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Abstract

This collection of notes provides a brief review of Markov chain theory. It focuses attention on expected travel times and
applications to opportunistic routing in wireless networks. The exercises are provided for your own interest.

I. INTRODUCTION TO EXPECTED TRAVEL TIMES
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Fig. 1. A simple travel time example with four locations. Travel time between the locations is shown.

We start at home and want to get to school. There are three different paths we can take, depending on where we go first:
• Path one: First go to the coffee shop, then go to school.
• Path two: First go to the store, then go to school.
• Path three: Go directly to school.

Every day we randomly take a path. We want to know the expected time to get to school. To more precisely formulate this
problem, represent the four different locations by integers {0, 1, 2, 3}:
• Location 0: home
• Location 1: coffee shop
• Location 2: store
• Location 3: school

The travel times between each location are shown in the graph of Fig. 1. For simplicity, the travel times are assumed to be
constant (not random). For example, from Fig. 1, we see that it takes 8 minutes to go from home to the coffee shop. Assume
this 8 minutes includes the time spent ordering coffee. From the coffee shop it takes another 20 minutes to get to school. Thus,
the total travel time over path one is 28 minutes. Likewise, total travel time for path two is 20 minutes, and the total travel
time for path three is 11 minutes.

Suppose we decide between paths 1, 2, 3 with probabilities p1, p2, p3, where p1 + p2 + p3 = 1 and pi ≥ 0 for i ∈ {1, 2, 3}.
Let T be the random time required to get to school. By the law of total expectation we have:

E [T ] = E [T |go to 1 next]︸ ︷︷ ︸
8+20

p1 + E [T |go to 2 next]︸ ︷︷ ︸
15+5

p2 + E [T |go to 3 next]︸ ︷︷ ︸
11

p3

For example, if p1 = p2 = p3 = 1/3 then E [T ] = 59/3 ≈ 19.667 minutes.

https://viterbi-web.usc.edu/~mjneely
https://viterbi-web.usc.edu/~mjneely/docs/markov-chains-travel-times.pdf
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Fig. 2. An extended example that adds the possibility of a 5 minute self-transition from home to home.

A. An extended problem

That was easy. Let’s extend the problem by considering the possibility of deciding to linger at home for 5 minutes with
probability p0. So, now assume we have probabilities p0, p1, p2, p3 that are nonnegative and sum to 1. This can be represented
by the picture in Fig. 2, where a self-transition from home to home is drawn. Further, assume that every time we self-transition
back to home, our memory is somehow erased and we again independently choose between the four options with probabilities
p0, p1, p2, p3. In particular, we might choose to self-transition to home 32 times before going to the coffee shop, then to school
(which would take 32(5) + 8 + 20 minutes). Again let T be the random time required to get to school. By the same idea as
before, we have:

E [T ] = E [T |go to 0 next] p0 + E [T |go to 1 next]︸ ︷︷ ︸
8+20

p1 + E [T |go to 2 next]︸ ︷︷ ︸
15+5

p2 + E [T |go to 3 next]︸ ︷︷ ︸
11

p3

The only remaining question is: What is the value of E [T |go to 0 next]? Given that we do a 5-minute self-transition, we know
that:

E [T |go to 0 next] = 5 + E [remaining time starting from 0]

Due to our lack of memory, the remaining time starting from 0 is distributed the same as the random time T itself! Thus:

E [remaining time starting from 0] = E [T ]

Substituting this gives:
E [T ] = (5 + E [T ])p0 + (8 + 20)p1 + (15 + 5)p2 + 11p3

The interesting thing is this: We have written an equation for E [T ] in terms of itself. Of course, once we have this equation,
there is no remaining challenge. Using basic algebra to solve for E [T ] gives:

E [T ] =
5p0 + 28p1 + 20p2 + 11p3

1− p0
For example, if p0 = p1 = p2 = p3 = 1/4, then E [T ] = 64/3 ≈ 21.333 minutes. General problems of this type can be solved
via the theory of discrete time Markov chains, as described in the remainder of these notes.

II. DISCRETE TIME MARKOV CHAINS

A. Describing a DTMC

Let Z(t) be a discrete time Markov chain (DTMC) defined over time slots t ∈ {0, 1, 2, . . .}. Recall that a DTMC Z(t) is
characterized by:1

• A state space Z , specifying the set of all possible states. Thus, Z(t) ∈ Z for all t ∈ {0, 1, 2, . . .}. Here we assume that
Z is a finite or countably infinite set.

• A transition probability matrix P = (Pij), where Pij = Pr[Z(t+ 1) = j|Z(t) = i] for all i ∈ Z and j ∈ Z .
The transition probabilities have the property that, for all i ∈ Z:∑

j∈Z
Pij = 1

1This implicitly assumes the DTMC Z(t) is time homogeneous, so that its transition probabilities Pij do not change with time. This is assumed throughout
the course unless otherwise stated.
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The Markov property of Z(t) guarantees that the future state is conditionally independent of the past, given the current state:

Pr[Z(t+ 1) = j|Z(t) = i, Z(t− 1) = z(t− 1), . . . , Z(0) = z(0)] = Pij

where the above holds for all integers t ≥ 0, all i ∈ Z , j ∈ Z , and all sequences (z(0), z(1), . . . , z(t− 1)) ∈ Zt. In order to
simulate the DTMC, we must specify either an initial condition Z(0), or a probability distribution on Z(0).

B. Evolution of the probabilities

Suppose that at time slot t ≥ 0 we know the probabilities Pr[Z(t) = i] for all i ∈ Z . This can be used to compute the
probabilities for slot t+ 1. Indeed, by the law of total probability, we have for all j ∈ Z:

Pr[Z(t+ 1) = j] =
∑
i∈Z

Pr[Z(t+ 1) = j|Z(t) = i]Pr[Z(t) = i]

=
∑
i∈Z

PijPr[Z(t) = i] (1)

where the final equality holds by the Markov chain definition. The equation (1) provides one equation for each j ∈ Z .
This evolution can be described with vector notation. Let ~π(t) = (πi(t))i∈Z be a row vector that specifies the probability

distribution for Z(t), so that for all i ∈ Z we have:

πi(t) = Pr[Z(t) = i]

The initial probability distribution is given as some probability vector ~π(0) (with nonnegative entries that sum to 1). If we
want Z(0) to be a certain initial state z0 (with probability 1), we use a probability vector ~π(0) of the form:

~π(0) = (0, 0, . . . , 0, 1, 0, . . . 0)

which is a vector with a single “1” in entry z0, and with 0s in all other entries.
With this vector notation, the equation (1) is written more concisely by multiplying the row vector ~π(t) by the matrix P .

That is, for all slots t ≥ 0:
~π(t+ 1) = ~π(t)P (2)

Iterating this equation gives:
• ~π(0) is given.
• ~π(1) = ~π(0)P .
• ~π(2) = ~π(1)P = ~π(0)P 2.
• ~π(3) = ~π(2)P = ~π(0)P 3.
• and on.

Thus, for all slots t ∈ {0, 1, 2, . . .} we have:
~π(t) = ~π(0)P t (3)

Exercise 1. Suppose ~π(0) = ~π, for some probability vector ~π that solves the equation ~π = ~πP . This equation is called the
stationary equation (also called the global balance equation). Prove that ~π(t) = ~π for all t ∈ {0, 1, 2, . . .}. Why do you think
the equation ~π = ~πP is called the “stationary equation”?

Exercise 2. Suppose Z is a finite state space with N states, so P is an N × N matrix. Recall that multiplying an N × N
matrix by another N ×N matrix requires N3 multiply-add operations, while multiplying the matrix by a row vector requires
N2 multiply-add operations. The initial probability distribution is ~π(0). We want to compute ~π(T ) for some time T > 0.

a) How many operations are required to compute ~π(T ) using equation (3)? That is, PT is computed by T − 1 separate
multiplications of a square matrix by a square matrix.

b) How many operations are required to compute ~π(T ) using equation (2)? Under what conditions is this approach simpler?
c) Suppose T = 2K for some positive integer K. Develop a technique for computing ~π(T ) that, for large K, is faster than

the answers in both (a) and (b). Consider your answer for K = 20 and N = 50.

Exercise 3. This exercise is open-ended.
a) Define an N -state Markov chain with a specific N × N transition probability matrix P (perhaps with N = 5). Use

Matlab to plot ~π(t) for slots t ∈ {0, 1, . . . , T}, for some specific initial condition and for some finite integer T that produces
a meaningful plot (so that both transient and long term behavior can be seen).

b) Repeat using a different initial condition.
c) Compare to a simulation of the system.
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III. EXPECTED TRAVEL TIMES FOR A MARKOV CHAIN

This section considers expected travel times in Markov chains, with applications to opportunistic routing in wireless networks.

A. Computing expected travel times

For simplicity, assume a finite state space Z = {1, 2, . . . , N} for some positive integer N ≥ 2. Fix state N as a destination
state. We are interested in the amount of time required to travel to state N . For each i ∈ {1, . . . , N − 1}, define Ti as the
random time required to travel from state i to state N in one particular simulation of the DTMC (assuming initial condition
Z(0) = i). Define Ti = ∞ if the simulation never reaches state N . Define TN = 0. If Z(0) = i and the DTMC eventually
reaches state N , its path from i to N has an integer number of hops. Thus, for all i ∈ {1, 2, . . . , N − 1}, the value Ti is either
a positive integer (since it takes at least one slot to travel to the destination) or is equal to ∞. Fix i ∈ {1, . . . , N − 1}. Then:

Ti =


1 + T̃1 with probability Pi1

1 + T̃2 with probability Pi2

· · · · · ·
1 + T̃N with probability PiN

(4)

where T̃j is defined as the random remaining time to travel to the destination state N , given that the first hop took us from
state i to state j. The random variable T̃j is only defined when the path from i to the destination visits state j on its first hop
(which happens with probability Pij). Each random variable T̃j has the same probability distribution as Tj . There is a subtlety
here. Why do we introduce additional notation T̃j , instead of just using Tj itself? The reason is that the random variable Tj
was defined from a particular instance of a simulation that starts in state j and ends in state N . This particular instance might
be different than the simulation associated with T̃j . Indeed, the simulation for T̃j is a portion of the same simulation that
defines Ti. This distinction is particularly important if we travel from state i back to state i on the first hop (which happens
with probability Pii). In this case, the correct equation is Ti = 1 + T̃i (with probability Pii). In particular, the conditional
distribution of Ti, given that the first hop travels back to state i, is different from the a-priori distribution of Ti. Without the
T̃i notation, one might be tempted to write the confusing (and incorrect) equation Ti = 1 + Ti (with probability Pii).

Given that T̃j exists, it has the same distribution as the a-priori distribution of Tj . Thus, we can write E
[
T̃j

]
= E [Tj ] for

all j ∈ {1, . . . , N}, and so from (4) we have (using E
[
T̃N

]
= E [TN ] = 0):

E [Ti] = 1 +

N−1∑
j=1

PijE [Tj ] ∀i ∈ {1, . . . , N − 1} (5)

The equation (5) says that the expected time to travel from state i to the destination is equal to 1 (for the first hop) plus
the expected residual time after the first hop. Indeed, one can define Ti = 1 + R, where R is the residual time, and so
E [Ti] = 1 + E [R]. The expected residual time can be computed via the law of total expectation:

E [R] =

N∑
j=1

E [R|first hop takes us to state j]Pij =

N−1∑
j=1

E [Tj ]Pij

Adding 1 to the above expression for E [R] gives an alternative derivation of equation (5).
Note that (5) specifies N − 1 linear equations for the N − 1 unknowns E [T1] ,E [T2] , . . . ,E [TN−1]. The equations (5) can

be written in vector form. Let E
[
~T
]
= (E [T1] , . . . ,E [TN−1]) be a column vector. The equations become:

E
[
~T
]
= ~1 + P̃E

[
~T
]

(6)

where P̃ is a truncation of P that removes the last row and column (producing an (N − 1)× (N − 1) matrix), and where ~1
is an (N − 1)× 1 column vector of all 1s. Let I be the (N − 1)× (N − 1) identity matrix. If I − P̃ is invertible, the unique
solution to (6) is:

E
[
~T
]
= (I − P̃ )−1~1

Fortunately, it can be shown that I − P̃ is invertible whenever the DTMC has a path of nonzero probability from each state
to state N . In particular, it can be shown that the following four conditions are equivalent (see Exercises 7, 8, 9):

(i) (I − P̃ ) is invertible.
(ii) The DTMC has a path of nonzero probability from each state i ∈ {1, . . . , N − 1} to the destination state N .
(iii) limn→∞ P̃n = (0).
(iv) E [Ti] <∞ for all i ∈ {1, . . . , N − 1}.
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Exercise 4. Devise a method for computing travel time variances V ar(Ti) for i ∈ {1, . . . , N − 1}.

Exercise 5. There are five computers, labeled {1, 2, 3, 4, 5}. A single file is randomly transferred between computers according
to a transition probability matrix (Pij). It takes time Sij to shift a file from computer i to computer j over link (i, j). The
(Pij) and (Sij) matrices are given below:

(Pij) =


0 1/3 1/3 1/3 0
1/2 0 1/4 1/4 0
1/5 0 0 3/5 1/5
1/4 1/4 1/4 0 1/4
0 0 0 0 1

 , (Sij) =


0 10 3 7 0
4 0 7 7 0
8 0 0 8 4
3 3 3 0 3
0 0 0 0 0


For example, starting at computer 1, the file can take a route 1→ 3→ 1→ 4→ 5, and this route has total time 3+8+7+3
and total probability (1/3)(1/5)(1/3)(1/4).

a) For each i ∈ {1, 2, 3, 4, 5}, define E [Ti] as the expected time to reach computer 5, given the file starts in computer i.
Note that E [T5] = 0. Write recursive equations for E [Ti] using E [Ti] =

∑5
j=1 E [Ti|next hop to j]Pij .

b) Compute E [T1].

Exercise 6. Consider a 5-state DTMC with transition probability matrix P = (Pij) as given in Exercise 5. We start in state 1.
a) What is the probability that we visit state 4 before state 5? Hint: For i ∈ {1, 2, 3, 4, 5} define qi as the probability we

visit state 4 before state 5, given we start in state i. Note that q4 = 1 and q5 = 0. Write linear equations for q1, q2, q3.
b) As a function of the matrix P , what is the probability that after 10 steps we are still not in state 5?

Exercise 7. ((iii) =⇒ (i)) Let A be a k×k matrix. Let I be the k×k identity matrix. We want to show that limn→∞An = (0)
implies I −A is invertible.

a) Suppose limn→∞An = (0) but I − A is not invertible. Use the fact that I − A has zero as an eigenvalue to reach a
contradiction.

b) Show that (I − A)(I + A+ A2 + ...+ An) = I − An+1. Argue that limn→∞An = (0) implies (I − A)−1 =
∑∞

i=0A
i

(where A0 is defined to be I). (See related proof in Appendix.)

Exercise 8. ((i) =⇒ (ii)) Suppose I − P̃ is invertible, where P̃ is the (N − 1) × (N − 1) matrix formed from the N ×N
transition probability matrix P as described above. Without loss of generality we assume state N is a trapping state, so
PN,N = 1 and the last row of the P matrix is

[0 0 0 · · · 0 1]

We want to show there is a path of nonzero probability from every state i ∈ {1, . . . , N − 1} to state N . We shall use the fact
that every finite state transition probability matrix P has at least one nonzero row vector π such that π = πP . Suppose there
is at least one state a ∈ {1, . . . , N − 1} that has no path of positive probability to state N (we reach a contradiction).

a) Let A ⊆ {1, ..., N} be the set of all states that have no path of positive probability to N . Let Ac be all other states. Note
that a ∈ A and N ∈ Ac so both A and Ac are nonempty. Argue that Pij = 0 whenever i ∈ A and j ∈ Ac.

b) Let k = |A| be the size of set A. Without loss of generality, reindex the states so A = {1, ..., k} and Ac = {k+1, ..., N}.
Define the k × k matrix Q as the submatrix of P with Qij = Pij for all i, j ∈ A. Argue that Q is a transition probability
matrix for a DTMC with state space A (in particular, argue that each row sums to 1). Hence, there is a nonzero row vector
q such that q = qQ. Conclude that there is a nonzero vector θ such that θ(I − P̃ ) = 0 so I − P̃ is not invertible.

Exercise 9. ((ii) =⇒ (iii)) Suppose the DTMC has a path of nonzero probability from every state to state N . Recall that N
is a trapping state so PN,N = 1.

a) Since N is a trapping state, argue that Pn
i,N ≤ P

n+1
i,N for all i ∈ {1, ..., N−1}, where Pn

i,j = P [Z(t+n) = j|Z(t) = i] is
equal to the (i, j) entry of the matrix Pn. This nondecreasing property implies limn→∞ Pn

i,N exists for all i ∈ {1, ..., N − 1}.
b) Let qi be the probability of traversing the highest-probability n-hop path from state i to state N . Explain why qi > 0

for all i ∈ {1, 2, ..., N − 1}. Let q = mini∈{1,...,N−1}{qi} and observe that q > 0. Fix i ∈ {1, ..., N − 1}. Explain why
P kn
i,N ≥ 1− (1− q)k for all k ∈ {1, 2, 3, ...}, and so limn→∞ Pn

i,N = 1.
c) Explain why P̃n → (0).
d) Explain why E [Ti] <∞ for all i ∈ {1, . . . , N − 1} (thus, (ii) =⇒ (iv)).
e) Write one sentence to explain why (iv) =⇒ (ii).

B. Applications to opportunistic routing

Consider a wireless network with N nodes. The network operates in discrete time with slots t ∈ {0, 1, 2, . . .}. Assume we
have a single packet at node 1 that must be transmitted over the network to eventually reach the destination node N . Each
transmission from a node i can be overheard by multiple other nodes. Let qij be the probability that a packet transmitted at
node i is successfully received at node j. For simplicity, assume the receptions are independent at each node and across time.
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Thus, if node 1 transmits, the probability that both nodes 2 and 3 successfully receive is q12q13. It is convenient to assume
that qii = 1 for all i ∈ {1, . . . , N}. Thus, if a node i transmits and no other nodes successfully receive the transmission, then
node i must try again on the next slot.

Assume that all nodes provide ACK/NACK feedback at the end of each transmission (absence of an ACK is considered to
be a NACK). At the end of each time slot, the transmitting node observes the successful receivers and makes an opportunistic
routing decision about who takes the packet next. It can either choose itself (so that it tries again on the next slot) or can pass
responsibility to one other node that successfully received on that slot. Once responsibility is shifted, the new node becomes
the transmitter, makes a transmission, and then makes similar decisions. Thus, there is one and only one node responsible for
the packet at any given time. The packet completes its travel once it reaches the destination node N .

Exercise 10. This exercise is open-ended. There are several types of questions that can be asked in this framework, such as:
a) Suppose the routing decision is made according to the closest-to-destination metric (as in the GeRaF heuristic of [1]).

Compute the expected travel time.
b) Give an example network for which the closest-to-destination metric gives infinite average travel time, while another

simple algorithm would give finite average travel time.
c) Introduce average energy into the picture.
d) Try to develop an algorithm with optimal average travel time [2][3][4][5] (see also heuristics in [6][7] and optimal

treatment of multi-packet flows in [8]).

APPENDIX

Lemma 1. Let A be a square matrix. Let {Bn}∞n=1 be a sequence of square matrices (the same size as A) such that
limn→∞ABn = I , where I is the identity matrix. Then A is invertible, Bn has a limit, and limn→∞Bn = A−1.

Proof. Suppose A is not invertible (we reach a contradiction). Then there is a nonzero row vector v such that vA = 0. Thus,
for all n ∈ {1, 2, 3, . . .}:

vABn = 0Bn = 0

Hence, vABn = 0 for all n. Taking a limit as n→∞ gives vI = 0, and so v = 0 (a contradiction). Thus, A is invertible. It
follows that Bn = A−1(ABn) for all n. Taking a limit gives limn→∞Bn = A−1.
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