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Abstract— This paper presents an online method that learns
optimal decisions for a discrete time Markov decision problem
with an opportunistic structure. The state at time t is a pair
(S(t),W (t)) where S(t) takes values in a finite set S of basic
states, and {W (t)}∞t=0 is an i.i.d. sequence of random vectors that
affect the system and that have an unknown distribution. Every
slot t the controller observes (S(t),W (t)) and chooses a control
action A(t). The triplet (S(t),W (t), A(t)) determines a vector of
costs and the transition probabilities for the next state S(t+ 1).
The goal is to minimize the time average of an objective function
subject to additional time average cost constraints. We develop
an algorithm that acts on a corresponding virtual system where
S(t) is replaced by a decision variable. An equivalence between
virtual and actual systems is established by enforcing a collection
of time averaged global balance equations. For any desired ε > 0,
we prove the algorithm achieves an ε-optimal solution on the
virtual system with a convergence time of O(1/ε2). The actual
system runs at the same time, its actions are informed by the
virtual system, and its conditional transition probabilities and
costs are proven to be the same as the virtual system at every
instant of time. Also, its unconditional probabilities and costs
are shown in simulation to closely match the virtual system.
Our simulations consider online control of a robot that explores
a region of interest. Objects with varying rewards appear and
disappear and the robot learns what areas to explore and what
objects to collect and deliver to a home base.

I. INTRODUCTION

This paper considers a Markov decision system that operates
in slotted time t ∈ {0, 1, 2, . . .}. The state of the system is
given by a pair (S(t),W (t)), where S(t) takes values in a
finite set S = {1, . . . , n} of basic states (where n is a positive
integer), and {W (t)}∞t=0 is a sequence of independent and
identically distributed (i.i.d.) random vectors that take values
in a (possibly infinite) set W . The value W (t) can represent a
random fluctuation or event that affects the system on slot t,
such as a random vector of rewards, costs, or side information.
The distribution of W (t) is unknown to the system controller.
This is an opportunistic Markov decision problem because
the controller can observe the value of W (t) at the start
of slot t and can use this knowledge to inform its action.
Specifically, every slot t the controller observes (S(t),W (t))
and chooses an action A(t) from an action set A. The triplet
(S(t),W (t), A(t)) determines a vector of costs incurred on
slot t and also the transition probability associated with the
next basic state S(t+ 1).

The action has the form A(t) = (A1(t), . . . , An(t)), where
Ai(t) ∈ Ai is a contingency action given that S(t) = i.
Assume A = A1 × · · · × An. For i, j ∈ S define a transition

probability function pi,j(w, ai) so

P [S(t+ 1) = j|S(t) = i,W (t), A(t), H(t)]

= pi,j(W (t), Ai(t)) (1)

where H(t) is the history before slot t. The Markov property
holds: The value S(t+1) is conditionally independent of H(t)
given the current (S(t),W (t), A(t)).

Fix k as a nonnegative integer. For i ∈ S and l ∈
{0, 1, . . . , k} define cost functions ci,l(w, ai). The cost vector
for slot t is C(t) = (C0(t), C1(t), . . . , Ck(t)) where

Cl(t) = cS(t),l(W (t), AS(t)(t)) (2)

for l ∈ {0, . . . , k}, where 1E is an indicator function that
is 1 when event E is true and 0 else. The goal is to make
decisions over time to produce random processes {S(t)}∞t=0

and {C(t)}∞t=0 that solve:

Minimize: lim sup
T→∞

1

T

T−1∑
t=0

E [C0(t)] (3)

Subect to: lim sup
T→∞

1

T

T−1∑
t=0

E [Cl(t)] ≤ 0 ∀l ∈ {1, . . . , k}

(4)
A(t) ∈ A ∀t ∈ {0, 1, 2, . . .} (5)

There are two main challenges: First, the dimension of W (t)
can be large and its corresponding set W can be infinite,
so the full state space S × W is overwhelming. Second,
the distribution of the i.i.d. random vectors {W (t)}∞t=0 is
unknown. It is not always possible to estimate the distribution
in a timely manner. This paper develops a low complexity
algorithm that learns to make efficient decisions that drive
the system close to optimality. Our algorithm depends on
n, the number of basic states, and its implementation and
convergence time is independent of the dimension of W (t)
and the size of W . The idea is that, rather than learn the
full distribution, it is sufficient to learn certain max weight
functionals. The algorithm can be viewed as a Markov chain
based generalization of the drift-plus-penalty algorithm in
[1] for opportunistic network scheduling. This paper focuses
simulations on a toy example of a roving robot, described in
the next subsection.

A. Robot example

Consider a robot that seeks out valuable objects over a
region and delivers them to a home base (see Fig. 1). Ob-
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Fig. 1: (a) The robot has current state S(t) = (12, 0) because
it is in location 12 and is not holding an object. Suppose there
is an object at location 12, and the robot decides to collect this
object (earning reward W12(t)) and then move to location 7;
(b) The robot transitions to state S(t+ 1) = (7, 1) because it
is now in location 7 and is holding an object. It will continue
to hold the object (and hence is blocked from accumulating
more rewards) until it returns to the home location 1 (where it
“deposits” the object at home and transitions to state (1, 0)).

jects randomly appear and disappear in each location. Define
W (t) = (W1(t), . . . ,W20(t)), where Wi(t) is the value of the
object in location i at time t (if there is currently no object
in location i then Wi(t) = 0). Assume {W (t)}∞t=0 are i.i.d.
random vectors with a joint distribution that is unknown to
the robot. On each slot t, the robot has a satellite view of the
full reward vector W (t).

The basic state is S(t) = (Location(t), Hold(t)), where
Location(t) ∈ {1, . . . , 20} indicates the current location of
the robot, and Hold(t) ∈ {0, 1} indicates whether or not the
robot is currently holding an object. Thus, there are 20× 2 =
40 basic states (n = 40). The rules are as follows: The robot
can hold at most one object at a time; The robot can only
drop an object at the home base (its state Hold(t) moves to 0
when entering location 1); On each slot t: If the robot is not
currently holding an object, it decides whether or not to pick
up the object (if any) at its current location; Then, the robot
decides to either stay in its current location or move to an
adjacent location in any feasible direction to the North, West,
South, or East. Thus, given S(t) = (i, h), the action Ai,h(t) is
always one of 10 actions of the form (collect,move) where
collect ∈ {0, 1} and move ∈ {Stay,N, S,W,E}. Actions
within this set of 10 are removed from consideration if they
are impossible in state (i, h), such as moving in a direction
blocked by a wall, or collecting a new object when the robot
is already holding one.

Since every object must be brought home before new ones
are collected, the robot must be careful not to waste time
carrying low-valued objects. The goal is to maximize time
average reward, equivalent to minimizing C0 where: C0(t) =
−WLocation(t)(t)1collect(t); 1collect(t) is a binary variable that
is 1 if and only if the robot collects an object at time t. For this
example, the transition probability functions p(i,h),(j,h′)(·) are
binary valued and depend only on Ai,h(t), so the next state
(j, h′) ∈ S is determined by the current state and action. This
example has k = 0, so there are no additional cost constraints
Cl ≤ 0. Our technical report [2] also considers an additional
time average power constraint.

Let r∗ denote the optimal time average reward that can
be achieved, considering all decision strategies. The value
r∗ (and the optimal strategy) depends on the distribu-
tion of W (t) rather than just its mean value E [W (t)] =
(E [W1(0)] , . . . ,E [W20(0)]). It is not possible to approxi-
mately learn the full distribution in a timely manner. Some-
thing more efficient must be done. Further, it is not obvious
how to achieve r∗ even if the distribution were fully known.

B. Comparing against distribution-aware strategies
To illuminate the structure of the robot problem, consider

the following distribution on W (t): Entries of W (t) are mutu-
ally independent; W1(t) = 0 surely (no object appears at the
home location); for i ∈ {2, . . . , 20}, Wi(t) = Bi(t)Ri(t) with
Bi(t) ∼ Bern(1/2) being 1 if and only if an object appears in
cell i on slot t, Ri(t) is the reward of the object that appears;
R9(t) ∼ Unif[0, 20], R16(t) ∼ Unif[0, 4], Ri(t) ∼ Unif[0, 1]
for i ∈ {2, . . . , 20} \ {9, 16}. With these parameters, the most
valuable objects tend to appear in location 9, which is the
most difficult location to reach (see Fig. 1). The second most
valuable location is 16, while all other locations tend to have
low valued objects.

In the algorithm of our paper, the robot must learn to
return home as quickly as possible after it collects an object.
However, it is useful to compare performance of our algorithm
against heuristic strategies that have a frame-based renewal
structure and that are fine tuned with knowledge of the prob-
lem structure and probability distributions. Several heuristics
are considered in our technical report [2], we describe one
below (called “heuristic 2”).

Heuristic 2: Fix a parameter θ ∈ [0, 20); Starting from
location 1, move to location 9 over any path that takes exactly
10 steps (ignoring all rewards along the way); stay in location
9 until we see an object with value W9(t) > θ; collect this
and return home using any 10-step path. By renewal-reward
theory, the time average reward is

r =
1
2 (θ + 20)

19 + 40
20−θ

= 0.66791

where the numerical value is obtained by maximizing over
θ ∈ [0, 20), achieved at θ∗ = 12.690.

With this reward distribution, it is desirable to visit the hard-
to-get location 9 to obtain higher-valued rewards. It is not clear
whether or not Heuristic 2 is optimal. However, our simulated
results for the algorithm of this paper, implemented online over
106 time slots, yields a time average reward in a virtual system
of r = 0.6672, and in the actual system of r = 0.6604 (the
concept of virtual and actual systems is made apparent when
the algorithm is presented). This suggests that Heuristic 2 is
either optimal or near optimal. It also suggests that our online
algorithm learns to visit home so it can refresh its Hold(t)
state, learns to ignore low-valued objects, learns the shortest
paths to and from location 9, learns near-optimal thresholding
rules, all without knowing the distribution of the rewards. The
reported values 0.6672 and 0.6604 for our algorithm are time
averages over t ∈ {0, . . . , 106}, so these averages include the
relatively small rewards earned early on when the robot is just
starting to learn efficient behavior.
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C. Prior work

Our paper characterizes optimality of the stochastic problem
in terms of a deterministic and nonconvex problem (8)-(12).
This deterministic problem is reminiscent of linear program-
ming representations of optimality for simpler Markov deci-
sion problems that do not have the opportunistic scheduling as-
pect and that have finite state and action sets (see, for example,
[3][4][5]). In principle, our nonconvex problem (8)-(12) can be
transformed into a convex problem by a nonlinear change of
variables similar to methods for linear fractional programming
in [6][7]. The work [7] uses the nonlinear transformation for
offline computation of an optimal Markov decision policy.
However, the approaches in [6][7] do not help for our context
because: (i) The deterministic problem (8)-(12) uses abstract
and unknown sets Γi that make the resulting convex problem
complicated; (ii) We seek an online solution with desirable
time averages, and time averages are not preserved under
nonlinear transformations. Classical descriptions of optimality
for dynamic programming and Markov decision problems with
general Borel spaces are in [8][9][10].

Our paper uses a classical Lyapunov drift technique pio-
neered by Tassiulas and Ephremides for stabilizing queueing
networks [11][12]. Specifically, we use an extended drift-plus-
penalty method that incorporates a penalty function to jointly
minimize time average cost subject to stability of certain
virtual queues [1]. Such methods have been extensively used
for opportunistic scheduling in data networks with unknown
arrival and channel probabilities [13][14][15]. Other oppor-
tunistic scheduling approaches are stochastic Frank-Wolfe
methods [16][17][18], fluid model techniques [19], and related
dual and primal-dual approaches [20][21][22][23].

The drift-plus-penalty method was used to treat Markov
decision problems (MDPs) with an opportunistic scheduling
aspect in [24][25]. The work [24] is the most similar to
the current paper. That work uses drift-plus-penalty theory
on a virtual system. However, the algorithm that runs on
the virtual system requires knowledge of certain max-weight
functionals that depend on unknown probability distributions.
For this, it estimates the functionals by sampling over a
window of past W (t) samples (see also [26]). This slows
down learning time and makes a precise convergence analysis
difficult. In contrast, the current paper develops a new layered
stochastic optimization technique that operates online, on a
single timescale, and does not require averaging over a window
of past samples.

Related problems of robot navigation with problem struc-
tures different from ours are in [27][28][29][30]. Online MDPs
are treated in [31][32][33][34]. The work [31] treats a known
transition probability model but adversarial costs that are
revealed after a decision is made. An O(

√
T ) regret algorithm

is developed using online convex programming and a quasi-
stationary assumption on the Markov chain. The model is
extended in [32] to allow time varying constraint costs and
coupled multi-chains, again with O(

√
T ) regret, see also a re-

cent treatment in [33]. MDPs where transition probabilities are
allowed to vary slowly over time are considered in [35]. The
above works have a different structure from the current paper

and do not have an opportunistic learning aspect. Also, the
works [31][32][33] take a 2-timescale approach and transform
the decision variables to a vector in a “policy class,” which
requires each decision to solve a linear program associated
with a stationary distribution for a certain “time-t” MDP. In
contrast, the current paper operates on one timescale and uses
an easier “max-weight” type decision on every slot.

A shortest path problem with random context variables,
similar to our opportunistic variables W (t), is treated in [34]
(see also [36] for context-based shortest paths with unknown
but unchanging contexts). The work [34] provides a Dijkstra-
based algorithm when distributions are known, and devel-
ops Thompson sampling and reinforcement learning methods
when the distribution is unknown. The works [36][34] treat
problems with structure different from ours and do not treat
time average cost constraints.

D. Our contributions

Similar to [24], our paper focuses on a virtual system.
However, our virtual system has a simpler and more direct
structure. We develop an algorithm where the virtual system
observes the current W (t) and chooses a contingency action
Ai(t) for each i ∈ S . Equivalence between virtual and
actual systems is enforced by imposing time averaged global
balance constraints. Our algorithm uses a single timescale and
a novel layered structure and, unlike [24], does not require
estimation over a window of past samples. This enables ex-
plicit performance guarantees for time average expected cost.
Specifically, for any desired ε > 0, we show the virtual system
achieves within O(ε) of optimality with convergence time
1/ε2. The complexity and convergence time are independent
of the dimension of W (t). This virtual algorithm also provides
a simple online algorithm for the actual system. We show that
for all time t, the actual and virtual systems have the same
conditional transition probability and conditional expected
cost given the current state. Simulations show the two systems
also match in their unconditional costs. The resulting algorithm
is simple and operates online with no training.

II. SYSTEM MODEL

Fix integers n > 0, k ≥ 0. The basic states are S =
{1, . . . , n}. Let cmax bound the magnitude of all costs:

|Cl(t)| ≤ cmax ∀l ∈ {0, . . . , k}, t ∈ {0, 1, 2, . . .}

For each i ∈ S, let (Ai,Gi) be a Borel space that is used
for the actions Ai(t) when S(t) = i. For example, Ai can
be any nonempty Borel subset of Rki for some positive
integer ki, with Gi being its standard Borel sigma algebra.
Let (W,GW ) be any measurable space that is used for the
random elements W (t). Define measurable cost and transition
probability functions of the form

ci,l :W ×Ai → [−cmax, cmax]

pi,j :W ×Ai → [0, 1]

for i, j ∈ S and l ∈ {0, . . . , k}. The pi,j functions satisfy∑n
j=1 pi,j(w, a) = 1 ∀i ∈ S, w ∈ W, a ∈ Ai
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A. Probability space

The probability space is (Ω,F , P ). Let {W (t)}∞t=0,
{U(t)}∞t=0, {Ũ(t)}∞t=−1 be mutually independent, where
• {W (t)}∞t=0 are i.i.d. random elements in W .
• {U(t)}∞t=0 are i.i.d. Unif[0, 1] (generated in software at

the controller to enable randomized actions).
• {Ũ(t)}∞t=−1 are i.i.d. Unif[0, 1] (generated by “nature” to

determine state transitions from S(t) to S(t+ 1)).
Let {S(t)}∞t=0 be the sequence of basic states. Fix an initial

state s0 ∈ S and assume S(0) = s0 surely. Define H(0) = 0
and for t ∈ {1, 2, 3, . . .} define the history H(t) by

H(t) =

(S(0), ..., S(t− 1),W (0), ...,W (t− 1), U(0), . . . , U(t− 1))

Define DH(t) as the set of possible values of H(t). Let GH(t)
be the product sigma algebra on DH(t).

B. Control policies

A causal and measurable policy is a sequence of measurable
functions {ht}∞t=0 of the type:

ht :W × [0, 1]×DH(t)→ A

where A = ×ni=1Ai and ht = (ht,1, . . . , ht,n). These specify
A(t) = (A1(t), . . . , An(t)) for each t ∈ {0, 1, 2, . . .} by

Ai(t) = ht,i(W (t), U(t), H(t)) ∀i ∈ S (6)

One can view U(t) as a random number generated by software
at the controller at the start of each slot t. A causal and mea-
surable policy is said to be memoryless if it does not depend
on H(t), so A(t) = xt(W (t), U(t)) for some measurable
functions xt :W × [0, 1]→ A for t ∈ {0, 1, 2, . . .}.

C. State transitions

Define P as the probability simplex:

P = {(q1, . . . , qn) :
∑n
i=1 qi = 1, qi ≥ 0 ∀i ∈ {1, . . . , n}}

For i ∈ {1, . . . , n} define Pi(t) ∈ P by

Pi(t) = [pi,1(W (t), A(t)), . . . , pi,n(W (t), A(t))]

Given (S(t),W (t), A(t), Ũ(t)), the next state S(t + 1) is
(measurably) chosen according to distribution PS(t)(t) using
Ũ(t) as an independent random seed.

III. OPTIMALITY

A. The sets Γi

Fix i ∈ S . Let Xi be the collection of all measurable
functions xi :W × [0, 1]→ Ai. Define

I = {(l, j) : l ∈ {0, 1, ..., k}, j ∈ S}

Define gi :W ×A → R2|I| by

gi(w, a) = (ci,l(w, a); pi,j(w, a))(l,j)∈I ∀w ∈ W, a ∈ Ai
For notational simplicity, define W = W (0), U = U(0).
Then W and U are independent and U ∼ Unif[0, 1]. For
each xi ∈ Xi, the random vector gi(W,xi(W,U)) is bounded

and has finite expectation. Its expectation is a vector of
conditional expected costs and transition probabilities for a
slot t, given that S(t) = i and a memoryless control action
Ai(t) = xi(W (t), U(t)) is taken. Define Γi ⊆ R2|I| by

Γi = {E [gi(W,xi(W,U))] : xi ∈ Xi} (7)

Define Γi as the closure of set Γi. It can be shown that Γi is
compact and convex [2].

B. Optimal cost

Consider a deterministic optimization with decision vari-
ables πi, ci,l, pi,j for i, j ∈ S and l ∈ {0, . . . , k}:

Minimize:
∑
i∈S

πici,0 (8)

Subject to: πj =
∑
i∈S

πipi,j ∀j ∈ S (9)∑
i∈S

πici,l ≤ 0 ∀l ∈ {1, . . . , k} (10)

(π1, . . . , πn) ∈ P (11)

((ci,l); (pi,j)) ∈ Γi ∀i ∈ S (12)

This problem (8)-(12) is nonconvex due to the multiplication
of variables in (8), (9), (10). The problem is said to be feasible
if it is possible to satisfy the constraints (9)-(12). Assuming
feasibility, define c∗0 as the infimum objective value in (8)
subject to the constraints (9)-(12). The next two results are
proven in [2].

Theorem 1: (Converse) Suppose the stochastic problem (3)-
(5) is feasible when s0 ∈ S . Then the deterministic problem
(8)-(12) is also feasible. Further, if S(0) = s0 surely and if
{A(t)}∞t=0 are causal and measurable control actions of the
form (6) that satisfy the constraints (4)-(5) then

lim infT→∞
1
T

∑T−1
t=0 E [C0(t)] ≥ c∗0 (13)

Theorem 2: (Achievability) Suppose Γi is a closed set for
each i ∈ S. If the deterministic problem (8)-(12) is feasible,
there is an initial state s0 ∈ S for which the stochastic problem
(3)-(5) is feasible. Further, there exists a measurable function
x : W × [0, 1] → A such that when S(0) = s0 surely,
using the memoryless actions A∗(t) = x(W (t), U(t)) for
t ∈ {0, 1, 2, . . .} yields costs that satisfy

limT→∞
1
T

∑T−1
t=0 E [C∗0 (t)] = c∗0

limT→∞
1
T

∑T−1
t=0 E [C∗l (t)] ≤ 0 ∀l ∈ {1, . . . , k}

The assumption that sets Γi are closed is crucial for exis-
tence of a single memoryless action function c :W× [0, 1]→
A. A counter-intuitive example by Blackwell in [37] shows
that memoryless actions are insufficient for systems defined
on Borel sets with nonBorel projections, see also [38].

Theorem 2 requires a proper choice of s0 ∈ S. Specifically,
the memoryless action induces a homogeneous discrete time
Markov chain with transition probabilities P = (Pij) over
i, j ∈ S, and s0 should be chosen as any state in a desirable
communicating class. The transition probability matrix P can
also have undesirable communicating classes over which the
global balance equations are satisfied but optimal cost is not
achieved. Our simulations of the robot example in [2] show
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these undesirable communicating classes can arise in certain
cases when it is optimal to restrict the robot to a small subset
of locations (so an “irreducible” type property fails). The
virtual system is unaffected by this issue. However, the actual
system can get trapped in an undesirable communicating class.
Fortunately, this situation is easy to detect and a simple online
fix is discussed in [2] that maintains a close match between
virtual and actual system in all simulations.

C. Lagrange multipliers

While problem (8)-(12) is nonconvex, it can be shown that
the set of all vectors of the form

(π; (πici,l)i∈S,l∈{0,...,k}; (πipij)i,j∈S) (14)

for some values π = (π1, . . . , πn), ci,l, pi,j that satisfy

π ∈ P (15)

((ci,l); (pi,j)) ∈ Γi ∀i ∈ S (16)

is a convex set. Therefore, the following additional Lagrange
multiplier assumption is mild.

Assumption 1: (Lagrange multipliers) Problem (8)-(12) is
feasible with optimal objective c∗0. There are real numbers
µl ≥ 0 for l ∈ {0, . . . , k} and λj ∈ R for j ∈ S such that∑
i∈S

πici,0 +
∑
j∈S

λj

(
πj −

∑
i∈S

πipi,j

)
+

k∑
l=1

µl

(∑
i∈S

πici,l

)
≥ c∗0

for all (π; (ci,l); (pi,j)) that satisfy (15)-(16).
In [2] it is shown that Assumption 1 implies that for any

random element W : Ω → W with the same distribution as
W (0), any random element π : Ω → P that is independent
of W , and any random element A : Ω → A with arbitrary
dependence on (π,W ) we have∑
i∈S

E [πici,0(W,Ai)] +
∑
j∈S

λjE

[
πj −

∑
i∈S

πipi,j(W,Ai)

]

+

k∑
l=1

µl
∑
i∈S

E [πici,l(W,Ai)] ≥ c∗0 (17)

IV. ALGORITHM DEVELOPMENT

A. K-L divergence

Define Po ⊆ P by

Po = {(π1, . . . , πn) :
∑n
i=1 πi = 1, πi > 0 ∀i}

Define D : P × Po → R as the Kullback-Leibler (K-L)
divergence function:

D(p; q) =

n∑
i=1

pi log(pi/qi) ∀p ∈ P, q ∈ Po

where log(·) denotes the natural logarithm. It is well known
that D(·) is a nonnegative function that satisfies

D(p; (1/n, . . . , 1/n)) ≤ log(n) ∀p ∈ P (18)

D(p; q) ≥ 1

2
||p− q||21 ∀p ∈ P, q ∈ Po (19)

where ||x||1 =
∑n
i=1 |ci|. Inequality (19) is the Pinsker

inequality. The following pushback lemma is standard
[39][40][41]:

Lemma 1: (Pushback) Fix q ∈ Po, α ≥ 0. Let A ⊆ P be a
convex set and f : A→ R a convex function. Consider:

Minimize: f(p) + αD(p; q) (20)
Subject to: p ∈ A (21)

If popt solves (20)-(21), and if popt ∈ Po, then for all p ∈ A:

f(popt) + αD(popt; q) ≤ f(p) + αD(p; q)− αD(p, popt)

B. Time averaged problem
The algorithm observes W (t) and makes contingency ac-

tions Ai(t) ∈ Ai for all i ∈ S and t ∈ {0, 1, 2, . . .}. It
introduces a decision vector π(t) = (π1(t), . . . , πn(t)) ∈ P
that intuitively represents the state probability on a virtual
system where we can choose any state in S on each new slot.
The goal is to make these decisions over time to solve:

Minimize:
∑
i∈S

πi(t)ci,0(W (t), Ai(t)) (22)

Subject to:

πj(t)−
∑
i∈S

πi(t)pi,j(W (t), Ai(t)) = 0 ∀j ∈ S (23)

∑
i∈S

πi(t)ci,l(W (t), Ai(t)) ≤ 0 ∀l ∈ {1, . . . , k} (24)

π(t) ∈ P ∀t ∈ {0, 1, 2, ...} (25)
Ai(t) ∈ Ai ∀i ∈ S, t ∈ {0, 1, 2, ...} (26)
π(t) and W (t) are independent for each t (27)

where the overbar notation in (22), (23), (24) denotes a
limiting time average expectation (assuming existence for
simplicity). The above problem is a time averaged version of
the deterministic problem (8)-(12). Specifically, the constraints
(23)-(25) directly relate to the deterministic constraints (9)-
(11). The constraints (23) shall be called the global balance
constraints. These play a crucial role in the learning process.
The constraints (26), (27) together correspond to the deter-
ministic constraint (12). Constraint (27) is a nonstandard and
subtle constraint that prevents π(t) from being influenced by
the realization of W (t). Without (27), the decisions for π(t)
would be biased towards those states for which there is a
favorable realization of W (t), which might not correspond
to a solution that can be achieved on the actual system. Our
method of enforcing (27) ensures an algorithm complexity that
depends only on the size of the finite set S (which is n), rather
than the size of the (possibly infinite) set S ×W .

C. Virtual queues
For t ∈ {0, 1, 2, . . .} define the n× 1 vector G0(t) by

G0(t) = (c1,0(W (t), A1(t)), . . . , cn,0(W (t), An(t)))

Define the n×n matrix Y (t) = (Yi,j(t)) and the n×k matrix
G(t) = (Gi,l(t)) by

Yi,j(t) = 1{i=j} − pi,j(W (t), Ai(t)) ∀i, j ∈ S (28)
Gi,l(t) = ci,l(W (t), Ai(t)) ∀i ∈ S, l ∈ {1, . . . , k} (29)
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where 1{i=j} is 1 if i = j, and 0 else. For initialization, define
G0(−1) = −(cmax, . . . , cmax), Y (−1) = 0, G(−1) = 0.

Using the virtual queue technique of [1] to enforce the
constraints (23), (24), define processes Qj(t) and Zl(t) with
initial conditions Qj(0) = 0, Zl(0) = 0 and update equation
for t ∈ {0, 1, 2, . . .} given for j ∈ S and l ∈ {1, ..., k} by

Qj(t+ 1) = Qj(t) + π(t)>Y (t− 1)yj (30)

Zl(t+ 1) = max
[
Zl(t) + π(t)>G(t− 1)gl, 0

]
(31)

where π>(t) = (π1(t), . . . , πn(t)) is a row vector; yj ∈ Rn is
the unit vector that is 1 in entry j and 0 in all other entries;
gl ∈ Rk is the unit vector that is 1 in entry j and 0 in all
other entries. In particular, Y (t− 1)yj selects the jth column
of matrix Y (t−1), while G(t−1)gl selects the lth column of
matrix G(t− 1). Technical report [2] shows that maintaining
small virtual queues enforces constraints (23)-(24).

D. Lyapunov drift

For t ∈ {0, 1, 2, . . .} define

Q(t) = (Q1(t), . . . , Qn(t)) , Z(t) = (Z1(t), . . . , Zk(t))

and J(t) = (Q(t);Z(t)). Define

L(t) = 1
2 ||J(t)||2 = 1

2

∑n
j=1Qj(t)

2 + 1
2

∑k
l=1 Zl(t)

2

Define ∆(t) = L(t+ 1)− L(t).
Lemma 2: For all t ∈ {0, 1, 2, . . .} and all choices of the

decision variables we have

∆(t) ≤ b1 + π(t)>Y (t− 1)Q(t) + π(t)>G(t− 1)Z(t)

where b1 =
n+kc2max

2 .
Proof: The result follows by squaring (30) and (31) and

using max[z, 0]2 ≤ z2 for z ∈ R, which is a standard
Lyapunov optimization technique (see, for example, [1]).

Fix V > 0, α > 0 as parameters to be sized later. From
Lemma 2 we have

∆(t) + V π(t)>G0(t− 1) + αD(π(t);π(t− 1))

≤ b1 + π(t)> [V G0(t− 1) + Y (t− 1)Q(t) +G(t− 1)Z(t)]

+ αD(π(t);π(t− 1)) (32)

The following algorithm uses a layered structure to make the
right-hand-side of the above expression small.

E. Online algorithm

Initialize:

Qj(−1) = Yi,j(−1) = 0 ∀i, j ∈ S
Zl(−1) = Gi,l(−1) = 0 ∀l ∈ {1, . . . , k}, i ∈ S
G0(−1) = −(cmax, . . . , cmax)

π(−1) = (1/n, 1/n, ...., 1/n) ∈ P

On each slot t ∈ {0, 1, 2, . . .} do:
• Layer 1: Ignore W (t). Choose π(t) ∈ P to minimize

π(t)> [V G0(t− 1) + Y (t− 1)Q(t) +G(t− 1)Z(t)]

+ αD(π(t);π(t− 1)) (33)

This has the following solution π(t) ∈ Po:

πi(t) =
πi(t− 1) exp(−Mi(t)/α)∑n
j=1 πj(t− 1) exp(−Mj(t)/α)

∀i ∈ S

where Mi(t) is defined for i ∈ S by

Mi(t)

= y>i (V G0(t− 1) + Y (t− 1)Q(t) +G(t− 1)Z(t))

where yi ∈ Rn is the unit vector that is 1 in entry i and
0 in all other entries.

• Layer 2: Observe W (t). For each i ∈ S choose Ai(t) ∈
Ai to minimize:1

V ci,0(W (t), Ai(t)) +
∑k
l=1 Zl(t)ci,l(W (t), Ai(t))

−
∑n
j=1Qj(t)pi,j(W (t), Ai(t)) (34)

• Virtual queue update by (30) and (31).
• Actual system implementation: Observe the actual system

state S(t) ∈ S. Apply action AS(t).

F. Layered analysis

Throughout, assume the sets Γi are closed for all i ∈ S (so
Γi = Γi) and the problem (8)-(12) is feasible with optimal
solution (π∗; (c∗i,l); (p∗i,j)) where π∗ ∈ P and

((c∗i,l); (p∗i,j))(l,j)∈I ∈ Γi ∀i ∈ S (35)

For each i ∈ S, by definition of Γi, there is a function xi ∈ Xi
such that defining A∗i (t) = xi(W (t), U(t)) yields

E [ci,l(W (t), A∗i (t))] = c∗i,l (36)

E [pi,j(W (t), A∗i (t))] = p∗i,j (37)

for all t ∈ {0, 1, 2, . . .}, all l ∈ {0, . . . , k}, j ∈ S.
Lemma 3: For all t ∈ {0, 1, 2, . . .} we have

E
[
∆(t) + V π(t)>G0(t− 1) + αD(π(t);π(t− 1))

]
≤ b+ V c∗0 + αE [D(π∗;π(t− 1))−D(π∗;π(t))] (38)

where b = (3/2)(n+ kc2max).
Proof: Fix t ∈ {0, 1, 2, . . .}. For each i ∈ S , the layer 2

decision chooses Ai(t) ∈ Ai to minimize (34) and so

V ci,0(W (t), Ai(t)) +

k∑
l=1

Zl(t)ci,l(W (t), Ai(t))

−
n∑
j=1

Qj(t)pi,j(W (t), Ai(t))

≤ V ci,0(W (t), A∗i (t)) +

k∑
l=1

Zl(t)ci,l(W (t), A∗i (t))

−
n∑
j=1

Qj(t)pi,j(W (t), A∗i (t))

where A∗i (t) is any other (possibly randomized) decision
in Ai. Multiplying the above by π∗i , summing over i ∈

1For simplicity we assume a minimizer Ai(t) ∈ Ai exists. This holds
when Ai is a finite set. More generally we can use a δ-approximation to the
infimum with insignificant impact on our results.
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{1, . . . , n}, and adding
∑n
j=1Qj(t)π

∗
j to both sides gives

(using definitions of Y (t) and G(t) in (28) and (29)):

π∗> [V G0(t) +G(t)Z(t) + Y (t)Q(t)]

≤ V
n∑
i=1

π∗i ci,0(W (t), A∗i (t))

+

k∑
l=1

Zl(t)

n∑
i=1

π∗i ci,l(W (t), A∗i (t))

+

n∑
j=1

Qj(t)

[
π∗j −

n∑
i=1

π∗i pi,j(W (t), A∗i (t))

]
(39)

For i ∈ S, let A∗i (t) = xi(W (t), U(t)) be the action that is
independent of history H(t) (hence independent of the virtual
queues) that yields (36)-(37). Taking expectations of (39) gives

π∗>E [V G0(t) +G(t)Z(t) + Y (t)Q(t)]

≤ V
n∑
i=1

π∗i c
∗
i,0 +

k∑
l=1

Zl(t)

n∑
i=1

π∗i c
∗
i,l

+

n∑
j=1

Qj(t)

[
π∗j −

n∑
i=1

π∗i p
∗
i,j

]

By definition of a solution to (8)-(12) we have
∑n
i=1 π

∗
i c
∗
i,l ≤

0, π∗j =
∑n
i=1 π

∗
i p
∗
i,j , and c∗0 =

∑n
i=1 π

∗
i c
∗
i,0 and so

π∗>E [V G0(t) +G(t)Z(t) + Y (t)Q(t)] ≤ V c∗0 (40)

By definition of G0(−1) = −(cmax, . . . , cmax), Q(−1) = 0,
Z(−1) = 0, inequality (40) also holds for time t = −1.

The layer 1 decision chooses π(t) in the convex set P to
minimize αD(π(t);π(t − 1)) plus a linear function of π(t),
so by the pushback lemma (Lemma 1):

π(t)> [V G0(t− 1) + Y (t− 1)Q(t) +G(t− 1)Z(t)]

+ αD(π(t);π(t− 1))

≤ π∗> [V G0(t− 1) +G(t− 1)Z(t) + Y (t− 1)Q(t)]

+ αD(π∗;π(t− 1))− αD(π∗;π(t))

Define b2 = kc2max + n. Since |Zl(t) − Zl(t − 1)| ≤ cmax,
|Gi,l(t− 1)| ≤ cmax, |Qj(t)−Qj(t− 1)| ≤ 1, and |Yi,j(t−
1)| ≤ 1 we obtain from the previous inequality

E
[
π(t)> [V G0(t− 1) + Y (t− 1)Q(t) +G(t− 1)Z(t)]

]
+ αE [D(π(t);π(t− 1))]

≤ b2 + αE [D(π∗;π(t− 1))−D(π∗;π(t))]

+ π∗>E {V G0(t− 1) +G(t− 1)Z(t− 1)

+Y (t− 1)Q(t− 1)}
(a)

≤ b2 + V c∗0 + αE [D(π∗;π(t− 1))−D(π∗;π(t))]

where (a) uses the fact that (40) holds for all t ∈
{−1, 0, 1, 2, . . .}. Adding b1 to both sides, defining b = b1+b2,
and substituting into inequality (32) proves the result.

Now fix ε > 0 and define α = 1/ε2, V = ρ/ε for some
positive constant ρ (such as ρ = 1). Details in [2] use the
above lemma (mainly by summing it over t) to prove that for

all T ≥ 1/ε2, the virtual system reaches an O(ε)-approximate
solution, meaning that for all l ∈ {1, ..., k}:

1
T

∑T−1
t=0 E

[
π(t)>G0(t)

]
≤ c∗0 +O(ε)

1
T

∑T−1
t=0 E

[
π(t)>G(t)gl

]
≤ O(ε)

and all global balance equations are within O(ε) of being
satisfied. There, it is also shown that for all slots t, the
conditional transition probabilities and costs, given S(t) = i,
match across the virtual and actual systems. For unconditional
probability and cost, simulations in [2] for the robot example
show an odd behavior related to undesirable communicating
classes that arise in some rare cases where irreducibility fails.
This situation is easy to detect and fix online: If the robot
spends a significant fraction of time in an actual state that
the virtual system says should have near-zero probability, the
robot takes a shortest path to home. This happens infrequently
and, with this simple fix, the unconditional probabilities and
rewards are close between virtual and actual systems across
a wide range of parameter settings (see Fig. 2). Simulations
with time average cost constraints are also in [2].
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Fig. 2: Robot simulations for V = 5, α = 1000, T =
106. Distribution similar to Section I-B with the exception
R16(t) ∼ Unif[0, u] where u is a parameter in the x-axis.

V. CONCLUSION

This work extends the max-weight and drift-plus-penalty
methods of stochastic network optimization to opportunistic
Markov decision systems. The basic state variable S(t) can
take one of n values, but the full state (S(t),W (t)) is
augmented by a sequence of i.i.d. random vectors {W (t)} that
can be observed at the start of each slot t but have an unknown
distribution. The dimension of W (t) and the cardinality of
its set of possible values does not impact convergence or
complexity. An online algorithm that operates on a virtual
system is shown to reach an O(ε)-approximate solution with
convergence time O(1/ε2). The algorithm also acts online for
the actual system. Simulations show a close match between
state probabilities and costs in the virtual and actual systems.
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