

### Repeated Games, Optimal Channel Capture, and Open Problems for Slotted Multiple Access

Michael J. Neely (mikejneely@gmail.com)

University of Southern California

Friday Nov. 5, 2021



### Outline

Multiple Access (MAC) refers to multiple network users that send data packets to a common access point (receiver).



- 1. EE 550 MAC Game Competition
- 2. Minimizing expected time to capture a channel

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

### Part 1: EE 550 MAC Game Competition

- 2 users
- Each user has infinite number of fixed-length packets
- ► Time slots  $t \in \{1, 2, 3, ..., T\}$  (7= 100)
- 1 packet transmission takes 1 time slot
- On each slot t: Do we transmit (1) or not (0)?
- Idle/Success/Collision



### Game Structure for 1 slot



Players 1 and 2

- Binary decisions: Transmit (1); Do not transmit (0)
- (Player i gets a point) iff (Player i transmits alone)

Binary decision similar to Prisoner Dilemma game (but different payoffs)

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

### Volunteers to play a game?



#### Rules

- 1. Volunteers should turn on zoom video and put name in zoom id
- 2. 3 slots
- 3. Decentralized: Players cannot exchange secret chat messages.
- 4. Sequential decisions: On first slot the volunteers secretly write either 0 or 1 on paper. I then ask them to simultaneously reveal their decision in zoom video. Repeat procedure for slots 2 and 3.
- 5. Your grade is proportional to your score.



## Student competition Fall 2021

- 1. 10 algorithms compete in 2-player 100-slot games:
  - 7 student algs, 1 instructor alg
- AlwaysTransmit
  - ->>> NeverTransmit

Important for alg to learn to use all resources when available

2. All algorithm pairs (i, j) compete  $\forall i, j \in \{1, \dots, 10\}$ 



3. Goal: Accumulate the most points over all ten 100-slot games that you play.

### Matlab details

Player subroutine: (use "persistent" local variables)

 $X = \underbrace{MyDecisionAlg(t, MyHistory[t], OpponentHistory[t]);}_{\uparrow}$ 

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Master Program:

for  $t \in \{1, ..., 100\}$ : 1.  $X_1 = Player1DecisionAlg(t, Hist_1[t], Hist_2[t]);$ 2.  $X_2 = Player2DecisionAlg(t, Hist_2[t], Hist_1[t]);$ 3. Tally scores; 4. Update history:  $Hist_1[t] = [Hist_1[t]; X_1];$  $Hist_2[t] = [Hist_2[t]; X_2];$ 

### Some baseline algs

AlwaysTransmit

Tit-for-tat-1:
1. Slot 1: X[1] = 1 2. Slot  $t \in \{2, ..., 100\}$ :  $X[t] = X_{opponent}[t-1]$ 

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

Tit-for-tat-0: Same as Tit-for-tat-1 except X[1] = 0.

3-state
4-state
4-state with greedy ending

### Figures of Merit

- SelfCompetition score α: What is your expected score when playing an independent version of yourself?
- NoCompetition score β: What is your expected score when playing NeverTransmit?



Def: A *deterministic* algorithm uses no rand() calls.

Lemma: Every deterministic algorithm has  $\alpha = 0$ .

### 3-state Alg



### 4-state Alg



### Fall 2021 Results

|     | NT                   | AT | 4-she |       |       | TFT   |       |       |       |       |          | _     |
|-----|----------------------|----|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|
|     | A1                   | A2 | A3    | A4    | A5    | A6    | A7    | A8    | A9    | A10   | Totals   |       |
| A1  | 0                    | 0  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | N     |
| A2  | 100                  | 0  | 1     | 0     | 48.89 | 0     | 19.99 | 10.72 | 0     | 50.03 | 230.6444 |       |
| A3  | 9 <mark>8.0</mark> 3 | 0  | 49.49 | Č     | 49.41 | 49.33 | 21.61 | 24.9  | 0     | 33.27 | 326.0706 |       |
| A4  | 3 <mark>9.9</mark> 4 | 0  | 1     | 0     | 20.46 | 0     | 20.06 | 10.69 | 0     | 36.27 | 128.4562 |       |
| A5  | 4 <mark>9.9</mark> 5 | 0  | 0.49  | 0     | 25.04 | 0     | 9.98  | 5.33  | 0     | 24.88 |          |       |
| A6  | 1                    |    | 49.67 | 0     | 0.5   | 0     | 19.05 | 31.93 | 0     | 25.26 | 127.4265 | TFT \ |
| A7  | 100                  | 0  | 19.12 | 0.54  | 49.98 | 18.81 | 16.45 | 19.21 | 0.56  | 34.46 | 259.1658 |       |
| A8  | 5 <mark>0.5</mark> 2 | 0  | 23.85 | 0.02  | 25.34 | 31.57 | 18.65 | 24.74 | 0.19  | 27.37 | 202.2952 |       |
| A9  | 100                  | 0  | 1     | 0     | 49.97 | 0     | 19.88 | 10.76 | 0     | 38.18 | 219.8058 |       |
| A10 | 50.01                | 0  | 16.68 | 13.75 | 25.15 | 24.76 | 15.61 | 22.73 | 11.81 | 24.98 | 205.5207 |       |

Figure: Row *i* gives the points Alg  $A_i$  scored against each other alg. For each algorithm pair (i, j), the score is an average of  $10^6$  independent runs of separate 100-slot games.

- A1: NeverTransmit
- A2: AlwaysTransmit
- A3: 4-state
- A6: Tit-for-tat-1
- A7: Highest scoring student (Krishi)

### Results by semester

|                       | 4-State | Second Place | AlwaysTransmit | AvgAlg |
|-----------------------|---------|--------------|----------------|--------|
| Fall 2021 (10 algs)   | 32.46   | 26.02        | 22.90          | 18.14  |
| Fall 2020 (25 algs)   | 23.92   | 22.82        | 12.36          | 12.10  |
| Fall 2019 (19 algs)   | 30.55   | 30.07        | 18.32          | 16.25  |
| Spring 2018 (35 algs) | 56.31   | 53.62        | 25.55          | 33.71  |
| Fall 2018 (27 algs)   | 32.44   | 29.63        | 15.42          | 17.11  |
| Spring 2017 (21 algs) | 20.44   | 17.68        | 8.00           | 10.88  |
| Fall 2016 (14 algs)   | 20.22   | 17.53        | 11.22          | 10.22  |

Scores are presented as average score per (100-slot) game.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

- 4-state came in 1st place every semester
- AvgAlg is the average score over all algs that semester.

### Figures of Merit for main algorithms

|                | SelfComp $\alpha$ | NoComp $\beta$ | Tournament $\gamma$ |
|----------------|-------------------|----------------|---------------------|
| 4-state        | 49.500            | 98.000         | 24.613              |
| 3-state        | 49.500            | 49.833         | 22.548              |
| Tit-for-tat-0  | 0                 | 0              | 20.410              |
| Tit-for-tat-1  | 0                 | 1              | 15.326              |
| AlwaysTransmit | 0                 | 100            | 10.714              |

- ► 4-state was the top alg of 135 algs.
- The tournament score γ can be viewed as HumanCompetition score. It is the average score per game, based on simulation, when competing against all 135 algorithms designed over the 7 semesters.

### Relate to Life Philosophy?

Competing mindsets on the ladder to success:

- 1. Rise up by pushing others down.
- 2. Help everyone around to rise up, including yourself.

The second mindset is consistent with particular results of this MAC game.

▲□▶ ▲□▶ ▲ □▶ ★ □▶ □ のへで

### Math analysis for T-slot games

Theorem:

a) The SelfCompetition score for 4-state (and 3-state) is

$$\alpha = \frac{T-1}{2} + \left(\frac{1}{2}\right)^{T+1}$$

b) Converse: No algorithm that competes against an independent copy of itself can do better.

### Quick proof of weaker converse

Weaker claim: Fix T = 100. Any algorithm that competes against an independent copy of itself has  $\mathbb{E}[SelfScore] \leq 50$ .

**Proof:** Let  $S_1$  and  $S_2$  be the scores of Players 1 and 2 at the end of 100 slots. Then...

 $S_{1} + S_{2} \leq 100$   $E[S_{1}] + E[S_{2}] \leq 100$   $E[S_{1}] = E[S_{2}]$   $\implies E[S_{1}] \leq 50.$ 

Part 2: Expected time to capture channel

- 1. *n* users; slotted time
- 2. Everyone knows there are n
- 3. Users are indistinguishable (labels  $\{1, 2, ..., n\}$  unknown)
- 4. Design an alg that is independently used by each user to minimize the expected time until the first success

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

### Motivations for this problem

1. Max thruput.

First user to succeed can capture channel indefinitely

#### 2. Fair thruput.

First user to succeed can capture channel for k more slots

3. Recursive construction of round robin schedule

4. Fundamental learning time needed to distinguish 1 user from *n* indistinguishable users

### Related work

- Distributed control

  - Witsenhausen 1973, 1987
     Proof for n = 3 agents; n > 3 open
     Nayyar and Teneketzis 2019
     Common Information

Regret-based and online convex opt

- 1. Bubeck and Budzinski 2020
- 2. Bubeck, Li, Peres, Sellke 2020
- 3. Kalathil, Nayyar, Jain 2014

Distributed MAC, Poisson arrivals, Splitting and Tree Algs

- 1. Bertsekas and Gallager 1992
- 2. Mosely and Humblet 1985
- 3. Tsybakov and Mikhailov 1978, 1980, 1981
- 4. Hayes 1978
- 5. Capetanakis 1979

## Collision feedback F[t]

At end of each slot *t*, all users receive feedback:



We can know F[t] by, for example,

- 1. Measuring energy in collision
- 2. Using bit signature and counting spikes in matched filter [Gollakota and Katabi ZigZag 2008]

### Proposed Alg for n = 2

Both users independently transmit with prob 1/2 every slot until first success.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

• Z = random time to first success

$$\blacktriangleright z_2 = \mathbb{E}[Z] = 2$$

Converse: Cannot do better than 2

### Proposed Alg for n = 3

Transmit with prob p and observe F[t]:

► 
$$F[t] = 0$$
: Repeat

► 
$$F[t] = 1$$
: Success. Done in  $I$  slot.  
►  $F[t] = 2$ :  $EIZ$  (E3) Done in Z

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Case n = 3 continued

$$\mathbb{E}\left[Z\right] = \mathbb{E}\left[Z|F[1]=0\right](1-p)^3$$

+ 
$$\mathbb{E}[Z|F[1] = 1] 3p(1-p)^2$$



◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の へ ()

$$+ \mathbb{E}[Z|F[1] = 3] p^{3}$$

Z = Random time to first success

### Finish case n = 3

• Get:  

$$\mathbb{E}\left[Z\right] = \frac{1+3p^2(1-p)}{1-p^3-(1-p)^3}$$

Now optimize p:

$$z_3 = \inf_{p \in (0,1)} \left\{ rac{1+3p^2(1-p)}{1-p^3-(1-p)^3} 
ight\}$$

$$\implies p^* = 0.411972$$
  
 $z_3 = 1.78795$ 

・ロト < 団ト < 三ト < 三ト < 三 ・ のへで</li>

### Proposed Alg for general *n*

Transmit with prob p and observe F[t]:

$$F[t] = 0: Repeat$$
 $F[t] = 1: Done in 1$ 
 $F[t] = k \in \{2, ..., n-2\}:$ 
Choose better of groups:  $\{1, ..., k\}, \{k+1, ..., n\}$ 

$$z_n = \inf_{p \in (0,1)} \left\{ \frac{1 + \sum_{i=2}^{n-1} \min\{z_i, z_{n-i}\}\binom{n}{i} p^i (1-p)^{n-i}}{1 - p^n - (1-p)^n} \right\}$$

### Results



• Conjecture: This algorithm is optimal for all  $n \in \{1, 2, 3, ...\}$ 

▶ Have proof for special cases n ∈ {1, 2, 3, 4, 6}
 Other cases are open

### Converse for case n = 4

- lmagine an optimal alg that achieves  $z_4^*$ .
- Let Z be random time to first success  $(\mathbb{E}[Z] = z_4^*)$

Transmit on first slot with some probability  $p^*$  and observe F[1]:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

$$E[\left\{ \left\{ F(I)\right\} = 0\right\} \geq I + z^{*}$$

$$E[\left\{ \left\{ F(I)\right\} = 1\right\} \geq I$$

$$E[\left\{ \left\{ F(I)\right\} = 2\right\} \geq 2 \leq F(I)$$

$$E[\left\{ \left\{ F(I)\right\} = 3\right\} \geq 2$$

$$E[\left\{ \left\{ F(I)\right\} = 3\right\} \geq 2$$

# Why case $\{1, 2\}, \{3, 4\}$ is hard

Want to prove it is optimal to throw one group away

► Generally:

- 1. Group  $\{1,2\}$  can transmit next with prob q
- 2. Group  $\{3, 4\}$  can transmit next with prob r
- 3. Suppose we get feedback F[2] = 2:

 $\{a,b\},\{c,d\}$ 

< ロ > < 同 > < E > < E > E の < C</p>

- Exponentially growing (distributed) information state:
  - 1. User 1 history: {001101...}
  - 2. User 2 history: {<u>110010...</u>}
  - 3. User 3 history: {111001...}
  - 4. User 4 history: {111010...}

### Proof idea

Pesky case of {1,2}, {3,4}.

Want to bound expected remaining time under any algorithm for this pesky case:



Consider new system with 2 virtual users with enhanced capabilities.

Show virtual system has  $\mathbb{E}\left[R_{virtual}\right] \geq 2$ 

Show virtual system can emulate the  $\{1,2\},\{3,4\}$  case.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

### 2 virtual users with enhanced capabilities

Every slot, each of the 2 indistinguishable virtual users can send any integer number of packets.

Proof of emulation of any algorithm on actual case  $\{1, 2\}, \{3, 4\}$ 

- ALG A: For actual group  $\{1,2\}$
- ALG B: For actual group {3,4}
- 1. Over time, virtual user 1 independently simulates ALG A for user 1 and ALG B for user 3

If both transmit then send 2 packets If only one transmits then send 1 packet

Over time, virtual user 2 independently simulates ALGA A for user 2 and ALG B for user 4
 If both transmit then send 2 packets
 If only one transmits then send 1 packet



### Conclusions

- 1. MAC Game
  - Sharing is good. Greedy is bad.
  - Randomness is required
  - 4-state consistently wins competitions (and maximizes self-score α)
- 2. Time to first capture
  - Fundamental learning time needed to distinguish one user
  - Information state has complexity explosion
  - Optimality for  $n \in \{1, 2, 3, 4, 6\}$ (Novel method of virtual users with enhanced capabilities)
- 3. Open problems
  - n = 5 case; Cases  $n \ge 7$
  - More limited forms of feedback is open
  - Multi-channel case

(Arxiv paper explores case multi-channel 2-user and 3-user)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ● ●

### Related NSF grants

### 1. NSF SpecEES 1824418

- M. J. Neely, "Repeated Games, Optimal Channel Capture, and Open Problems for Slotted Multiple Access," arXiv technical report, arXiv:2110.09638v1.
- X. Zhou, I. Koprulu, A. Eryilmaz, M. J. Neely, "Low-Overhead Distributed MAC for Serving Dynamic Users over Multiple Channels," Proc. WiOpt 2021.

This talk

 M. J. Neely, "Reversible Models for Wireless Multi-Channel Multiple Access," Proc. IEEE INFOCOM, 2021.

#### 2. NSF CCF-1718477

- M. J. Neely, "Fast Learning for Renewal Optimization in Online Task Scheduling," Journal of Machine Learning Research (JMLR) Sept. 2021.
- M. J. Neely, "A Converse Result on Convergence Time for Opportunistic Wireless Scheduling," Proc. IEEE INFOCOM 2020.
- K. Asgari and M. J. Neely, "Bregman-style Online Convex Optimization with Energy Harvesting Constraints," Proc. ACM Meas. Anal. Comput. Syst, Dec. 2020.