experiments in this paper refer
to the approximate stiffness matrix R̂eKeR̂T

e [MG04].

4.2. Saint-Venant Kirchhoff Elasticity

The Saint-Venant Kirchhoff material model is another com-
monly employed deformable model in computer graphics.
It uses nonlinear Green-Lagrange strain E = 1/2(FT F− I),
which ensures that the model is free of large rotation arti-
facts. StVK is perhaps the simplest nonlinear model, because

it models the stress-strain relationship with a linear function.
Unlike general linear materials which can be anisotropic,
StVK has the additional property that it is isotropic, and is
therefore sometimes referred to as the isotropic geometri-
cally nonlinear material model. Because of all of these as-
sumptions, StVK can be parameterized by only specifying
two scalar values. Two representations are commonly em-
ployed and supported by our code: the Lamé coefficients
λ,µ, and the Young’s modulus and Poisson’s ratio E,ν.
StVK is given by the energy density function (see [BW08])

Ψ =
1
2

λ(tr(E))2 +µE : E. (3)

It can be shown that the StVK elastic energy is a quartic (4th
order) polynomial in the deformations of the mesh vertices
(see, e.g., [CGC∗02, Bar07]). Therefore, the internal forces
and the tangent stiffness matrix are cubic and quadratic poly-
nomials, respectively. The coefficients of these polynomials
can be derived analytically, using integration of FEM shape
functions over each element. They are given in [CGC∗02,
Bar07]. With general deformable models, such integration
can only be performed numerically. One advantage of StVK
is that the integration can be performed exactly during pre-
computation, with a negligible computational overhead. We
performed the integration analytically in Mathematica for
both tets (of arbitrary shapes) and cubes, and transferred the
formulas to efficient C code. Our StVK implementation is
then immediately loadable and requires only a small mem-
ory footprint to store the cubic polynomial coefficients. Be-
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cause the StVK internal forces are cubic polynomials, it is
very easy to compute, analytically, the exact StVK tangent
stiffness matrix, and even further derivatives. Our code pro-
vides the StVK stiffness matrix and also its derivative (the
Hessian of the internal forces). Such high-order derivatives
are useful in applications involving optimization and con-
trol of deformable models, as they make it possible to use
higher-order optimization schemes. Furthermore, the cubic
polynomial formula is useful in model reduction [BJ05], be-
cause linear projections to low-dimensional spaces commute
with any polynomial expression.

We observe two disadvantages of StVK. First, under large
compression, the material collapses, and may even perma-
nently invert. This problem generally applies to soft tissue;
stiffer models are less prone to collapse. To address invert-
ibility, we provide an invertible StVK implementation (Sec-
tion 4.3). The second disadvantage of a cubic-polynomial-
based StVK implementation is that, although exact, the num-
ber of cubic polynomial terms is quartic in the degrees of
freedom of the element (see Table 2). Therefore, the evalua-
tion of internal forces is slower with StVK than, say, with co-
rotated linear models. Note that for tetrahedral elements, one
may use the invertible StVK method of Section 4.3, which
is faster (see Table 2) and gives identical results to standard
StVK when the correction of inverted elements is disabled.
The invertible FEM approach, however, cannot easily give
stiffness matrix derivatives (Hessians). We note that if in-
vertibility is not needed, it would be possible to gain further
speed in StVK (for tet meshes) by computing the first-Piola
Kirchoff stress tensor P (Section 4.3), and analytically dif-
ferentiate it with respect to F (avoiding SVD); we leave this
extension for future work. We compare the stretching behav-
ior of co-rotational linear FEM to StVK in Figure 4. It can
be seen that the two materials behave quite differently under
large deformations. Under small deformations, however, the
two materials are visually similar (see Figure 9, bottom).

4.3. Invertible Element Methods

The material models above share the limitation that if a tet
becomes inverted due to extreme deformation, the internal
forces do not act to restore the tet to an uninverted state. The
invertible model [ITF04] addresses this weakness by calcu-
lating material stress using the singular value decomposition
(SVD) of the deformation gradient F, where inversion is eas-
ily detected. The vertex forces on a deformed tet rotate with
the tet if the tet is rotated in world space. For isotropic ma-
terials, the forces are similarly invariant with respect to ro-
tations in material space, so the first Piola-Kirchhoff stress
P(F), viewed as a function of F, satisfies

P
(
UF̂V T )= UP

(
F̂
)
V T , (4)

where F =UF̂V T , and U and V T are rotations such that F̂ is
diagonal. One can now determine that the tet is near-inverted
if one of the diagonal entries λ1,λ2,λ3 of F̂ is below a small

Figure 4: Material behavior under stretching: (A) (B) can-
tilever beam at rest, with tets and cubes. Pulling end of
beam: (C) co-rotational linear FEM with tets, (D) linear
FEM with cubes, under the same forces as C, (E) (F) StVK,
under the same forces as C, (G) (H) StVK, stretched to the
same length as C. Applying gravity: (I) (J) StVK, under same
total force as C. Poisson’s ratio was 0.45. Because there are
almost no local rotations, (C) and (D) coincide, and inter-
nal forces are linear in displacement. StVK, however, stiffens
nonlinearly. Volumetrically distributed loads (gravity) pro-
duce smaller displacements than concentrated loads.

positive threshold, and clamp such entries to that threshold
to produce forces that restore the tet. We found such clamp-
ing to work well in practice. For stress defined by an energy
function Ψ, it can be shown that F̂ yields diagonal stress

P
(
F̂
)

= diag
(

∂Ψ

∂λ1
,

∂Ψ

∂λ2
,

∂Ψ

∂λ3

)
. (5)

The values ∂Ψ/∂λi can be computed analytically by differ-
entiating the energy function of any standard isotropic mate-
rial model, or they could even be measured experimentally.
Once we calculate P(F) from P(F̂), we obtain the force on a
vertex of the tet by multiplying P(F) with its area-weighted
normal (see [ITF04] for details).

Implicit timestepping methods require the stiffness matrix
for the invertible model. Such a stiffness matrix was derived
in [TSIF05], and we implement this method in Vega. Using
the diagonalization as in Equation 5, we calculate the entries
of the gradient of the stress with respect to F as

∂P
∂Fi j

= U
(

∂P
∂F

∣∣∣∣
UT FV

:
(

UT (ei⊗ e j)V
))

V T , (6)

where ei is the ith standard basis vector in R3. The gradient
evaluated at UT FV can be calculated as a function of the λi
and the gradient and Hessian of Ψ with respect to the invari-
ants of C = FT F (for more details, please refer to [TSIF05]).
The invertible FEM models in Vega are able to recover very
well from extremely inverted configurations (see Figure 5).
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F. S. Sin, D. Schroeder, J. Barbič / Vega: Nonlinear FEM Deformable Object Simulator

Figure 5: Our invertible simulator can recover from ex-
treme deformations (invertible StVK): (A) collapsed (initial
condition), (B) partially recovered (intermediate state), (C)
completely recovered (final state).

Invertible Saint-Venant Kirchhoff material adds invert-
ibility to the StVK material model given in Section 4.2. We
first rewrite the energy density from Equation 3 in terms of
the invariants of C = FT F :

Ψ =
1
8

λ(IC−3)2 +
1
4

µ(IIC−2IC +3). (7)

Invariants are defined as follows [BW08]:

IC = tr(C) = λ
2
1 +λ

2
2 +λ

2
3, (8)

IIC = tr(C2) = λ
4
1 +λ

4
2 +λ

4
3, (9)

IIIC = det(C) = λ
2
1λ

2
2λ

2
3. (10)

We then analytically differentiate energy (Equation 7)
with respect to the invariants (first and second deriva-
tive), and then apply these formulas to our implementation
of [TSIF05] (Section 4.3).

Invertible Neo-Hookean material uses the energy density
function (page 162 in [BW08])

Ψ =
µ
2
(IC−3)−µ logJ +

λ

2
(logJ)2 , (11)

where µ and λ are the Lamé coefficients, and J =
√

IIIC.

Invertible Mooney-Rivlin material uses the energy density
function (see §3.5.5 in [Bow09])

Ψ =
1
2

µ01
( I2

C− IIC
J4/3

−6
)
+µ10

( IC
J2/3

−3
)
+ v1

(
J−1

)2
,

(12)

where µ01,µ10,v1 are Mooney-Rivlin material parameters.

Arbitrary isotropic hyperelastic materials are supported
by Vega, via C++ class polymorphism. One simply has to
provide a class that derives from a standardized Vega ab-
stract base class for isotropic materials, and that evaluates
the first and second derivatives of the energy density Ψ with
respect to IC, IIC, IIIC.

4.4. Mass-Spring System

The mass-spring system model simulates a set of particles
connected by springs [BW01]. Each particle can have its

own mass; similarly, different springs can have different
stiffness and damping coefficients, as well as rest lengths.
We support general mass-spring networks; there is no re-
striction on which particles are connected by springs. To fa-
cilitate the creation of a mass-spring network, we provide
a routine which converts a tet mesh into a mass-spring sys-
tem: vertices become particles, and each tet edge serves as a
spring. Similarly, one can convert a cube mesh into a mass-
spring network: all 12 cube edges become springs, along
with the 12 face diagonals and the 4 main diagonals. We
compute spring forces using the standard Hooke’s law for
springs. For a spring of rest length r and stiffness ks between
particles at positions a and b = a+ z, the spring force is

f (z) = ks(|z|− r)
z
|z| , (13)

such that particle a receives force f (z) and particle b receives
− f (z). We compute damping forces in a similar way. To en-
able implicit integration, we calculate the gradient of f as

∂ f
∂z

= ks

[(
1− r

|z|

)
I +

r
(|z|)3 zzT

]
, (14)

from which we obtain the contribution of each spring to the
global stiffness matrix. We also derive and implement the
derivative of the stiffness matrix (Hessian).

5. Integrators

We support several explicit and implicit integration meth-
ods (see Table 3 for a speed comparison). All the methods
timestep the ODE given in Equation 1. Except with soft ob-
jects, FEM deformable simulations are very stiff and require
implicit integration with large timesteps. For explicit inte-
gration, the required timestep is imposed by the smallest el-
ement in the mesh (Courant condition).

IBE IN ECD EE
dinosaur 5.29 6.70 1.36 0.67

bridge (V) 90.3 87.0 20.1 9.54
bridge (T) 73.9 70.0 19.0 9.81

crane 339 303 53.8 25.0
dragon 2,856 2,827 239 110

Table 3: Integrator times: IBE=implicit backward Euler,
IN=implicit Newmark, ECD=explicit central differences,
EE=explicit Euler. All timings are in msec per time step, us-
ing a single core. They include the entire time step compu-
tation, except internal force and stiffness matrix evaluation.
For implicit integration and central differences, they include
the Pardiso linear system solver time. Central differences
were timed using a constant pre-factored system matrix.

5.1. Implicit Backward Euler

Given deformations ut and velocities vt at time t, the implicit
backward Euler method [BW98] attempts to find a future
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deformation ut+∆t such that explicitly integrating at time t
with forces fint(ut+∆t) evaluated at t + ∆t will produce the
same deformation ut+∆t . If we let ∆u = ut+∆t −ut and ∆v =
vt+∆t − vt represent the changes in deformation and velocity
from time t to t +∆t, then we want to set[

∆u
∆v

]
= ∆t

[
∆v+ vt

M−1(−Dvt+∆t − fint(ut+∆t)+ fext)

]
. (15)

To find approximate solutions when fint is nonlinear, we
substitute a Taylor series approximation of fint(ut+∆t), com-
puted using the tangent stiffness matrix K = ∂ fint/∂u (semi-
implicit integration). This gives the linear equation(

M+∆tD+(∆t)2K
)

∆v = ∆t
(

fext− fint(ut)−
(
∆tK+D

)
vt

)
.

(16)
After solving Equation 16 for ∆v, we can calculate ∆u from
Equation 15. Such semi-implicit backward Euler is not un-
conditionally stable, unlike fully implicit backward Euler
where the nonlinear Equation 15 is solved exactly. Such
an exact solver is largely only a theoretical concept, how-
ever, as in practice, finding the required exact solution can
only be done via a full Newton-Raphson relaxation at ev-
ery timestep. This search may diverge if the initial guess is
too far from the exact solution. Consequently, both semi-
implicit and fully-implicit integration can become unsta-
ble under very large timesteps. In practice, however, semi-
implicit backward Euler is a reasonable choice; it is both
simple and very stable. Its main drawback is that it tends to
introduce significant artificial damping with large timesteps.

5.2. Implicit Newmark

The implicit Newmark integrator is very popular in solid me-
chanics, mainly because of its quadratic-order timestep ac-
curacy [Woo90]. In practice, it is slightly less stable than im-
plicit backward Euler, but produces more lively animations
with less artificial damping. Given current deformations ut ,
velocities vt , and accelerations at at time t, the implicit New-
mark method [Wri02] assumes that the future deformations,
velocities and accelerations ut+∆t ,vt+∆t ,at+∆t satisfy

ut+∆t = ut +∆t · vt +
(∆t)2

2
(
(1−2β)at +2βat+∆t

)
vt+∆t = vt +∆t

(
(1− γ)at + γat+∆t), (17)

where 0≤ β≤ 0.5 and 0≤ γ≤ 1 are user-chosen parameters.
In practice, these values are often set to β = 0.25 and γ =
0.5, which gives second-order accuracy. To satisfy the above
equations, we solve for at+∆t and vt+∆t in terms of ut+∆t and
the known values at time t. Inserting the results into Equation
1, we obtain a nonlinear equation for ut+∆t :

G(ut+∆t) = M
( 1

β(∆t)2 (ut+∆t −ut)−
1

β∆t
vt −

1−2β

2β
at

)
+

+D
(

γ

β∆t
(ut+∆t −ut)+

(
1− γ

β

)
vt +

(
1− γ

2β

)
∆t ·at

)
+

+ fint
(
ut+∆t

)
− ( fext)t+∆t = 0. (18)

To solve for ut+∆t , we start with u0
t+∆t = ut . We then per-

form a Newton-Raphson procedure, iteratively generating
updated guesses ui+1

t+∆t , by using the stiffness matrix and fint

at the current guess ui
t+∆t :(

1
β(∆t)2 M +

γ

β∆t
D+

∂ fint
∂u

∣∣∣∣
u=ui

t+∆t

)
∆ui+1

t+∆t =−G(ui
t+∆t),

(19)
where ui+1

t+∆t = ui
t+∆t + ∆ui+1

t+∆t . We halt the process when
G(ui

t+∆t) falls below a desired accuracy threshold, or after
exceeding a maximum number of iterations.

Sparse linear solvers are required for implicit integration.
Vega employs three solvers: Pardiso (commercial; direct; by
the Pardiso Project and Intel [PAR]), SPOOLES (free; di-
rect; by Boeing [SPO]), and our own Jacobi-preconditioned
Conjugate Gradient (PCG) implementation (free; iterative;
released with Vega), which we implemented by follow-
ing [She94]. We give a timing comparison in Table 4. In most
cases, direct solvers outperform PCG in computation time,
but require more memory. Direct solver times do not depend
on material stiffness (Young’s modulus), whereas the num-
ber of required PCG iterations is proportional to stiffness
(see also §7). Therefore, PCG is a better alternative to direct
solvers with soft objects, and with large systems where the
direct factorization may not fit into memory.

5.3. Central Differences

The central differences integrator [Wri02] is the explicit
companion to the implicit Newmark integrator. It typically
requires much smaller timesteps than implicit Newmark, and
is useful in simulations that must take very small timesteps,
e.g., simulations involving transient contact or sound simu-
lations. The update equation is(

M +
∆t
2

D
)(

ut+∆t −ut
)

= (20)

= (∆t)2( fext− fint(ut)
)
+

∆t
2

D(ut−∆t −ut)+M(ut −ut−∆t)

vt+∆t =
ut+∆t −ut

∆t
. (21)

A central differences timestep is faster than the implicit
Newmark timestep because there is no need to construct the
tangent stiffness matrix. Furthermore, if the damping ma-
trix D does not vary through time, the matrix M + ∆t

2 D can
be prefactored. For Rayleigh damping, however, the matrix
D(u) = αM + βK(u) varies in time. While it is tempting to
ignore the dependency of K on u and simply use a constant
stiffness matrix K = K(0) for damping, we observed that
this leads to very visible damping artifacts under large de-
formations. A reasonable alternative to using exact K(u) is
to periodically recompute K(u) and refactor M + ∆t

2 D(u).

Explicit Euler: We also provide explicit and symplectic
Euler integrators. Symplectic Euler [SD06] preserves energy
and is typically more stable than explicit Euler.
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time [msec] memory [Mb]
Par SPO PCG Par SPO PCG

dinosaur 5.1 16.4 4.6 1.3 1.1 0.03
crane 308 566 1,012 59.5 62.2 0.90

bridge (T) 72 136 9.1 16.5 16.2 0.36
bridge (V) 73 133 13.3 19.3 18.9 0.36

dragon 2,821 5,039 8,934 289 320 4.3

Table 4: Comparison of sparse solvers: Two direct solvers
(Par=Pardiso, SPO=SPOOLES) are compared to an itera-
tive solver (PCG; Jacobi-preconditioned conjugate gradi-
ents). Timings are in msec per time step, using a single core.
PCG uses zero initial guess and stops when the residual
norm drops below ε = 10−6 times the initial residual norm.
Multicore scalability and the dependence of running time on
material stiffness are investigated in Figure 11.

6. CPU Multicore Implementation

We provide a CPU multicore implementation for all our ma-
terial models, for both the internal forces and stiffness matri-
ces. The implementation is available in classes with exten-
sion “MT” that derive from a single-core version of the class,
e.g., “StVKInternalForcesMT” is derived from “StVKInter-
nalForces”. The user provides the desired number of com-
putation threads T to the “MT” constructor. The routine to
compute the internal forces then launches T threads, using
the pthreads API (available on Linux, Mac OS X and Win-
dows). The set of all mesh elements is divided into T “buck-
ets”, each of which is assigned to a thread. Each thread
then processes its elements. For each element, it computes
the internal forces, and then adds the forces into its own,
separate, internal force buffer. This avoids write-conflicts,
and removes the need for any thread synchronization. The
buffers are of length 3n, static, allocated once in the con-
structor, and cleared to zero by the thread at the begin-
ning of each computation. After all threads are finished, the
main thread sums the buffers into a total internal force. We
use an equivalent procedure for stiffness matrices. The Par-
diso and SPOOLES solvers support multithreading, and we
wrote wrappers where we can conveniently set the number
of solver threads. In practice, solver scalability is good for 2-
3 cores, but diminishes with more cores. Figure 6 analyzes
the performance of our multicore implementation.

In our implementation, we launch and kill the threads each
time internal forces or stiffness matrices are computed. The
advantage of this approach is that it leaves room for other
(non-simulation) tasks to be mapped to the different cores.
Because there is some OS overhead in launching the threads,
our threading stops becoming useful with very small mod-
els, e.g., when the running time of each thread would be less
than approximately 10 milliseconds. This is especially pro-
nounced with mass spring systems where the internal force
computation times are short. It would be easily possible to

modify our code so that the threads are launched once and
then persist, spinning idle on a mutex until needed. Note
that the threads cannot be made to sleep, because the time
to wake them up on a multitasking OS could easily be on the
order of a few milliseconds.

Figure 6: CPU multicore scalability: INT=internal forces,
STM=stiffness matrix, SO=solver time, TOT=total time.
Bridge example with tets, StVK material, Pardiso solver, im-
plicit backward Euler. Single-processor six-core 3.33 GHz
Intel i7 CPU with 9GB RAM. Both INT+STM and solver
can be seen to scale well to a few cores, with diminishing re-
turns for many cores. INT+STM evaluations are more paral-
lel and scale better than Cholesky decomposition and back-
substitution inside direct sparse solvers. ITM+STM scalabil-
ity is affected by contention to read the vertex displacements
from memory, and the overhead of launching the treads.

7. Experiments

Computation times were reported in Tables 2, 3, 4 and Fig-
ure 6. Performance under mesh and timestep refinement are
analyzed in Figures 7 and 9, respectively. We also analyzed
stability under mesh and timestep refinement, by applying an
instantaneous force impulse to a vertex at the top of bridge’s
mast, in tetrahedral meshes L0, L1, L2 of Figure 9. We deter-
mined the largest stable timestep using bisection. Under im-
plicit backward Euler, StVK and co-rotational linear FEM
were both stable. Huge timesteps caused severe numerical
viscosity, but simulations did not explode, for any mesh res-
olution. Under implicit Newmark with StVK, the largest sta-
ble timesteps at L1 and L2 meshes were 1.11x and 1.19x
smaller than at L0, respectively. Co-rotational linear FEM
stable timesteps were approximately 2x larger than StVK
timesteps, at all mesh resolutions.

In Figures 8 and 10, we analyze volume preservation and
locking of tetrahedral and voxel meshes. Unless the mate-
rial is very soft, the standard FEM methods preserve vol-
ume well (but not highly accurately), across a wide range of
Poisson ratios ν (Figure 10). Even rarely used values such
as ν = −0.5 or ν = 0 produce visually plausible results.
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Figure 8: Locking under a static load. Data also corresponds to Figure 10. (a) Rest pose, (b) tet mesh obtained by splitting
voxels into tets, under ν = 0.45 (gray),0.49 (blue),0.499 (red); severe locking can be observed, (c) tet mesh (red) vs voxel mesh
(blue), for ν = 0.49; the voxel mesh locks significantly less than the tet mesh, (d) (e) tet and voxel mesh, respectively, under
progressive voxel subdivision, for ν = 0.49, L0 (red), L1 (blue), L2 (gray); under subdivision, locking in the tet mesh becomes
less severe; a similar (but much smaller) effect can be observed in the voxel mesh. Same static load in (b)-(e).

Figure 7: Timestep refinement: We simulated the L0 bridge
tet mesh (Figure 2 (b), and Table 1, StVK, ν = 0.45, 4000
vertices; small user damping), under progressive timestep
refinement. All simulations use the same initial velocity, fol-
lowed by free vibration. We plot the trajectory of a vertex
at the top of the bridge mast. Under a large timestep (de-
noted by 1x), numerical viscosity due to implicit integration
is high, causing a rapid loss of energy. The rate of energy
loss decreases as the deformations become smaller. Numer-
ical viscosity is smaller under smaller timesteps. Smaller
timesteps also produce greater dynamic detail. For scale:
the height of the bridge is 3 units. Z-axis is perpendicular to
the main bridge axis, and the mast.

The deformable methods presented in this work, however,
struggle with near-incompressible Poisson ratios close to
0.5. Although they produce an output that preserves volume
well, they “lock”: system condition numbers grow, anima-
tions lose energy rapidly, may become unstable, and visibly
deform to smaller deformations than under equal loads with
smaller values of ν (Figure 8, (b)). Locking becomes less se-
vere with mesh refinement (Figure 8, (d,e)), and tetrahedral
meshes lock significantly more than voxel meshes (Figure 8,

(c)). In order to simultaneously avoid locking and achieve
exact volume preservation, it is recommended to use FEM
methods designed for this purpose, such as [ISF07].

We analyzed linear system solver multicore scalability in
Figure 11. It can be seen that PCG parallelizes better than
Pardiso. This is expected since matrix-vector multiplications
of iterative solvers parallelize better than back-substitutions
in direct solvers. The tradeoff between direct and iterative
solvers is determined by the material stiffness, or, equiva-
lently, timestep size. Running time of direct solvers is largely
independent of stiffness, whereas for iterative solvers, it in-
creases with stiffness, as well as timestep size (Figure 11).
This is because the mass matrix M is typically much bet-
ter conditioned than the stiffness matrix K. For low stiffness
values, or small timesteps, the M term dominates the system
matrix (Equations 16, 19), so PCG needs a small number
of iterations for convergence. Under large stiffness or large
timesteps, K is dominant, causing a higher system condition
number and slower PCG convergence. In the extreme case,
as timestep approaches infinity, all dynamics is removed and
the solver becomes equivalent to a static solver: numerically
the most difficult case.

Assembling the global stiffness matrix: Vega’s sparse ma-
trix library uses the compressed sparse row format to store
sparse matrices. In order to correctly write each element’s
stiffness matrix into the global stiffness matrix, a naive im-
plementation would need to sort the indices of non-zero en-
tries in each row, at runtime. Vega avoids this overhead by
pre-sorting the indices at startup. For every element, it pre-
computes V 2 integers, where V is the number of element
vertices (V = 4 for tets and V = 8 for cubes), as follows.
The 3V×3V element stiffness matrix consists of dense 3×3
blocks, each of which corresponds to a pair of element ver-
tices. Let us consider the n× n matrix obtained from the
global 3n×3n stiffness matrix, by shrinking each 3×3 block
to a 1×1 matrix. Let ve

i be the global integer index of vertex
i of element e, i = 1, . . . ,V, in the shrunk n× n matrix. For
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Figure 9: Mesh refinement: Top: we simulate the same solid
object (bridge), under progressive, non-nested, tet mesh re-
finement. The L0 mesh (4,000 / 12,827 vertices/tets) is also
reported in Table 1 and Figure 7. L1 and L2 meshes have
20,921 / 83,566 and 106,827 / 477,589 vertices / tets respec-
tively, and mesh approximately the same volume as the L0
mesh. Same timestep, initial velocity, material properties,
damping, and plotted vertex as in Figure 7. It can be seen
that finer simulations produce richer dynamic motion. Bot-
tom: StVK vs co-rotational linear FEM.

each element e and each integer pair (i, j), i, j = 1, . . . ,V, we
pre-compute an integer that gives the location in the com-
pressed array of row ve

i of the 1× 1 entry corresponding to
the vertex pair (ve

i ,v
e
j) in e. Precomputing the V 2 integers

for each element is fast and only needs to be done once at
startup. At runtime, one can then write the element stiffness
matrix entries into the global matrix in O(1) time. Therefore,
the global stiffness matrix assembly only requires a linear
traversal of element stiffness matrix entries, with a negligi-
ble computational overhead. Note that direct solvers require
all entries of the global stiffness matrix to be available for
Cholesky factorization. For iterative solvers, in contrast to
matrix-free approaches that need not form a global stiffness
matrix and therefore reduce memory bandwidth [MZS∗11],
Vega computes the stiffness matrix once at each timestep,
and re-uses it during the iterations.

Mass lumping refers to forming a diagonal matrix by sum-
ming the entries in each row of the mass matrix. Such a sim-
plified matrix corresponds to pretending that the interiors of
all mesh elements are massless, with all mass concentrated at
the vertices. Therefore, the effect of mass lumping becomes
less pronounced with mesh refinement. All experiments in
this paper were performed using the consistent (non-lumped)
mass matrix. The sparse matrix library in Vega exploits the
fact that the non-zero indices of the consistent M are a subset
of non-zero indices of K, to efficiently form the system ma-
trix (Equations 16, 19). If the mass matrix is lumped to a di-
agonal, this does not yield a substantial speedup for implicit
integration. It does, however, accelerate explicit integration
when “stiffness” damping is not used (β = 0), because the
system matrix (Equation 20) becomes diagonal.

Figure 10: Volume preservation: We measured the total
mesh volume in the experiment depicted in Figure 8, as a
function of ν, for tets and cubes, and under mesh refinement.
Relative volume error is small (under 3.5%). We observed an
interesting phenomenon: as ν is increased into the locking
regime (ν > 0.45), a switch occurs from overestimating to
underestimating the volume. Beyond ν > 0.499, all simula-
tions are severely locked (see Figure 8, (b)) and very visibly
under-deform. Tetrahedral mesh locks so severely that sim-
ulations become unstable. The voxel mesh, however, starts
preserving the volume more closely as ν→ 0.5.

8. Discussion

We presented a simulator that implements several common
FEM deformable simulation methods in computer graphics,
as well as a mass-spring system, in a unified framework. We
provided practical experience and extensively compared the
implemented strategies. Our code is simple and easily ex-
tensible, and the different components depend minimally on
each other. The simulator exposes internal forces and tan-
gent stiffness matrices using a well-documented interface,
which should facilitate code reuse in applications in com-
puter graphics, animation, robotics and virtual reality.
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Figure 11: Multicore scalability of linear system solver:
Both Pardiso and PCG scale well with the number of cores.
As material stiffness is increased, the direct solver (Pardiso)
running times stay constant, whereas PCG times grow. L0
bridge tet mesh (4,000 vertices, 12,827 tets).

Acceleration strategies: Our simulator can be readily ex-
tended to also include acceleration strategies such as model
reduction [BJ05] and domain decomposition [HLB∗06,
BZ11]. In model reduction, one assumes that the defor-
mations u lie in some (quality) low-dimensional space,
u = Uq, where U ∈ R3n×r is the time-invariant basis of
the subspace, and r is the basis size. Equations of mo-
tion are then projected to this low-dimensional space, yield-
ing equations of motion for q(t). A C/C++ implementa-
tion that timesteps q parallels the unreduced implementa-
tion, and can reuse several of its classes, such as the Volu-
metricMesh class. The key difference is that implicit solvers
must solve dense linear systems of size r × r. The ba-
sis U can be obtained by applying Principal Component
Analysis (PCA) to some pre-existing unreduced simulation
data (computed, say, using the unreduced Vega simulator),
or using modal derivatives [BJ05]. A precomputation util-
ity that performs the pre-process, as well as run-time code
that shares some basic classes with Vega, are available at:
http://www.jernejbarbic.com/code. For more
details and a comparison to unreduced StVK, please re-
fer to [BJ05]. For domain decomposition, the model reduc-
tion simulator can be extended, by using polar decomposi-
tion [MHTG05] to compute a frame for each domain. For de-
tails and experimental comparisons, please refer to [BZ11].

What approach is good for what application: We have
found that co-rotational linear FEM and StVK behave very
similarly under small / moderate deformations. With implicit
integration, co-rotational linear FEM is faster (∼ 20%) than
invertible StVK. It is also more stable. For simulations
that do not require the tangent stiffness matrix (explicit

solvers), StVK is faster because one cannot easily separate
stiffness matrix computation from internal force computa-
tion in the co-rotational linear FEM method. Under large
compression, co-rotational linear FEM may permanently in-
vert; therefore, for large compression, it is recommended
to use QR decomposition as opposed to polar decompo-
sition [PO09], or explicitly address invertibility [TSIF05].
Both co-rotational linear FEM and invertible StVK are good,
general-purpose choices for computer graphics applications.
The neo-Hookean material is typically used to simulate plas-
tic and rubber-like materials in engineering. Mass-spring
systems are faster and easier to implement than the FEM
methods, but are poor at preserving volume, and can eas-
ily tangle (invert) permanently. Hexahedral meshes lock less
than tet meshes, and thus are preferred in applications where
volume preservation is important. Standard StVK that com-
putes forces as cubic polynomials is significantly slower
than invertible StVK that uses SVD. Therefore, it is recom-
mended that practical StVK implementations use the invert-
ible SVD algorithm. Such applications may even turn the
invertibility threshold off, at which point invertible StVK ex-
actly matches standard StVK, at a fraction of the computa-
tional cost. The cubic polynomial StVK algorithm, however,
has the advantage that it commutes with a subspace projec-
tion operator, which is advantageous in model reduction ap-
plications. Cubic polynomials are also very easy to differ-
entiate analytically, which is important in applications that
need derivatives of the stiffness matrix, such as those involv-
ing optimization and control. Iterative solvers outperform di-
rect solvers for large meshes where direct solvers struggle
with fitting the factorization in memory, and in applications
where the material is soft or the timestep is small.

Limitations and future work: Our simulator is currently
limited to 3D solids, tetrahedral and cube meshes, and
isotropic materials. It does not incorporate collision detec-
tion. One can, however, use any collision library, compute
penalty forces, and apply them as external forces to our sim-
ulator. In the future, we plan to support anisotropic materials,
higher-order mesh elements, and 3D shells (cloth) and rods.
For example, we plan to include an implementation of the
Baraff-Witkin cloth simulator [BW98]. We also plan to sup-
port deformable collision detection and contact resolution.
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