
Repeated Games, Optimal Channel Capture, and

Open Problems for Slotted Multiple Access

Michael J. Neely
(mikejneely@gmail.com)

University of Southern California

Friday Nov. 5, 2021

Outline

Multiple Access (MAC) refers to multiple network users that
send data packets to a common access point (receiver).

1. EE 550 MAC Game Competition

2. Minimizing expected time to capture a channel

Part 1: EE 550 MAC Game Competition

I 2 users

I Each user has infinite number of fixed-length packets

I Time slots t 2 {1, 2, 3, ...,T}
I 1 packet transmission takes 1 time slot

I On each slot t: Do we transmit (1) or not (0)?

I Idle/Success/Collision

Game Structure for 1 slot

I Players 1 and 2

I Binary decisions: Transmit (1); Do not transmit (0)

I (Player i gets a point) i↵ (Player i transmits alone)

Binary decision similar to Prisoner Dilemma game (but di↵erent payo↵s)

Volunteers to play a game?

Rules

1. Volunteers should turn on zoom video and put name in zoom id

2. 3 slots

3. Decentralized: Players cannot exchange secret chat messages.

4. Sequential decisions: On first slot the volunteers secretly write

either 0 or 1 on paper. I then ask them to simultaneously reveal

their decision in zoom video. Repeat procedure for slots 2 and 3.

5. Your grade is proportional to your score.

Student competition Fall 2021

1. 10 algorithms compete in 2-player 100-slot games:
I 7 student algs, 1 instructor alg
I AlwaysTransmit
I NeverTransmit

Important for alg to learn to use all resources when available

2. All algorithm pairs (i , j) compete 8i , j 2 {1, . . . , 10}
I Including (i , i), an independent version of same alg

Important for alg to perform well against itself

3. Goal: Accumulate the most points over all ten 100-slot games
that you play.

Matlab details

I Player subroutine: (use “persistent” local variables)

X = MyDecisionAlg(t,MyHistory [t],OpponentHistory [t]);

I Master Program:

for t 2 {1, . . . , 100}:
1. X1 = Player1DecisionAlg(t,Hist1[t],Hist2[t]);
2. X2 = Player2DecisionAlg(t,Hist2[t],Hist1[t]);
3. Tally scores;
4. Update history:

Hist1[t] = [Hist1[t];X1];

Hist2[t] = [Hist2[t];X2];

Some baseline algs

I AlwaysTransmit

I Tit-for-tat-1:
1. Slot 1: X [1] = 1
2. Slot t 2 {2, ..., 100}: X [t] = Xopponent [t � 1]

I Tit-for-tat-0:
Same as Tit-for-tat-1 except X [1] = 0.

I 3-state

I 4-state

I 4-state with greedy ending

Figures of Merit

I SelfCompetition score ↵: What is your expected score when
playing an independent version of yourself?

I NoCompetition score �: What is your expected score when
playing NeverTransmit?

I HumanCompetition score �: Simulated over 135 algs

Def: A deterministic algorithm uses no rand() calls.

Lemma: Every deterministic algorithm has ↵ = 0.

3-state Alg

State%1:!Independently!transmit!with!prob!½!!
un5l!either!I!score!or!the!opponent!scores.!

State%2:%Politely!remain!idle!!
for!one!slot.!

State%3:%Transmit!repeatedly!!
un5l!I!score.!

If!opponent!scores!first!If!I!score!first!

4-state Alg

State 1: Independently transmit with prob ½
until either I score or the opponent scores.

State 2: Politely remain idle
for one slot.

State 3: Transmit repeatedly
until I score.

If opponent scores firstIf I score first

If opponent transmits

State 4: Transmit repeatedly
until collision.

If opponent
is idle

Fall 2021 Results

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Totals
A1 0 0 0 0 0 0 0 0 0 0 0
A2 100 0 1 0 48.89 0 19.99 10.72 0 50.03 230.6444
A3 98.03 0 49.49 0 49.41 49.33 21.61 24.9 0 33.27 326.0706
A4 39.94 0 1 0 20.46 0 20.06 10.69 0 36.27 128.4562
A5 49.95 0 0.49 0 25.04 0 9.98 5.33 0 24.88 115.6895
A6 1 0 49.67 0 0.5 0 19.05 31.93 0 25.26 127.4265
A7 100 0 19.12 0.54 49.98 18.81 16.45 19.21 0.56 34.46 259.1658
A8 50.52 0 23.85 0.02 25.34 31.57 18.65 24.74 0.19 27.37 202.2952
A9 100 0 1 0 49.97 0 19.88 10.76 0 38.18 219.8058
A10 50.01 0 16.68 13.75 25.15 24.76 15.61 22.73 11.81 24.98 205.5207

Figure: Row i gives the points Alg Ai scored against each other alg. For each

algorithm pair (i , j), the score is an average of 10
6
independent runs of

separate 100-slot games.

I A1: NeverTransmit
I A2: AlwaysTransmit
I A3: 4-state
I A6: Tit-for-tat-1

I A7: Highest scoring student (Krishi)

Results by semester

4-State Second Place AlwaysTransmit AvgAlg

Fall 2021 (10 algs) 32.46 26.02 22.90 18.14
Fall 2020 (25 algs) 23.92 22.82 12.36 12.10
Fall 2019 (19 algs) 30.55 30.07 18.32 16.25

Spring 2018 (35 algs) 56.31 53.62 25.55 33.71
Fall 2018 (27 algs) 32.44 29.63 15.42 17.11

Spring 2017 (21 algs) 20.44 17.68 8.00 10.88
Fall 2016 (14 algs) 20.22 17.53 11.22 10.22

I Scores are presented as average score per (100-slot) game.

I 4-state came in 1st place every semester

I AvgAlg is the average score over all algs that semester.

Figures of Merit for main algorithms

SelfComp ↵ NoComp � Tournament �

4-state 49.500 98.000 24.613
3-state 49.500 49.833 22.548

Tit-for-tat-0 0 0 20.410
Tit-for-tat-1 0 1 15.326

AlwaysTransmit 0 100 10.714

I 4-state was the top alg of 135 algs.

I The tournament score � can be viewed as HumanCompetition
score. It is the average score per game, based on simulation,
when competing against all 135 algorithms designed over
the 7 semesters.

Relate to Life Philosophy?

Competing mindsets on the ladder to success:

1. Rise up by pushing others down.

2. Help everyone around to rise up, including yourself.

The second mindset is consistent with particular results of this
MAC game.

Math analysis for T -slot games

Theorem:
a) The SelfCompetition score for 4-state (and 3-state) is

↵ =
T � 1

2
+

✓
1

2

◆T+1

T = 100 =) ↵ ⇡ 49.500000000000000000000000000000394

b) Converse: No algorithm that competes against an independent
copy of itself can do better.

Quick proof of weaker converse

Weaker claim: Fix T = 100. Any algorithm that competes
against an independent copy of itself has E [SelfScore] 50.

Proof: Let S1 and S2 be the scores of Players 1 and 2 at the end
of 100 slots. Then...

Part 2: Expected time to capture channel

1. n users; slotted time

2. Everyone knows there are n

3. Users are indistinguishable (labels {1, 2, ..., n} unknown)

4. Design an alg that is independently used by each user to
minimize the expected time until the first success

Motivations for this problem

1. Max thruput.
First user to succeed can capture channel indefinitely

2. Fair thruput.
First user to succeed can capture channel for k more slots

3. Recursive construction of round robin schedule

4. Fundamental learning time needed to distinguish 1 user from
n indistinguishable users

Related work

I Distributed control
1. Witsenhausen 1973, 1987

Proof for n = 3 agents; n > 3 open

2. Nayyar and Teneketzis 2019
Common Information

I Regret-based and online convex opt
1. Bubeck and Budzinski 2020
2. Bubeck, Li, Peres, Sellke 2020
3. Kalathil, Nayyar, Jain 2014

I Distributed MAC, Poisson arrivals, Splitting and Tree Algs
1. Bertsekas and Gallager 1992
2. Mosely and Humblet 1985
3. Tsybakov and Mikhailov 1978, 1980, 1981
4. Hayes 1978
5. Capetanakis 1979

Collision feedback F [t]

At end of each slot t, all users receive feedback:

F [t] = Number of users who transmitted

I F [t] = 0 (Idle)

I F [t] = 1 (Success and done)

I F [t] = 2 (Collision of 2 users)

I F [t] = 3 (Collision of 3 users)

...

I F [t] = n (Collision of n users)

We can know F [t] by, for example,

1. Measuring energy in collision

2. Using bit signature and counting spikes in matched filter

[Gollakota and Katabi ZigZag 2008]

Proposed Alg for n = 2

Both users independently transmit with prob 1/2 every slot until
first success.

I Z = random time to first success

I z2 = E [Z] = 2

I Converse: Cannot do better than 2

Proposed Alg for n = 3

Transmit with prob p and observe F [t]:

I F [t] = 0:

I F [t] = 1:

I F [t] = 2:

I F [t] = 3:

Case n = 3 continued

E [Z] = E [Z |F [1] = 0] (1� p)3

+ E [Z |F [1] = 1] 3p(1� p)2

+ E [Z |F [1] = 2] 3p2(1� p)

+ E [Z |F [1] = 3] p3

Z = Random time to first success

Finish case n = 3

I Get:

E [Z] =
1 + 3p2(1� p)

1� p3 � (1� p)3

I Now optimize p:

z3 = inf
p2(0,1)

⇢
1 + 3p2(1� p)

1� p3 � (1� p)3

�

=) p⇤ = 0.411972

z3 = 1.78795

Proposed Alg for general n

Transmit with prob p and observe F [t]:

I F [t] = 0: Repeat

I F [t] = 1: Done in 1

I F [t] = k 2 {2, ..., n � 2}:

Choose better of groups:

I F [t] = n � 1: Done in 2

I F [t] = n: Repeat

zn = inf
p2(0,1)

(
1 +

Pn�1
i=2 min{zi , zn�i}

�n
i

�
pi (1� p)n�i

1� pn � (1� p)n

)

Results

n pn zn z⇤n
1 1 1
2 0.5 2
3 0.411972 1.78795
4 0.302995 2.13454
5 0.238640 2.15575
6 0.191461 2.26246
7 0.166629 2.27543

I Conjecture: This algorithm is optimal for all n 2 {1, 2, 3, ...}

I Have proof for special cases n 2 {1, 2, 3, 4, 6}
Other cases are open

Converse for case n = 4

I Imagine an optimal alg that achieves z⇤4 .

I Let Z be random time to first success (E [Z] = z⇤4)

Transmit on first slot with some probability p⇤ and observe F [1]:

Why case {1, 2}, {3, 4} is hard

I Want to prove it is optimal to throw one group away
I Generally:

1. Group {1, 2} can transmit next with prob q
2. Group {3, 4} can transmit next with prob r
3. Suppose we get feedback F [2] = 2:

{a, b}, {c , d}

I Exponentially growing (distributed) information state:
1. User 1 history: {001101...}
2. User 2 history: {110010...}
3. User 3 history: {111001...}
4. User 4 history: {111010...}

Proof idea

I Pesky case of {1, 2}, {3, 4}.

I Want to bound expected remaining time under any algorithm
for this pesky case:

E [R] � 2

I Consider new system with 2 virtual users with enhanced

capabilities.

I Show virtual system has E [Rvirtual] � 2

I Show virtual system can emulate the {1, 2}, {3, 4} case.

2 virtual users with enhanced capabilities

Every slot, each of the 2 indistinguishable virtual users can
send any integer number of packets.

Proof of emulation of any algorithm on actual case {1, 2}, {3, 4}
I ALG A: For actual group {1, 2}
I ALG B: For actual group {3, 4}

1. Over time, virtual user 1 independently simulates ALG A for
user 1 and ALG B for user 3
If both transmit then send 2 packets

If only one transmits then send 1 packet

2. Over time, virtual user 2 independently simulates ALGA A for
user 2 and ALG B for user 4
If both transmit then send 2 packets

If only one transmits then send 1 packet

Conclusions

1. MAC Game
I Sharing is good. Greedy is bad.
I Randomness is required
I 4-state consistently wins competitions

(and maximizes self-score ↵)

2. Time to first capture
I Fundamental learning time needed to distinguish one user
I Information state has complexity explosion
I Optimality for n 2 {1, 2, 3, 4, 6}

(Novel method of virtual users with enhanced capabilities)

3. Open problems
I n = 5 case; Cases n � 7
I More limited forms of feedback is open
I Multi-channel case

(Arxiv paper explores case multi-channel 2-user and 3-user)

Related NSF grants

1. NSF SpecEES 1824418
I M. J. Neely, “Repeated Games, Optimal Channel Capture, and Open

Problems for Slotted Multiple Access,” arXiv technical report,
arXiv:2110.09638v1.

I X. Zhou, I. Koprulu, A. Eryilmaz, M. J. Neely, “Low-Overhead Distributed
MAC for Serving Dynamic Users over Multiple Channels,” Proc. WiOpt
2021.

I M. J. Neely, “Reversible Models for Wireless Multi-Channel Multiple

Access,” Proc. IEEE INFOCOM, 2021.

2. NSF CCF-1718477
I M. J. Neely, “Fast Learning for Renewal Optimization in Online Task

Scheduling,” Journal of Machine Learning Research (JMLR) Sept. 2021.
I M. J. Neely, “A Converse Result on Convergence Time for Opportunistic

Wireless Scheduling,” Proc. IEEE INFOCOM 2020.
I K. Asgari and M. J. Neely, “Bregman-style Online Convex Optimization

with Energy Harvesting Constraints,” Proc. ACM Meas. Anal. Comput.

Syst, Dec. 2020.

