
Opportunistic Learning for Markov Decision
Systems with Application to Smart Robots

Michael J. Neely
University of Southern California

Allerton Conf. on Communication,
Control, Computing, Sept. 2024

Markov Decision Model

• Time slots t = {0, 1, 2, …}
• State pair (S(t), W(t)):

S(t) in {1, …, n} (basic state)
W(t) iid vector (arbitrary dimension, unknown distribution)

• Every slot t:
Observe: (S(t), W(t))
Choose: A(t) in A (action set has arbitrary cardinality)

• Transition prob for S(t+1) and cost vector depend on (S(t),W(t),A(t)).

Time Average Goal

Vector of costs (C0(t), C1(t), …, Ck(t)).

Minimize: C0

Subject to: Ci ≤ 0 for i in {1, …, k}

(Infinite horizon time averages)

Toy Example: Roving Robot

• Robot moves over grid of 20 locations
• Valuable objects randomly appear and disappear in each location

(iid over slots , unknown joint distribution)
• Robot has global view of current rewards W(t) = (W1(t), …, W20(t))

3.2

0.7

8.1

= W(t)

Toy Example: Roving Robot

• Robot moves over grid of 20 locations
• Valuable objects randomly appear and disappear in each location

(iid over slots , unknown joint distribution)
• Robot has global view of current rewards W(t) = (W1(t), …, W20(t))

1.2

1.3

1.1

1.9

= W(t)

Toy Example: Roving Robot

• Robot moves over grid of 20 locations
• Valuable objects randomly appear and disappear in each location

(iid over slots , unknown joint distribution)
• Robot has global view of current rewards W(t) = (W1(t), …, W20(t))

11.2
= W(t)

Toy Example: Roving Robot

• Robot moves over grid of 20 locations
• Valuable objects randomly appear and disappear in each location

(iid over slots , unknown joint distribution)
• Robot has global view of current rewards W(t) = (W1(t), …, W20(t))

2.2 0.1

0.2

= W(t)

Toy Example: Roving Robot

• Robot moves over grid of 20 locations
• Valuable objects randomly appear and disappear in each location

(iid over slots , unknown joint distribution)
• Robot has global view of current rewards W(t) = (W1(t), …, W20(t))

18.4 0.1

3.2

0.2

= W(t)

Basic State: S(t) = (Location(t), Hold(t))
Location(t) in {1, …, 20} Hold(t) in {0,1}

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Hold=0 Hold=1

20 x 2 = 40 basic states

Rules

• Robot can hold at most one object at a time

• Can only drop an object at home base (deposit there for points)

• Every slot t:
1. Robot decides whether or not to pick up object (if any) at current location

2. Robot then decides to either stay in current location, or move one step in
any feasible direction: {Stay, N, S, W, E}.

Action: (Pickup(t), Move(t))

Should I pick this up? Where should I move next?

3.2

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (1,0)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (6,0)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (11,0)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (12,0)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (12,1)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (7,1)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (2,1)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (1,1)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (1,0)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (2,0)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (3,0)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (4,0)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (4,1)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (3,1)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (2,1)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (1,1)

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

S(t) = (1,0)

This paper…

• Develops Lyapunov drift based online method for general
opportunistic MDPs

• Applies general method to the robot problem

Before describing the proposed algorithm (which does not know the
distribution of W(t)), lets consider its performance for the robot problem
in comparison to a well reasoned heuristic optimized with knowledge of
the distribution.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Distribution for rewards

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

$$$

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

$

$$$

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

$

$$$

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.
5. Repeat.

Rewards appear iid Bern(1/2), then:
R9(t) ~ U[0,20]
R16(t) ~ U[0,4]
Ri(t) ~ U[0,1]

Compare to Fine-Tuned Heuristic

1 2 3 4 5

109876

11 12 13 14 15

2019181716

HOME

Threshold-based heuristic:
1. Robot moves from home to 16

by shortest path (ignoring all rewards
it sees along the way).

2. Stay in 16 for only 1 slot:
If reward there with value > θ1:

Pick up. Return home by shortest path.
Else:

Continue to 9 via shortest path
3. Wait in 9 until reward with value> θ2
4. Pick up. Return home by any shortest path.
5. Repeat.

Comparison to proposed online alg

Want to maximize time average reward.
Run over 106 slots.

1. Heuristic with best thresholds θ1, θ2: 0.6679 reward/time
2. Proposed virtual system: 0.6672 reward/time
3. Proposed actual system: 0.6604 reward/time

• Heuristic is fine-tuned with knowledge of problem structure and distribution

• Proposed MDP policy has no knowledge of problem structure or distribution

Idea
• Online algorithm on virtual system

• Use this to inform decision on actual system

• Treat p(t) as decision vector for desired steady state.

• Choose p(t) in prob simplex for n basic states:

p(t) in P = { (p1, …, pn) : pi ≥ 0, ∑pi=1 }

Same idea as:
[1] M. J. Neely, “Online Fractional Programming for Markov Decision Systems," Proc.
Allerton Conf. on Communication, Control, and Computing, Sept. 2011.

Time averages for Virtual System

Minimize:
nX

i=1

pi (t)ci ,0(W (t),Ai (t))

Subject to: pj(t) =
nX

i=1

pi (t)Pij(W (t),Ai (t)) 8j 2 {1, ..., n}

nX

i=1

pi (t)ci ,l(W (t),Ai (t)) 0 8l 2 {1, ..., k}

p(t) 2 P 8t 2 {0, 1, 2, ...}
Ai (t) 2 Ai 8t 2 {0, 1, 2, ...}
p(t) and W (t) are independent for t 2 {0, 1, 2, ...}

Time averages for Virtual System

Minimize:
nX

i=1

pi (t)ci ,0(W (t),Ai (t))

Subject to: pj(t) =
nX

i=1

pi (t)Pij(W (t),Ai (t)) 8j 2 {1, ..., n}

nX

i=1

pi (t)ci ,l(W (t),Ai (t)) 0 8l 2 {1, ..., k}

p(t) 2 P 8t 2 {0, 1, 2, ...}
Ai (t) 2 Ai 8t 2 {0, 1, 2, ...}
p(t) and W (t) are independent for t 2 {0, 1, 2, ...}

Time average cost

Time averages for Virtual System

Minimize:
nX

i=1

pi (t)ci ,0(W (t),Ai (t))

Subject to: pj(t) =
nX

i=1

pi (t)Pij(W (t),Ai (t)) 8j 2 {1, ..., n}

nX

i=1

pi (t)ci ,l(W (t),Ai (t)) 0 8l 2 {1, ..., k}

p(t) 2 P 8t 2 {0, 1, 2, ...}
Ai (t) 2 Ai 8t 2 {0, 1, 2, ...}
p(t) and W (t) are independent for t 2 {0, 1, 2, ...}

Global Balance Eq

Time averages for Virtual System

Minimize:
nX

i=1

pi (t)ci ,0(W (t),Ai (t))

Subject to: pj(t) =
nX

i=1

pi (t)Pij(W (t),Ai (t)) 8j 2 {1, ..., n}

nX

i=1

pi (t)ci ,l(W (t),Ai (t)) 0 8l 2 {1, ..., k}

p(t) 2 P 8t 2 {0, 1, 2, ...}
Ai (t) 2 Ai 8t 2 {0, 1, 2, ...}
p(t) and W (t) are independent for t 2 {0, 1, 2, ...}

Additional avg
constraints

Time averages for Virtual System

Minimize:
nX

i=1

pi (t)ci ,0(W (t),Ai (t))

Subject to: pj(t) =
nX

i=1

pi (t)Pij(W (t),Ai (t)) 8j 2 {1, ..., n}

nX

i=1

pi (t)ci ,l(W (t),Ai (t)) 0 8l 2 {1, ..., k}

p(t) 2 P 8t 2 {0, 1, 2, ...}
Ai (t) 2 Ai 8t 2 {0, 1, 2, ...}
p(t) and W (t) are independent for t 2 {0, 1, 2, ...}

Treat p(t) as decision
variable

Time averages for Virtual System

Minimize:
nX

i=1

pi (t)ci ,0(W (t),Ai (t))

Subject to: pj(t) =
nX

i=1

pi (t)Pij(W (t),Ai (t)) 8j 2 {1, ..., n}

nX

i=1

pi (t)ci ,l(W (t),Ai (t)) 0 8l 2 {1, ..., k}

p(t) 2 P 8t 2 {0, 1, 2, ...}
Ai (t) 2 Ai 8t 2 {0, 1, 2, ...}
p(t) and W (t) are independent for t 2 {0, 1, 2, ...}

Nonstandard!
How to enforce?

Relation to LP formulations
• Structure is reminiscent of LP formulations for basic

(non-opportunistic) MDPs

• Our problem structure is nonconvex

• Similar in spirit to linear fractional program:
[2] B. Fox, “Markov renewal programming by linear

fractional programming,” Siam J. Appl. Math 1966.

[3] S. Boyd, L. Vandenberghe, Convex Optimization, 2004.

• Our opportunistic structure has a unique (and pesky)
independence constraint

New idea

Single timescale hierarchical decision structure:

1. Choose p(t) in P without knowledge of W(t).

2. Force p(t) and p(t-1) to be close by adding Kullback-Liebler penalty:

D(p(t); p(t-1)) = ∑pi(t) log(pi(t)/pi(t-1))

3. Observe W(t). Make contingency action

Ai(t) in Ai for each i in {1, …, n}

”Max-Weight” Alg on Virtual System

Virtual queue for GBE constraint:

Qj(t+1) = Qj(t) + pj(t) - ∑i pi(t-1) Pij(W(t-1),Ai(t-1))

Layer 1: Choose p(t) in P to minimize

p(t)T [(1/ε)C0(t-1) + Y(t-1)Q(t) + G(t-1)Z(t)] + αD(p(t);p(t-1))

Layer 2: For each i in {1, …, n} choose Ai(t) to minimize:

(1/ε)ci,0(W(t), Ai(t)) + ZT(t)Ci(W(t), Ai(t)) – Q(t)TPi(W(t), Ai(t))

Dimension of W(t) or cardinality of its set of possible values is irrelevant!

Corresponding Actual System

If actual system is in state S(t) = i, then choose A(t) = Ai(t)

Theorem on Virtual System

Given parameter ε>0 for the algorithm.

Theorem: After time T=O(1/ε2) we have

1. (virtual time avg cost) ≤ (optimal) + O(ε)

2. (virtual time avg penalty) ≤ O(ε)

3. (virtual time avg. GBE violation) ≤ O(ε)

Relation to Actual System

At every time t, the actual and virtual systems match in

1. conditional transition probabilities

P[S(t+1)=j | S(t)=i] = match for all i, j

2. conditional costs

E[Ck(t) | S(t)=i] = match for all i, k

Relation to Actual System

At every time t, the actual and virtual systems match in

1. conditional transition probabilities

P[S(t+1)=j | S(t)=i] = match for all i, j

2. conditional costs

E[Ck(t) | S(t)=i] = match for all i, k

Caveat: No proof that unconditionals match!

Let’s verify by simulation

1/ε

1/ε

Ti
m

e
 A

vg
 R

ew
ar

d

Varying a distribution parameter u

4 5 6 7 8 9 10
u

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ti
m

e
av

er
ag

e
re

w
ar

d

Time average reward versus distribution parameter u

Actual
Virtual

Heuristic 1

Heuristic 2

Heuristic 3

Ti
m

e
 A

vg
 R

ew
ar

d

Simulated steady state in virtual system
(actual system has similar numbers)

.041
HOME

[0,20]

[0,4]

Not HaveHave

.022 .015 .016 .016

.019 .011 .041 .000 .016

.014 .017 .041 .041 .016

.009 .025 .025 .025 .000

.000
HOME

[0,20]

[0,4]

.018 .010 .010 .010

.023 .014 .041 .224 .010

.017 .015 .041 .041 .010

.016 .031 .031 .031 .000

Holding Not holding

Conclusion: Opportunistic MDPs
• Extends Lyapunov drift theory to Markov decision systems

• Learning via time-averaged GBEs

• Overcomes a challenging independence constraint

• Easily incorporates additional constraints on power, cost, etc.

• Complexity and convergence independent of dimension of W(t).
(Also independent of cardinality of set of possible W(t) values.)

