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Delay Analysis for Maximal Scheduling with Flow
Control in Wireless Networks with Bursty Traffic

Michael J. Neely

Abstract—We consider the delay properties of one-hop net-
works with general interference constraints and multiple traffic
streams with time-correlated arrivals. We first treat the case when
arrivals are modulated by independent finite state Markov chains.
We show that the well known maximal scheduling algorithm
achieves average delay that grows at most logarithmically in
the largest number of interferers at any link. Further, in the
important special case when each Markov process has at most two
states (such as bursty ON/OFF sources), we prove that average
delay is independent of the number of nodes and links in the
network, and hence is order-optimal. We provide tight delay
bounds in terms of the individual auto-correlation parameters
of the traffic sources. These are perhaps the first order-optimal
delay results for controlled queueing networks that explicitly
account for such statistical information. Our analysis treats cases
both with and without flow control.

Index Terms—Queueing analysis, Markov chains, Flow Control

I. INTRODUCTION

This paper derives average delay bounds for one-hop
wireless networks that use maximal scheduling subject to
a general set of interference constraints. It is known that
maximal scheduling algorithms are simple to implement and
can support throughput within a constant factor of optimality.
Our analysis shows that this type of scheduling also yields
tight delay guarantees. In particular, when arrival processes
are modulated by independent Markov processes, we show that
average delay grows at most logarithmically in the number of
nodes in the network. We then obtain an improved delay bound
in the important special case when the individual Markov
chains have at most two states (such as bursty ON/OFF
sources). Average delay in this case is shown to be independent
of the network size, and hence is order-optimal.

Specifially, we consider a network with N nodes and L
links. Let N and L denote the node and link sets:

N M={1, 2, . . . , N} , LM={1, 2, . . . , L}

Each link l ∈ L represents a directed communication channel
from one node to another, and we define tran(l) and rec(l) to
be the corresponding transmitter and receiver nodes for link l
(where tran(l) ∈ N and rec(l) ∈ N ). The network operates
in slotted time with unit timeslots t ∈ {0, 1, 2, . . .}. Every
timeslot a decision is made about which links to activate for
transmission. If a link l is activated during a particular slot,

This work was presented in part at the IEEE INFOCOM conference,
Phoenix, AZ, April 2008.

Michael J. Neely is with the Electrical Engineering department at the
University of Southern California, Los Angles, CA (web: http://www-
rcf.usc.edu/∼mjneely).

This material is supported in part by one or more of the following: the
DARPA IT-MANET program grant W911NF-07-0028, the NSF grant OCE
0520324, the NSF Career grant CCF-0747525.

it sends exactly one packet from tran(l) to rec(l). However,
due to scheduling and/or interference constraints, not all links
can be simultaneously active during the same slot. These
constraints are defined according to the general interference
model of [2][3]: Each link l ∈ L is allowed to be active if
and only if no other links within an interference set Sl are
simultaneously active. For convenience, it is useful to define
the set Sl to additionally include link l itself. That is, each
set Sl consists of link l together with all possible interferers
of link l. Note that these interference sets have the following
pairwise symmetry property: For any two links ω, l ∈ L, we
have that ω ∈ Sl if and only if l ∈ Sω .

The link sets Sl can be chosen to impose a variety of
constraint models. For example, setting Sl to include all
links adjacent to either the transmitter or receiver of link
l imposes matching constraints. Matching constraint models
arise naturally in scheduling problems for packet switches.
They are also important for wireless networks where individual
nodes can transmit or receive over at most one adjacent link,
and cannot simultaneously transmit and receive (called the
node exclusive interference model in [4]). More general sets
Sl can be used to model topology-dependent interference
constraints for wireless networks, such as the constraint that
no additional transmitting nodes can be activated within a
specified distance of a node that is actively receiving.

Every timeslot, new data randomly arrives to the network.
Let Al(t) represent the (integer) number of packets that arrive
during slot t that are intended for transmission over link
l. Packets are stored in separate queues according to their
corresponding link. This is a one-hop network, so that packets
exit the network once they are transmitted over their intended
link. A network controller observes the current queue backlog
and makes link activation decisions every slot subject to the
transmission constraints.

It is well known that generalized max-weight scheduling can
be used to achieve maximum throughput in such networks [5]
[6]. However, this type of scheduling is difficult to implement
in wireless networks with general interference constraints. In
this paper we consider a simpler class of maximal scheduling
algorithms. Maximal scheduling is of recent interest due to
its low complexity and ease of distributed implementation.
For N ×N packet switches, maximal scheduling is known to
support throughput that is within a factor of 2 of optimality,
and to also have nice delay properties for i.i.d. inputs [7]
[8]. Related constant factor throughput results have also been
shown for wireless networks, including factor of 2 results for
networks under matching constraints [4] and constant factor
results for more general interference models [2] [3]. However,
the work on wireless scheduling in [4][2][3] considers only
throughput results and does not provide a delay analysis.
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Further, while the work in [8] considers delay analysis for i.i.d.
arrivals and a N×N packet switch, no existing work provides
explicitly computable and order-optimal delay bounds for
time-correlated arrivals.

Our work addresses the issues of general interference con-
straints and time-correlated “bursty” traffic simultaneously.
We treat the general interference model of [2][3], but use
the concept of queue grouping to derive the order-optimal
delay results. Queue grouping techniques have been used
in [9][10][7][3] to reduce scheduling complexity in switches
and wireless networks. They are used in [11] to provide
order-optimal delay for opportunistic scheduling in a single-
server downlink. Near order-optimal delay is established for
N × N packet switches in [12]. The analysis in this paper
particularly treats delay in wireless networks with general
constraint sets and time-correlated arrivals. Previous work in
[13][14][6] treats time-correlated arrivals, but does not obtain
order optimal delay. Asymptotic delay optimality is studied in
[15] for a heavy traffic regime where input rates are scaled so
that they are very close to the capacity region boundary. Here,
we focus on the case when input rates are a fixed fraction away
from the boundary. We obtain tight delay bounds in terms
of the individual auto-correlation parameters of the traffic
sources. These are perhaps the first delay bounds for controlled
queueing networks that explicitly incorporate such statistical
information. This allows delay to be understood in terms of
general models for network traffic. Our analysis includes the
important special case of Markov modulated ON/OFF traffic
sources, allowing for explicit delay bounds in terms of the
parameters of each source.

We first treat the case of general Markovian arrivals and
prove a structural result about average delay, showing that
average delay grows at most logarithmically in the worst case
number of interferers of a given link, and hence is at most
O(log(N)). We then provide an explicit and tighter delay
analysis for the special case when all Markov chains have
at most two states. In this case, we prove average delay is
independent of N . Our analysis first assumes arrival rates are
inside the stability region associated with maximal scheduling,
and is next generalized to treat flow control when traffic rates
are either inside or outside of this region. The time-correlated
scenarios treated here are quite challenging to analyze, and we
introduce a simple technique of delayed Lyapunov analysis
to ensure the arrival processes couple sufficiently fast to a
stationary distribution. We note that this delayed Lyapunov
analysis is different from the related T -slot drift technique
developed in [13] for queue stability with Markovian channels
(also used in [14][6] for both stability and delay analysis), as
the T -slot drift approach cannot achieve order-optimal delay
results.

In the next section we present the network model. In
Section III we provide the drift analysis, and in Section IV we
present the logarithmic delay result for general time-correlated
arrivals. The order-optimal delay analysis for 2-state chains is
provided in Section V. Flow control mechanisms for systems
with arbitrary traffic rates are considered in Section VI.

II. NETWORK MODEL

Recall that L denotes the set of network links, and that
transmission over each link is constrained by the general
interference sets defined in the previous section.

A. Traffic Model

Suppose the arrival process Al(t) is modulated by a dis-
crete time, stationary, ergodic Markov chain Zl(t) for each
link l ∈ L. Specifically, Zl(t) has finite state space Zl =
{1, 2, . . . ,Ml}. For each link l ∈ L and state m ∈ Zl, arrivals
Al(t) are conditionally independent and identically distributed
according to mass function p(m)

l (a), where:

p
(m)
l (a) = Pr[Al(t) = a | Zl(t) = m] for a ∈ {0, 1, 2, . . .}

Define the conditional arrival rates λ(m)
l as follows:

λ
(m)
l = E {Al(t) | Zl(t) = m}

We assume conditional second moments of arrivals are finite,
so that E

{
(Al(t))2 | Zl(t) = m

}
< ∞ for all l ∈ L and all

m ∈ Zl. Let π(m)
l represent the steady state probability that

Zl(t) = m. Define λl as the average arrival rate to link l:

λl =
∑
m∈Zl

π
(m)
l λ

(m)
l (1)

We assume that all Markov chains are in their steady state
distribution at time 0, so that each Al(t) process is stationary
and for all slots t ≥ 0 and all links l ∈ L we have:

E {Al(t)} = λl

The Markov chains Zl(t) themselves may be correlated
over different links l ∈ L, although we mainly focus on the
case when chains are independent. More detailed statistical
information, such as the auto-correlation for individual inputs
(and the spatial correlation between multiple inputs if they are
not independent), is also important for delay analysis and shall
be defined when needed. Note that this traffic model is quite
general and includes the following important special cases:
• Case 1: Zl(t) has only one state and so arrivals Al(t)

are i.i.d. over slots with some given distribution.

• Case 2: Zl(t) is a 2-state ON/OFF process where Al(t) =
1 whenever Zl(t) = ON and Al(t) = 0 whenever
Zl(t) = OFF .

Let σ2
l

M=E
{
Al(t)2

}
− λ2

l represent the steady state arrival
variance for link l. While our results hold for general traffic
with finite variance, it is important to note that the order-
optimal delay analysis we achieve requires the following
assumption:

1
λtot

∑
l∈L

σ2
l = O(1) (2)

where λtot M=
∑
l∈L λl. This is a mild assumption that typically

holds for any inputs with a finite variance. For example,
if arrivals are Poisson then we have σ2

l = λl, and so
1
λtot

∑
l∈L σ

2
l = 1. Similarly, it is easy to show that if there is

a finite constant Amax such that Al(t) ≤ Amax for all l and
all t, then 1

λtot

∑
l∈L σ

2
l ≤ Amax.
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B. Queueing

Define Ql(t) as the number of queued packets waiting for
transmission over link l during slot t. Let Q(t) = (Ql(t))l∈L
be the vector of queue backlogs. Define µl(t) ∈ {0, 1} as the
transmission rate offered to the link during slot t (in units
of packets/slot). That is, µl(t) = 1 if link l is scheduled for
transmission on slot t, and µl(t) = 0 otherwise. We assume
the scheduler only schedules a link l that does not violate
the interference constraints and that has a packet ready for
transmission (so that Ql(t) > 0). Let µ(t) = (µl(t))l∈L
represent the transmission rate vector for slot t. Define X (t) as
the set of feasible transmission vectors for slot t, representing
all µ(t) rate vectors that conform to the constraints defined
by the interference sets Sl and the additional constraint that
µl(t) = 1 only if Ql(t) > 0 (for each l ∈ L). The queueing
dynamics thus proceed as follows:

Ql(t+ 1) = Ql(t)− µl(t) +Al(t) (3)

The goal is to observe the queue backlogs every slot and
make scheduling decisions µ(t) ∈ X (t) so as to support all
incoming traffic with average delay as small as possible.

C. Maximal Scheduling

Define the network capacity region Λ as the closure of
the set of all arrival rate vectors (λl)l∈L that can be stably
supported, considering all possible scheduling algorithms that
conform to the above constraints (see [6] for a discussion of
capacity regions and stability). It is well known that scheduling
according to a generalized max-weight rule every timeslot
ensures stability and maximum throughput whenever arrival
rates are interior to the capacity region [5] [6].1 However, the
max-weight rule involves an integer optimization that may be
difficult to implement, and has delay properties that are diffi-
cult to analyze. Here, we assume scheduling is done according
to a simpler maximal scheduling algorithm. Specifically, given
a queue backlog vector Q(t), a transmission vector µ(t) is
maximal if it satisfies the interference constraints and is such
that for all links l ∈ L, if Ql(t) > 0 then µω(t) = 1 for
at least one link ω ∈ Sl. In words, this means that if link l
has a packet, then either link l is selected for transmission,
or some other link within the interference set Sl is selected.
There is much recent interest in maximal scheduling because
of its implementation simplicity (described briefly below) and
its ability to support input rates within a constant factor of
the capacity region for wireless networks [4] [2] [3] and for
N ×N packet switches [7].

One way to achieve a maximal scheduling is as follows:
First select any non-empty link l ∈ L and label it “active.”
Then select any other non-empty link that does not conflict
with the active link l (i.e., that is not within Sl). Label this
second link “active.” Continue in the same way, selecting
new non-empty links that do not conflict with any previously
selected links, until no more links can be added. It is not
difficult to see that this final set of links labeled “active” has

1Specifically, the generalized max-weight rule in this case schedules to
maximize

P
l∈LQl(t)µl(t) subject to µ(t) ∈ X (t).

the desired maximal property. Maximal link selections are not
unique, and can alternatively be found in a distributed manner,
where multiple nodes attempt to activate their non-conflicting,
non-empty links simultaneously, and contentions are resolved
locally. This distributed implementation also requires multiple
iterations before the set of selected links becomes maximal.

All maximal link selections have the following important
mathematical property.

Lemma 1: Under any maximal link scheduling for µ(t), for
all links l ∈ L we have:

Ql(t)
∑
ω∈Sl

µω(t) ≥ Ql(t) (4)

Proof: Consider any link l ∈ L. If Ql(t) = 0, then (4)
reduces to 0 ≥ 0 and is trivially true. Else, if Ql(t) > 0 then
µω(t) = 1 for at least one link ω within Sl (by definition of
a maximal link selection), and so

∑
ω∈Sl

µω(t) ≥ 1, which
proves (4).

In this paper, we assume transmission decisions are made
every slot according to any maximal scheduling. For conve-
nience, we further assume that the maximal scheduling has a
well defined probabilistic structure given the queue backlog
vector, so that the entire queueing system can be viewed as
an ergodic Markov chain with a countably infinite state space.
The inequality (4) is the only additional property of maximal
scheduling required in our analysis.

D. The Reduced Throughput Region

Define Λ∗ as the set of all rate vectors (λl)l∈L that satisfy
the following: ∑

ω∈Sl

λω ≤ 1 for all l ∈ L

The set Λ∗ is overly restrictive, as it is possible to have more
than one simultaneously active link within a given set Sl
(provided that link l is idle). However, the set Λ∗ is typically
within a constant factor of the capacity region Λ. For example,
in networks with matching constraints only, it is not difficult
to show that 1

2Λ ⊂ Λ∗, so that the throughput region Λ∗ is
within a factor of 2 of optimality. Further, in networks with
general inteference sets Sl where each set Sl can support at
most K simultaneously active links (called the interference
degree of the network), it can be shown that 1

KΛ ⊂ Λ∗ [2].
It is easy to see in this case that the integer K is strictly less
than the largest cardinality of any interference set. The work
in [2] also constructs a network for which the set 1

KΛ shares
a common boundary point with the set of all rates supportable
through maximal scheduling.

Throughout this paper, we assume input rates (λl)l∈L are
interior to the set Λ∗. Specifically, we assume there exists a
value ρ∗ such that 0 < ρ∗ < 1, where:∑

ω∈Sl

λω ≤ ρ∗ for all l ∈ L (5)

The value ρ∗ represents the relative network loading, as it
can be viewed as a loading factor relative to the reduced
throughput region Λ∗.
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E. An Example for N ×N Packet Switches

For an illuminating example of the reduced throughput re-
gion Λ∗ and its comparison to the capacity region Λ, consider
a N×N packet switch operating under the crossbar constraint
with input rate matrix (λij) for input ports i ∈ {1, . . . , N} and
output ports j ∈ {1, . . . , N} (for a more detailed discussion of
packet switches and the crossbar constraint, see, for example,
[16] [17] [12]). There are N2 links, each labeled (i, j) ac-
cording to its corresponding input/output pair. Link activation
sets correspond to matchings on the resulting bi-partite graph.
Specifically, if link (i, j) is activated for transmission, then no
other link (i, b) or (a, j) can be activated (for b 6= j, a 6= i).
Therefore, the interference set Sij for each link (i, j) is:

Sij = {(a, j) | a ∈ {1, . . . , N}} ∪ {(i, b) | b ∈ {1, . . . , N}}

It is well known that the capacity region Λ for this N ×N
switch is given by the set of all (λij) rate matrices that satsify
the following 2N inequality constraints:∑N

b=1 λib ≤ 1 for all i ∈ {1, . . . , N}∑N
a=1 λaj ≤ 1 for all j ∈ {1, . . . , N}

On the other hand, the reduced throughput region Λ∗ is given
by the set of all non-negative rate matrices (λij) that satisfy
the following N2 inequality constraints:

N∑
a=1

λaj +
∑

b∈{1,...,N},b 6=j

λib ≤ 1 for all links (i, j)

That is, (λij) ∈ Λ∗ if and only if all rates are non-negative,
and for any crosspoint (i, j), the sum of the rates in row i and
column j (including crosspoint (i, j) only once) is less than
or equal to 1. It is not difficult to see that if a matrix in Λ has
all entries halved, then it will be in Λ∗, and hence:

1
2

Λ ⊂ Λ∗

However, the reduced throughput region Λ∗ is strictly larger
than 1

2Λ. For example, consider the following rate matrices for
a 2× 2 switch and a 3× 3 switch, respectively:

(λij) =
(
.7 .1
.1 .1

)
, (λij) =

 .1 .2 0
.3 .2 0
.3 0 .2


The first matrix is outside the set 1

2Λ because the first column
sums to 0.8 (larger than 0.5). The second matrix is also outside
of the set 1

2Λ (for the corresponding 3× 3 capacity region Λ)
because the first column sums to 0.7. However, both matrices
are inside their respective reduced throughput regions Λ∗, and
both have relative loading ρ∗ = 0.9.

III. DRIFT ANALYSIS

Recall that Q(t) = (Ql(t)). Our technique relies on the
concept of queue grouping. For each link l ∈ L, define:

Q̂Sl
(t)M=

∑
ω∈Sl

Qω(t) (6)

Thus, Q̂Sl
(t) is the sum of all queue backlogs of links within

the interference set Sl of link l. Define the Lyapunov function:

L(Q(t))M=
1
2

∑
l∈L

Ql(t)Q̂Sl
(t) (7)

The queue-grouped structure of this Lyapunov function is
similar to the functions used in [3][9] to prove queue stability
when input rates are a fixed fraction away from the capacity
boundary. An alternate proof of rate-stability is given in [2].
However, the prior work in this area does not directly consider
delay performance. Below we provide a more detailed drift
analysis that yields explicit and tight delay bounds.

For each link l ∈ L, define the group departures µ̂Sl
(t) and

group arrivals ÂSl
(t) as follows:

µ̂Sl
(t)M=

∑
ω∈Sl

µω(t) , ÂSl
(t)M=

∑
ω∈Sl

Aω(t)

Thus:
Q̂Sl

(t+ 1) = Q̂Sl
(t)− µ̂Sl

(t) + ÂSl
(t) (8)

Define the 1-step unconditional Lyapunov drift as follows:

∆(t)M=E {L(Q(t+ 1))− L(Q(t))} (9)

where the expectation is over the randomness of Q(t) and the
randomness of the system dynamics given the value of Q(t).

Lemma 2: (Drift Under Maximal Scheduling) If maximal
scheduling is implemented every timeslot (using any maximal
scheduling algorithm), the resulting unconditional Lyapunov
drift ∆(t) satisfies the following for all slots t:

∆(t) ≤ E {B(t)} −
∑
l∈L

E
{
Ql(t)(1− ÂSl

(t))
}

(10)

where

B(t)M=
1
2

∑
l∈L

[
Al(t)ÂSl

(t)− 2ÂSl
(t)µl(t) + µl(t)

]
(11)

Proof: See Appendix A.

A. Lyapunov Drift Theorem

The drift expression (10) can be used to prove stability
and delay properties of maximal matching via the following
theorem:

Theorem 1: (Lyapunov drift [6]) Let Q(t) be a vector
process of queue backlogs that evolve according to some
probability law, and let L(Q(t)) be a non-negative function
of Q(t). If there exist processes f(t) and g(t) such that the
following is satisfied for all time t:

∆(t) ≤ E {g(t)} − E {f(t)}

then:

lim sup
t→∞

1
t

t−1∑
τ=0

E {f(τ)} ≤ lim sup
t→∞

1
t

t−1∑
τ=0

E {g(t)} �

The proof of Theorem 1 involves summing the telescoping
series (see [6]).
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B. Analysis for i.i.d. Arrivals

Define A(t)M=(Al(t))l∈L as the vector of new arrivals.
Consider first the case when all arrival vectors A(t) are i.i.d.
over timeslots, with rate vector λ = (λl)l∈L (the arrivals over
different links in the same slot may be correlated). For each
link l, define λ̂Sl

as the sum of arrival rates over all input
streams corresponding to links within the set Sl. That is:

λ̂Sl

M=
∑
ω∈Sl

λω

Note by the loading assumption (5) that λ̂Sl
≤ ρ∗, where ρ∗

is a value such that 0 < ρ∗ < 1. By independence of arrivals
every slot, we have for all t:

E
{
Ql(t)(1− ÂSl

(t))
}

= E {Ql(t)} (1− λ̂Sl
)

≥ E {Ql(t)} (1− ρ∗)

Using this inequality directly in the Lyapunov drift expression
(10) yields (for all slots t):

∆(t) ≤ E {B(t)} − (1− ρ∗)
∑
l∈L

E {Ql(t)}

Plugging the above drift inequality into the Lyapunov
drift theorem (Theorem 1) (using g(t)M=B(t) and f(t)M=(1 −
ρ∗)
∑
l∈LQl(t)) yields:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
l∈L

E {Ql(τ)} ≤ B

1− ρ∗
(12)

where:

B M= lim sup
t→∞

1
t

t−1∑
τ=0

E {B(τ)}

Note from (11) that B < ∞, and hence the queueing
network is strongly stable with finite time average queue
backlogs. Because it evolves according to an ergodic Markov
chain with a countably infinite state space, it can be shown
that limiting time averages exist and are equal to the steady
state averages. Thus, the left hand side of (12) represents the
time average total queue backlog in the system (summed over
all queues). Let Ql be the average queue backlog in link l (for
each l ∈ L). We thus have:

Theorem 2: (Time-Independent Arrivals) If the arrival vec-
tor process A(t) is i.i.d. over slots with a relative network
loading ρ∗ < 1 (defined in (5)), then:

(a) The average total network congestion satisfies:

∑
l∈L

Ql ≤

∑
l∈L

[
E
{
Al(t)ÂSl

(t)
}
− 2λlλ̂Sl

+ λl

]
2(1− ρ∗)

(b) If arrival streams Al(t) are i.i.d. over slots and are
also independent of each other, then W , the expected delay
averaged over all packets in the network, satisfies:

W ≤
1 + 1

λtot

∑
l∈L

[
σ2
l − λlλ̂Sl

]
2(1− ρ∗)

(13)

where λtot M=
∑
l∈L λl, and where σ2

l
M=E
{

(Al(t))2
}
− λ2

l and
represents the variance of Al(t).

The average congestion bound in part (a) of the above
theorem is found by computing B using (11) and noting that
the system is stable, has a steady state, and that the time
average limit of E {µl(t)} is equal to λl. Part (b) is proven
by the fact that total average congestion is equal to λtotW
(by Little’s Theorem). This also uses inter-link independence
for the identity E

{
Al(t)ÂSl

(t)
}

= σ2
l +λlλ̂Sl

. Note that the
numerator in (13) is O(1) if (2) holds.

C. Delay under Poisson and Bernoulli Inputs

Note that if all arrival processes Al(t) are independent and
Poisson with rate λl, we have that σ2

l = λl. The average delay
bound (13) in this case reduces to:

WPoisson ≤
1− 1

2λtot

∑
l∈L λlλ̂Sl

(1− ρ∗)
(14)

This demonstrates that average delay is O(1), that is, it is in-
dependent of the network size N . Hence, maximal scheduling
achieves order optimal delay with respect to N , provided that
the arrival rates are interior to the reduced throughput region
Λ∗, as described by the constraints (5). This is in contrast to
the O(N) average delay bounds derived for the throughput-
optimal max-weight scheduling for N ×N packet switches in
[17] and for wireless networks in [14] [18].2 The expression
in the right hand side of (14) also provides an upper bound on
delay in the case of independent Bernoulli arrivals, because σ2

l

for a Bernoulli variable is less than that of a Poisson variable.

IV. LOGARITHMIC DELAY FOR TIME-CORRELATED
ARRIVALS

Consider the case of finite-state ergodic Markov modulated
arrivals, as described in Section II-A. Assume that all traffic
rates satisfy the loading constraints (5) with relative network
loading ρ∗. Let H(t) represent the past history of all actual
arrivals (of all processes) up to but not including time t. For a
given link l ∈ L, suppose there exists a non-negative function
εl(T ) (for T ∈ {0, 1, 2, . . .}) such that, regardless of past
history H(t), we have:

E {Al(t) |H(t− T )} ≤ λl + εl(T ) (15)

and such that:
lim
T→∞

εl(T ) = 0

That is, εl(T ) characterizes the time required for the process
Al(t) to converge to its stationary mean, regardless of the
initial condition. It can be shown that all finite state ergodic
Markov processes converge exponentially fast to their steady
state (see, for example, [19]). Hence for each l ∈ L we can
define εl(T ) as follows:

εl(T ) = νlγ
T+1
l (16)

for some constant νl and some decay factor γl such that 0 <
γl < 1. The νl and γl constants can in principle be determined

2We emphasize that max-weight scheduling is a special case of maximal
scheduling, and so our delay bounds also apply to max-weight in the case
when arrival rates are inside the reduced throughput region Λ∗.
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as parameters from the Markov chain Zl(t). Here, we prove
a structural result concerning logarithmic delay in terms of
these parameters. Define ρ̂(T ) as follows:

ρ̂(T )M= max
l∈L

[
λ̂Sl

+
∑
ω∈Sl

εω(T )

]
(17)

Note that λ̂Sl
≤ ρ∗ < 1 for all l ∈ L, and so there exist

integers T such that ρ̂(T ) < 1.
Theorem 3: (General Time-Correlated Arrivals) If arrival

processes have rates (λl)l∈L in the interior of Λ∗, then for
any integer T ≥ 0 such that ρ̂(T ) < 1, we have:

(a) The average total network congestion satisfies:∑
l∈L

Ql ≤
B̃ + F̃T
1− ρ̂(T )

where:

B̃ M=
1
2

∑
l∈L

[
λl + E

{
Al(t)ÂSl

(t)
}]

(18)

F̃T
M=

∑
l∈L

T∑
k=1

E
{
ÂSl

(k)Al(0)
}

(19)

(b) If arrival processes Al(t) for different links l are
additionally independent of each other, then the constants B̃
and F̃T satisfy:

B̃ =
1
2

∑
l∈L

[
λl + λlλ̂Sl

+ σ2
l

]
(20)

F̃T =
∑
l∈L

T∑
k=1

[λ̂Sl
λl + θl(k)] (21)

where σ2
l

M=E
{

(Al(t))2
}
− λ2

l is the variance of Al(t), and
θl(k) is the auto-correlation in Al(t) and is defined:

θl(k)M=E {Al(t+ k)Al(t)} − λ2
l

Proof: The proof is given in Appendix B.

A. Discussion of the Delay Result
By Little’s Theorem, if the conditions of Theorem 3 are

satisfied, then average network delay W satisfies:

W ≤
1
λtot

(B̃ + F̃T )
1− ρ̂(T )

The parameter T only affects the delay bound and does not
affect the maximal scheduling algorithm. Thus, the bound can
be optimized over all integers T such that ρ̂(T ) < 1. Here
we show how the resulting bound grows as a function of the
network size. First note that in the case when arrival processes
are independent of each other, the constant B̃ in (20) satisfies:

B̃ ≤ λtot

[
1 +

1
2λtot

∑
l∈L

σ2
l

]
where λtot M=

∑
l∈L λl. This is because λ̂Sl

≤ 1 for all l ∈ L.
Likewise, the constant F̃T in (21) satisfies:

F̃T ≤ λtotT +
∑
l∈L

T∑
k=1

θl(k)

Therefore, when arrival processes Al(t) are independent of
each other, average network delay satisfies:

W ≤
T + 1 + 1

2λtot

∑
l∈L σ

2
l + 1

λtot

∑
l∈L
∑T
k=1 θl(k)

1− ρ̂(T )

The values of 1
2λtot

∑
l∈L σ

2
l and 1

λtot

∑
l∈L θl(k) are typ-

ically independent of N (recall (2)), and so the numerator is
roughly linear in the T value. Because we have finite state
ergodic Markov chains, from (16) we see the function ρ̂(T )
has the form:

ρ̂(T ) ≤ ρ∗ + |S|νγT+1

where |S| is the cardinality of the largest interference set Sl,
and ν and γ are the largest values of νl and γl, respectively,
over all links l ∈ L. In this case, we have 1−ρ̂(T ) ≥ (1−ρ∗)/2
whenever:

|S|νγT+1 ≤ (1− ρ∗)/2

which holds when T is chosen as the smallest integer that
satisfies:

log (2ν |S| /(1− ρ∗))
log(1/γ)

− 1 ≤ T ≤ log (2ν |S| /(1− ρ∗))
log(1/γ)

Thus, the above delay bound grows at most logarithmically
in |S|. A more explicit and order-optimal delay analysis is
provided in the next section, where the special case of 2-state
Markov chains is considered and average delay is shown to
be independent of the network size.

V. TIME-CORRELATED ARRIVALS WITH TWO STATES

Consider the case of Markov modulated arrivals, as de-
scribed in Section II-A, where all Markov chains Zl(t) have
at most two states (labeled “1” and “2”). Note that this model
includes the important special case of ON/OFF inputs, where
Al(t) has a single packet arrival when in the ON state and has
no arrivals when in the OFF state.3 Let L̃ be the set of all links
l ∈ L that have exactly two states with different conditional
rates λ(1)

l and λ
(2)
l . The transition probabilities are given by

βl and δl for each two-state chain Zl(t), as shown in Fig. 1.
Assume that 0 < δl < 1 and 0 < βl < 1 for all l ∈ L̃, and
define π(1)

l and π(2)
l as the steady state probabilities for each

two-state chain Zl(t):

π
(1)
l =

δl
βl + δl

, π
(2)
l =

βl
βl + δl

3The conditional rates for such an ON/OFF example are given by λ(1)
l = 1,

λ
(2)
l = 0, where states 1 and 2 are associated with the ON and OFF states,

respectively, as shown in Fig. 1.

1
(ON)

2
(OFF)

βl

δl
1-δl1-βl

Fig. 1. The 2-state Markov chain Zl(t) for link l.
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Arrival processes Al(t) for the remaining links l /∈ L̃ are
either i.i.d. over slots (effectively “one-state” chains), or have
two states but with λ

(1)
l = λ

(2)
l (in the latter case, the

different states may correspond to different conditional second
moments).

The Markov chains Zl(t) are possibly correlated over dif-
ferent links l ∈ L, although we focus primarily on the case
when all chains are independent. The chains are assumed to be
stationary, so that for each link l ∈ L we have E {Al(t)} = λl
for all time t. The time average rates λl for all 2-state arrival
processes are given by:

λl = π
(1)
l λ

(1)
l + π

(2)
l λ

(2)
l

The traffic rates (λl)l∈L are assumed to satisfy the loading
constraints (5) with relative network loading ρ∗ < 1. In the
previous section we showed that the system is strongly stable
and ergodic with finite steady state queue backlogs. Here we
provide a tighter delay analysis using a combination of Markov
chain theory and Lyapunov drift theory.

A. 2-State Drift Analysis

Recall the definition ÂSl
(t)M=

∑
ω∈Sl

Aω(t). Thus, from the
drift inequality (10) we have that the unconditional Lyapunov
drift ∆(t) satisfies the following every slot t:

∆(t) ≤ E {B(t)} −
∑
l∈L

E {Ql(t)}

+
∑
l∈L

∑
ω∈Sl

E {Ql(t)Aω(t)} (22)

Now assume that the system is in steady state at time t, and
is also in steady state at time t − 1. Fix a link l ∈ L and an
arrival process Aω(t). We shall derive a relationship between
E {Ql(t)Aω(t)} and E {Ql(t)}. To this end, first note that for
any link l ∈ L we have:

E {Ql(t)Aω(t)} = E {Ql(t)}λω if ω /∈ L̃ (23)

That is, the expectation has a simple product form in the
special case when ω /∈ L̃, because Aω(t) is either i.i.d. over
slots or has the same conditional rate λ(1)

ω = λ
(2)
ω = λω .

For the rest of this subsection we consider the opposite and
more challenging case when ω ∈ L̃. In this case, we have:

E {Ql(t)} =
2∑

m=1

π(m)
ω E {Ql(t) | Zω(t) = m} (24)

However, we also have:

E {Ql(t)Aω(t)}

=
2∑

m=1

π(m)
ω E {Ql(t)Aω(t) | Zω(t) = m}

=
2∑

m=1

π(m)
ω λ(m)

ω E {Ql(t) | Zω(t) = m} (25)

This final equality holds because the expectation of Ql(t)
is conditionally independent of Aω(t) given Zω(t). Be-
cause the system is in steady state, the quantities E {Ql(t)},

E {Ql(t)Aω(t)}, and E {Ql(t) | Zω(t) = m} do not depend
on t, and we define:

E {Ql} M= E {Ql(t)}
E {QlAω} M= E {Ql(t)Aω(t)}

x
(m)
l,ω

M= π(m)
ω E {Ql(t) | Zω(t) = m}

The equalities (24) and (25) can be re-written:

E {Ql} = x
(1)
l,ω + x

(2)
l,ω (26)

E {QlAω} = λ(1)
ω x

(1)
l,ω + λ(2)

ω x
(2)
l,ω (27)

Equations (26) and (27) are two linear equations that express
a relationship between 4 unknowns (where the unknowns are
E {Ql} ,E {QlAω}, x(1)

l,ω and x(2)
l,ω). To express a direct linear

relationship between E {Ql} and E {QlAω}, we require an
additional equation. To this end, note that:

Ql(t) = Ql(t− 1)− µl(t− 1) +Al(t− 1)

Therefore:

E {Ql(t)Aω(t)} = E {Ql(t− 1)Aω(t)} −Dl,ω + Cl,ω (28)

where Cl,ω and Dl,ω are defined as:

Cl,ω
M= E {Al(t− 1)Aω(t)} (29)

Dl,ω
M= E {µl(t− 1)Aω(t)} (30)

Now:

E {Ql(t− 1)Aω(t)}

=
2∑

m=1

π(m)
ω E {Ql(t− 1)Aω(t) | Zω(t− 1) = m}

=
2∑

m=1

π(m)
ω h(m)

ω E {Ql(t− 1) | Zω(t− 1) = m} (31)

where h(m)
ω is defined:

h(m)
ω

M=E {Aω(t) | Zω(t− 1) = m} (32)

The last equality follows again because Ql(t−1) is condition-
ally independent of Aω(t) given Zω(t−1). However, because
the system is in steady state at time t and also at time t− 1,
it follows that:

π(m)
ω E {Ql(t− 1) | Zω(t− 1) = m} = x

(m)
l,ω (33)

Therefore, using (33) and (31), equation (28) becomes the
following:

E {QlAω} = Cl,ω −Dl,ω + h(1)
ω x

(1)
l,ω + h(2)

ω x
(2)
l,ω (34)

The constants h(m)
ω , defined in (32), can be computed directly

from the transition probabilities for chain Zω(t):

h(1)
ω = (1− βω)λ(1)

ω + βωλ
(2)
ω (35)

h(2)
ω = δωλ

(1)
ω + (1− δω)λ(2)

ω (36)

The linear equations (26), (27), and (34) involve three
equations and four unknowns, and can be shown to be linearly
independent whenever λ

(1)
ω 6= λ

(2)
ω (which holds for all
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ω ∈ L̃). This directly leads to the following lemma that relates
E {Ql} and E {QlAω}.

Lemma 3: For all links l ∈ L, we have:

E {QlAω} = E {Ql}λω +
Cl,ω −Dl,ω

βω + δω
if ω ∈ L̃ (37)

Proof: The result follows by eliminating the x(1)
l,ω and x(2)

l,ω

variables from (26), (27), and (34), and the computation is
given in Appendix C.

Note from the definitions (29) and (30) that Cl,ω ≥ 0,
Dl,ω ≥ 0 for all l ∈ L and all ω ∈ L̃. Define Cl,ω = 0
for ω /∈ L̃. Using (37) and (23) we find that for all link pairs
l, ω ∈ L, we have:

E {QlAω} ≤ E {Ql}λω +
Cl,ω

βω + δω

where the inequality comes because we have neglected the
Dl,ω constant. Using this expression directly in the Lyapunov
drift inequality (22) yields the following drift expression that
holds at any time t at which the system is in steady state:

∆(t) ≤ E {B(t)} −
∑
l∈L

E {Ql(t)} (1− ρ∗)

+
∑
l∈L

∑
ω∈Sl∩L̃

Cl,ω
βω + δω

(38)

where we have used the fact that
∑
ω∈Sl

λω ≤ ρ∗.

B. The Delay Bound for 2-State Markov Modulated Arrivals

Theorem 4: If the input rates (λl)l∈L satisfy the loading
constraints (5) for a given relative network loading ρ∗ < 1,
then:

(a) The system is stable with steady state average congestion
that satisfies: ∑

l∈L

Ql ≤
B̃ + C̃

1− ρ∗

where:

B̃ M=
1
2

∑
l∈L

[
E
{
Al(t)ÂSl

(t)
}

+ λl

]
C̃ M=

∑
l∈L

∑
ω∈Sl∩L̃

E {Al(t− 1)Aω(t)}
βω + δω

(b) If all Markov chains Zl(t) are additionally independent
of each other, then:

B̃ =
1
2

∑
l∈L

[
λlλ̂Sl

+ σ2
l + λl

]
E {Al(t− 1)Aω(t)} = λlλω if l 6= ω

Hence, average delay W satisfies:

W ≤
1 + 1

λtot

∑
l∈L[σ2

l + λlλ̂Sl
]

2(1− ρ∗)

+
1
λtot

[∑
l∈L̃

θl[1]
(βl+δl)

+
∑
l

∑
ω∈Sl∩L̃

λlλω

(βω+δω)

]
1− ρ∗

where λtot M=
∑
l∈L λl, and θl[1]M=E {Al(t− 1)Al(t)} − (λl)2

is the 1-slot auto-correlation for process Al(t), given by:

θl[1] =
βlδl(λ

(1)
l − λ

(2)
l )2(1− βl − δl)

(βl + δl)2

Proof: The result follows directly from (38) via the
Lyapunov drift theorem (Theorem 1). Details omitted for
brevity.

Using the fact that λ̂Sl
≤ ρ∗ < 1, the average delay bound

W in part (b) of the above theorem can be simplified as
follows:

W ≤
1 + ρ∗ + 1

λtot

∑
l∈L σ

2
l

2(1− ρ∗)

+ max
ω∈L̃

[
1

βω + δω

](
ρ∗ + 1

λtot

∑
l∈L̃ θl[1]

1− ρ∗

)
Note that θl[1] ≤ λlλ

(max), where λ(max) is the largest
conditional rate over all links and states. Thus, the numer-
ator in the final term in the above delay bound satisfies:

1
λtot

∑
l∈L̃ θl[1] ≤ λmax. Therefore, the above bound is O(1)

(independent of the network size N ). In the special case of
ON/OFF sources, where a single packet arrives from stream l
when Zl(t) = ON and no packet arrives when Zl(t) = OFF ,
we have λ

(1)
l = 1 and λ

(2)
l = 0, and λl = π

(1)
l . Further:

σ2
l ≤ λl, θl[1] ≤ λl. Thus, average delay in this ON/OFF

example satisfies:

WON/OFF ≤
1 + ρ∗

2 + maxω∈L̃ [(ρ∗ + 1)/(βω + δω)]
(1− ρ∗)

Note that 1/βl is the average burst size (i.e., the average
time spent in the ON state), and so the numerator roughly
grows linearly in the largest average burst size over any input.

VI. DELAY ANALYSIS WITH FLOW CONTROL

The previous sections assume that the steady state input
rate vector (λl)l∈L satisfies the loading contstraints (5), and
hence is interior to the reduced throughput region Λ∗. Here we
consider arbitrary input rate vectors (possibly inside or outside
of Λ∗), and develop a flow control mechanism that works
together with maximal link scheduling. We restrict attention
to arrival processes Al(t) that are Markov modulated and have
at most two Markov states, as in the previous section.

We use the flow control framework of [6]. Specifically,
every slot the flow controller at link l observes the current
number of new packets Al(t), and decides how many of these
new arrivals to place into the network. Let Rl(t) be this flow
control decision, where Rl(t) is an integer that satisfies:

0 ≤ Rl(t) ≤ Al(t) for all l ∈ L and all t

Any packets that are not immediately admitted by the flow
controller are dropped. The queueing dynamics are thus given
by (compare with (3)):

Ql(t+ 1) = Ql(t)− µl(t) +Rl(t) (39)

Let (rl)l∈L denote the vector of time average admission
rates into the network links (for l ∈ L), which corresponds



IEEE TRANSACTIONS ON NETWORKING, VOL. 17, NO. 4, PP. 1146-1159, AUGUST 2009 9

to some particular flow control algorithm. We define network
fairness in terms of concave utility functions gl(r). Each utility
function gl(r) is continuous, concave, non-negative, and non-
decreasing. The goal is to design a flow control algorithm
that ensures order optimal delay while maximizing the sum of
utilities over all network links, where the maximum is defined
with respect to the reduced throughput region Λ∗. Specifically,
define g∗ as the maximum sum utility associated with the
following optimization problem:

Maximize:
∑
l∈L gl(rl) (40)

Subject to: (rl) ∈ Λ∗ (41)
0 ≤ rl ≤ λl for all l ∈ L (42)

We desire our flow control algorithm to yield a sum utility
that is close to (or larger than) the value of g∗. We note
that a similar utility-based flow control problem with maximal
scheduling is considered in [4], and a token based technique
for max-min fairness is considered in [2]. Our algorithm is
quite different from [4] [2], and our analysis is unique in that
it demonstrates order-optimal delay for bursty traffic arrivals.

For technical reasons, we define Iδ as the finite set of real
numbers between 0 and 1, inclusive, that are uniformly spaced
apart by some (arbitrarily small) quantization δ > 0. For
example, Iδ might represent numbers as viewed by a computer
that rounds to a finite decimal place. This quantization is
convenient for limit theorems, as we will show the resulting
system has only a finite number of possible states. Define g∗δ
as the maximum value of the problem (40)-(42) subject to the
additional constraint:

rl ∈ Iδ for all l ∈ L (43)

It is clear that g∗δ is very close to g∗ when δ is small. We shall
modify our goal to achieve a target utility of g∗δ , rather than
g∗.

A. The Flow Control Algorithm with Maximal Scheduling

Note that because the utility functions are non-decreasing,
the optimization problem (40)-(43) is equivalent to:

Maximize:
∑
l∈L gl(γl)

Subject to: (rl) ∈ Λ∗

rl ≤ λl for all l ∈ L
0 ≤ γl ≤ rl , γl ∈ Iδ for all l ∈ L

where we have introduced an auxiliary variable γl for each
link l. Using our flow control framework of [6] [20], for each
link l we define an auxiliary process γl(t) and a flow state
queue Yl(t). The flow state queue Yl(t) for each link l is
implemented purely in software at link l, is initialized so that
Yl(0) = 0, and has update equation:

Yl(t+ 1) = max[Yl(t)−Rl(t), 0] + γl(t) (44)

where Rl(t) is the admission decision made by link l on slot
t and γl(t) is an auxiliary variable chosen by link l on slot t
according to the following algorithm. The algorithm is defined
in terms of a control parameter V > 0 that affects a tradeoff
between utility and delay.

Flow Control with Maximal Scheduling (FLOW-MAXIMAL):
Every slot t, the flow controller at each link l ∈ L observes

the queue backlog Q̂Sl
(t) (defined in (6)), the flow state queue

Yl(t), and the new arrivals Al(t), and performs the following:
• (Admission Control) Choose Rl(t) as follows:

Rl(t) =
{
Al(t) if Yl(t) ≥ Q̂Sl

(t)
0 otherwise

• (Auxiliary Variables) Choose γl(t) as the solution to:

Maximize: V gl(γl(t))− Yl(t)γl(t) (45)
Subject to: 0 ≤ γl(t) ≤ 1 , γl(t) ∈ Iδ (46)

Note that this is a simple maximization of a concave
function of a single variable γ over an interval. The
additional constraint γl(t) ∈ Iδ can be enforced by first
calculating the non-quantized optimal γl(t) value, and
then choosing the quantized value either to the right or
left according to which one maximizes (45).

• (Virtual Queue Update) Update Yl(t) according to (44),
using the above chosen values of Rl(t) and γl(t).

The network then schedules links as before, using any maximal
scheduling algorithm. Specifically, every slot t the following
action is taken:
• (Maximal Scheduling) Choose (µl(t))l∈L by performing

maximal link scheduling, so that queue backlog is up-
dated according to (39).

B. Algorithm Performance

Suppose arrivals Al(t) are Markov modulated (possibly
correlated over the different links l), and satisfy the two-state
assumptions of Section V with steady state traffic rate vector
(λl)l∈L. For simplicity, we additionally assume the maximum
number of packets that can arrive to any link during a slot is
bounded by a constant Amax, so that:

Al(t) ≤ Amax for all t

Consider any utility functions gl(r) that are concave, non-
decreasing, and non-negative. We assume that gl(0) = 0
for all l ∈ L (so that zero throughput yields zero utility).
Further define ηl as the maximum right-derivative of the utility
function gl(r).4 We assume that ηl < ∞ for all l ∈ L, and
define η as the largest ηl value: ηM= maxl∈L ηl. For example,
consider the following two types of utility functions defined
in terms of non-negative constants αl and βl:
• Linear: gl(r) = αlr
• Logarithmic: gl(r) = αl log(1 + βlr)

In the linear case above, we have ηl = αl. In the logarithmic
case, we have ηl = αlβl.

Our first result shows that the above algorithm yields
bounded queue sizes for all time.

Theorem 5: (Worst Case Queue Bounds) Suppose all
queues are initially empty and the above FLOW-MAXIMAL
algorithm is implemented. Then for arbitrary arrival processes

4All concave functions of one variable have well defined right-derivatives.
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Al(t) that satisfy the maximum arrival bound Al(t) ≤ Amax
for all t, we have the following:

0 ≤ Yl(t) ≤ V ηl + 1 for all t (47)
0 ≤ Ql(t) ≤ V ηl + 1 +Amax for all t (48)

Proof: First note that because gl(γ) is concave, has
maximum derivative ηl, and satisfies gl(0) = 0, we have:

gl(γ) ≤ γηl for all γ ≥ 0

Now suppose that Yl(t) > V ηl for some slot t. The γl(t)
variable is chosen to maximize (45). However, for any possible
value γ ≥ 0, we have:

V gl(γ)− Yl(t)γ ≤ V γηl − Yl(t)γ ≤ V γηl − V ηlγ = 0

where the second inequality is an equality only if γ = 0.
It follows that the controller chooses γl(t) = 0 on any slot
in which Yl(t) > V ηl. It follows from (44) that Yl(t) cannot
increase on the next slot, and so it can only increase when it is
currently less than or equal to V ηl. Because γl(t) ≤ 1 for all t,
the maximum amount of increase is 1, and so Yl(t) ≤ V ηl+1
for all t, proving (47).

Similarly, note that if Ql(t) > V ηl + 1, then Q̂Sl
(t) >

V ηl + 1 ≥ Yl(t), and so the admission control algorithm sets
Rl(t) = 0. It follows that Ql(t) can only increase when it is
less than or equal to V ηl+ 1. Because Amax is the maximum
amount it can increase, we have that (48) holds for all time.

Note from (44) and the constraint γl(t) ∈ Iδ that Yl(t)
can only take values that are integers plus an element in Iδ .
Because Yl(t) is bounded, it can only take a finite number of
values. Thus, there are only a finite number of system states
[Z(t);Q(t);Y (t)] (recall that Ql(t) is a bounded integer and
Z(t) has a finite state space). It follows that time average
expectations are well defined for any fixed initial condition.

Let (r∗l )l∈L represent an optimal solution to (40)-(43) with
optimal sum utility g∗δ , so that g∗δ =

∑
l∈L gl(r

∗
l ).

Theorem 6: (Performance of Flow Control with Maximal
Scheduling) Suppose the above FLOW-MAXIMAL algorithm
is implemented. Suppose arrivals are modulated by ergodic
Markov processes with at most two-states as described in
Section V, with steady state rates (λl)l∈L (possibly inside or
outside of Λ∗). Then queue backlog and sum utility satisfy:∑

l∈L

Ql ≤ rtot

[
1 +

Amax
2

+ V η

]
+

1
2

∑
l∈L

E
{
Al(t)ÂSl

(t)
}

(49)∑
l∈L

gl(r) ≥ g∗δ − F/V (50)

where Ql is the time average expected backlog in link l, and
rl is the time average expected admitted rate to link l:

Ql
M= lim
t→∞

1
t

t−1∑
τ=0

E {Q(τ)} , rl
M= lim
t→∞

1
t

t−1∑
τ=0

E {Rl(τ)}

and rtot =
∑
l∈L rl. Finally, the constant F is given by:

F M= rtot

[
1 +

Amax
2

]
+

1
2

∑
l∈L

E
{
Al(t)ÂSl

(t)
}

+
∑
l∈L

∑
ω∈Sl∩L̃

(r∗ω/λω)E {Al(t− 1)Aω(t)}
βω + δω

+
∑
l∈L̃

(r∗l /λl)E {Al(t− 1)Al(t)}
βl + δl

(51)

where r∗l /λl ≤ 1 due to the constraints of (40)-(42). Recall
that the set L̃ contains only links that have exactly two states
and satisfy λ(1)

l 6= λ
(2)
l . If the set L̃ is empty (such as when

arrivals are i.i.d. over slots), then the last two summation terms
in the expression for F are equal to zero.

We emphasize that the E
{
Al(t)ÂSl

(t)
}

value in Theorem
6 is taken with respect to the steady state distribution for
arrivals. Further, because the total input rate into the system is
rtot, we have by Little’s Theorem that average delay satisfies:

W ≤

[
1 +

Amax
2

+ V η +
1

2rtot

∑
l∈L

E
{
Al(t)ÂSl

(t)
}]

It follows that we again have an explicit tradeoff between
utility and average delay, as determined by the V parameter.
Further, if exogenous inputs are independent of each other and
λtot/rtot = O(1), we have:

1
2rtot

∑
l∈L

E
{
Al(t)ÂSl

(t)
}

= O(1)

In this case, average delay is O(1) (independent of the
network size). Theorem 6 is proven in Appendix D using a
novel argument that combines Lyapunov optimization with the
steady state analysis for bursty traffic as in Section V.

C. Discussion of “Periodic” Maximal Scheduling

Because any maximal scheduling algorithm can be used, one
can consider algorithms where the initial collection of links
that are activated as part of the maximal set are determined
periodically, so that each link is chosen for this initial activa-
tion every M slots (where M is a function of the network size).
Links in this initial set that contain packets are scheduled for
transmission, and additional links are then chosen to ensure the
maximal property is satisfied in the network on every slot. For
example, in N×N bi-partite graphs with matching constraints,
one can consider choosing links according to a round-robin
schedule that selects one link every N slots. This ensures a
service opportunity every N slots, and hence, because queue
backlog Ql(t) is bounded by V ηl+1+Amax for all time, we
also have a worst-case delay bound of N [V ηl + 1 + Amax]
slots. This worst-case delay bound holds in addition to all of
our other analytical guarantees, including our average delay
bound that is independent of N when λtot/rtot = O(1).

VII. CONCLUSION

We have developed order-optimal delay results for one-hop
networks with general interference set constraints and bursty
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(time-correlated) traffic. Our results hold for cases when traffic
is within the reduced throughput region Λ∗, a region that
is typically within a constant factor of the network capacity
region. Futher, we have developed a flow control technique
that works together with maximal scheduling and yields an
explicit utility-delay tradeoff.

APPENDIX A — PROOF OF LEMMA 2

To compute ∆(t), note that using (8) and (3) yields:

Ql(t+ 1)Q̂Sl
(t+ 1) = Ql(t)Q̂Sl

(t)
+(Al(t)− µl(t))(ÂSl

(t)− µ̂Sl
(t))

−Ql(t)(µ̂Sl
(t)− ÂSl

(t))
−Q̂Sl

(t)(µl(t)−Al(t))

Thus, the 1-step unconditional Lyapunov drift is given by:

∆(t) = E {B(t)}

−1
2

∑
l∈L

E
{
Ql(t)(µ̂Sl

(t)− ÂSl
(t))
}

−1
2

∑
l∈L

E
{
Q̂Sl

(t)(µl(t)−Al(t))
}

(52)

where

B(t)M=
1
2

∑
l∈L

[
(Al(t)− µl(t))(ÂSl

(t)− µ̂Sl
(t))
]

(53)

We now use the following important structural property of
the interference sets.

Lemma 4: (Sum Switching) For any function f(l, ω)
(where l ∈ L, ω ∈ L), we have:∑

l∈L

∑
ω∈Sl

f(l, ω) =
∑
ω∈L

∑
l∈Sω

f(l, ω) �

The above lemma follows directly from the pairwise symmetry
property of the interference sets: For any two links l, ω ∈
L, we have that ω ∈ Sl if and only if l ∈ Sω , and hence
{(l, ω) | l ∈ L, ω ∈ Sl} = {(l, ω) | ω ∈ L, l ∈ Sω}. Using this
lemma we can re-write the final term in (52):∑
l∈L

Q̂Sl
(t)(µl(t)−Al(t))

=
∑
l∈L

∑
ω∈Sl

Qω(t)(µl(t)−Al(t)) (54)

=
∑
ω∈L

∑
l∈Sω

Qω(t)(µl(t)−Al(t)) (55)

=
∑
ω∈L

Qω(t)(µ̂Sω
(t)− ÂSω

(t)) (56)

=
∑
l∈L

Ql(t)(µ̂Sl
(t)− ÂSl

(t)) (57)

where (54) follows by the definition of Q̂Sl
(t) given in (6),

(55) follows by the Sum Switching Lemma (Lemma 4), and
(57) follows by re-labeling the indices. Plugging the equality
(57) directly into the drift expression (52) yields:

∆(t) = E {B(t)} −
∑
l∈L

E
{
Ql(t)(µ̂Sl

(t)− ÂSl
(t))
}

(58)

Further, we note that the expression for B(t) in (53) is
equivalent to that given in (11). This can be seen by using a
sum-switching argument similar to (54)-(57) on the summation∑
l∈L µ̂Sl

(t)Al(t), and by noting that µl(t)µ̂Sl
(t) = µl(t).

The latter equality holds because if µl(t) = 0 we have 0 = 0
which is trivially true, while if µl(t) = 1 then no other links
within Sl can be active, and so µ̂Sl

(t) = 1.
We now use the fact that maximal scheduling is per-

formed every timeslot. Specifically, we recall that any maximal
scheduling algorithm satisfies (4) every timeslot. Using the
definition of µ̂Sl

(t), we note that (4) is equivalent to:

Ql(t)µ̂Sl
(t) ≥ Ql(t) for all l ∈ L and all t

Plugging the above inequality directly into (58) yields the
expression (10) for ∆(t) under maximal scheduling.

APPENDIX B – PROOF OF THEOREM 3

To prove Theorem 3, we introduce an artificial delay in the
final term of the drift expression (10) to decouple correlations
between queue state and arrivals. This is similar to the T -
slot technique of [13][14][6], although, unlike [13][14][6], it
allows a tight logarithmic delay result. To begin, fix an integer
T ≥ 0, and note that for t ∈ {0, 1, 2, . . . , } we have:

Ql(t) ≤ Ql(t− T ) +
T−1∑
v=0

Al(t− T + v)

where we define Ql(t) = 0, Al(t) = 0 for t < 0. Using the
above inequality in (10) yields

∆(t) ≤ E {B(t) + FT (t)} −
∑
l∈L

E {Ql(t)}

+
∑
l∈L

E
{
Ql(t− T )ÂSl

(t)
}

(59)

where FT (t) is defined:

FT (t)M=
∑
l∈L

E

{
ÂSl

(t)
T−1∑
v=0

Al(t− T + v)

}
We now use the ρ̂(T ) function to modify the final term on

the right hand side of (59):

E
{
Ql(t− T )ÂSl

(t)
}

= E
{
Ql(t− T )E

{
ÂSl

(t) | Q(t− T )
}}

≤ E

{
Ql(t− T )

(
λ̂Sl

+
∑
ω∈Sl

εω(T )

)}
(60)

≤ E {Ql(t− T )} ρ̂(T ) (61)

where (60) follows from (15) and (61) follows from (17).
Using (61) in (59), it follows that unconditional Lyapunov
drift satisfies:

∆(t) ≤ E {B(t) + FT (t)} −
∑
l∈L

E {Ql(t)}

+ρ̂(T )
∑
l∈L

E {Ql(t− T )} (62)
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Fixing the integer T and using the Lyapunov drift theorem
(Theorem 1) in the drift expression (62) yields:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
l∈L

E {Ql(τ)} ≤
(
B + FT

)
+ρ̂(T ) lim sup

t→∞

1
t

t−1∑
τ=0

∑
l∈L

E {Ql(τ − T )} (63)

where

B M= lim sup
t→∞

1
t

t−1∑
τ=0

E {B(τ)} , FT
M= lim sup

t→∞

1
t

t−1∑
τ=0

E {FT (τ)}

However, it is not difficult to see that:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
l∈L

E {Ql(τ − T )}

= lim sup
t→∞

1
t

t−1∑
τ=0

∑
l∈L

E {Ql(τ)} (64)

Indeed, the equality (64) follows by noting the time-delayed
version of the limit on the left hand side does not affect the
overall time average, as any contribution to the sum over the
extra T slots is finite and becomes negligible as t → ∞.
Therefore, because it is assumed that ρ̂(T ) < 1, the inequality
(63) simplifies to:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
l∈L

E {Ql(τ)} ≤ B + FT
1− ρ̂(T )

(65)

It is easy to show that:

B ≤ 1
2

∑
l∈L

[
λl + E

{
Al(t)ÂSl

(t)
}]

FT =
∑
l∈L

E

{
ÂSl

(t)
T−1∑
v=0

Al(t− T + v)

}

It follows by stationarity that B ≤ B̃ and FT = F̃T , where
B̃ and F̃T are defined in (18) and (19). Finally, we note that
because the queueing dynamics are described by a countable
state space, irreducible Markov chain, the lim sup in the left
hand side of (65) can be replaced by a regular limit, which
proves part (a) of Theorem 3. Part (b) of Theorem 3 follows
by computing B̃ and F̃T for the case when arrival processes
Al(t) are independent of each other.

APPENDIX C — PROOF OF LEMMA 3

Choose any two links l, ω such that l ∈ L and ω ∈ L̃.
The linear equations (27) and (34) can be re-written in matrix
form:

E {QlAω}
[

1
1

]
= (Cl,ω −Dl,ω)

[
1
0

]
+Hω

[
x

(1)
l,ω

x
(2)
l,ω

]
(66)

where Hω is defined:

Hω
M=

[
h

(1)
ω h

(2)
ω

λ
(1)
ω λ

(2)
ω

]

Using definitions of h(1)
ω and h(2)

ω from (35) and (36), it is not
difficult to show that the determinant of Hω is given by:

det(Hω) = (λ(2)
ω − λ(1)

ω )λω(βω + δω)

This determinant is non-zero if and only if λ(1)
ω 6= λ

(2)
ω , which

is true because ω ∈ L̃. Thus, H−1
ω exists and is given by:

H−1
ω =

1

(λ(2)
ω − λ(1)

ω )λω(βω + δω)

[
λ

(2)
ω −h(2)

ω

−λ(1)
ω h

(1)
ω

]

However, note from (26) that x(1)
l,ω+x(2)

l,ω = E {Ql}, and hence:

E {Ql} =
[

1 1
]
H−1

ω Hω

[
x

(1)
l,ω

x
(2)
l,ω

]

= E {QlAω}
[

1 1
]
H−1

ω

[
1
1

]
−(Cl,ω −Dl,ω)

[
1 1

]
H−1

ω

[
1
0

]
where the last line follows from (66). However, using defini-
tions of h(1)

ω and h(2)
ω from (35) and (36), it is not difficult to

show that:

[
1 1

]
H−1

ω

[
1
1

]
=

(λ(2)
ω − λ(1)

ω ) + (h(1)
ω − h(2)

ω )
det(Hω)

=
1
λω

Similarly:

[
1 1

]
H−1

ω

[
1
0

]
=

1
λω(βω + δω)

Using these identities yields:

E {Ql} =
E {QlAω}

λω
− Cl,ω −Dl,ω

λω(βω + δω)

This proves Lemma 3.

APPENDIX D — PROOF OF THEOREM 6

A. Time Averages γl and rl

From the queueing equation for Yl(t) (given in (44)), it is
clear that for all t we have:

1
t

t−1∑
τ=0

γl(τ)− 1
t

t−1∑
τ=0

Rl(τ) ≤ Yl(t)
t

However, we know from (47) that Yl(t) ≤ V ηl + 1 for all t.
Define rl and γl as time average expectations of the Rl(t) and
γl(t) processes, respectively. Thus:

γl ≤ rl for all l ∈ L (67)
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B. Computing The Lyapunov Drift

Define the Lyapunov function L(Q(t)) as in (7). Define
Y (t) as the vector of flow state (virtual queues), and define
the combined Lyapunov function Ψ(Q(t),Y (t)) as follows:

Ψ(Q(t),Y (t)) = L(Q(t)) +
1
2

∑
l∈L

Yl(t)2

The combined Lyapunov drift ∆(t) is the sum of drift for the
Q(t) and Y (t) terms. The drift for the Q(t) terms is the same
as (22) with the Al(t) values replaced by Rl(t), and the drift
for Y (t) is found from (44) using a standard quadratic drift
argument (see, for example, [6]). Following the framework of
[6] for joint Lyapunov stability and performance optimization,
our goal is to make decisions that minimize a bound for the
expression: ∆(t) − V

∑
l∈L E {gl(γl(t))}. Omitting the drift

computation details for brevity, we have:

∆(t)− V
∑
l∈L

E {gl(γl(t))} ≤ E {DQ(t) +DY (t)}

−
∑
l∈L

E {Ql(t)}

+
∑
l∈L

E
{

E
{
Rl(t)[Q̂Sl

(t)− Yl(t)] | Q(t),Y (t)
}}

+
∑
l∈L

E {E {Yl(t)γl(t)− V gl(γl(t)) | Q(t),Y (t)}} (68)

where R̂Sl
(t)M=

∑
ω∈Sl

Rω(t) and Lemma 4 is used, and where
DQ(t) and DY (t) are defined:

DQ(t) M=
1
2

∑
l∈L

[
Rl(t)R̂Sl

(t)− 2R̂Sl
(t)µl(t) + µl(t)

]
DY (t) M=

1
2

∑
l∈L

[
Rl(t)2 + γl(t)2

]
It is evident that the FLOW-MAXIMAL algorithm observes
the queue values Q(t) and Y (t) every slot t, and chooses
Rl(t) and γl(t) to minimize the inside (conditional) expecta-
tions in the last two terms on the right hand side of (68) over
all alternative options. It follows that the above expression is
less than or equal to the corresponding expression when the
decisions Rl(t) and γl(t) (for slot t only) are replaced by
R∗l (t) and γ∗l (t), being any alternative decisions that can be
made on slot t that satisfy the constraints:

0 ≤ R∗l (t) ≤ Al(t) , 0 ≤ γ∗l (t) ≤ 1 , γ∗l (t) ∈ Iδ (69)

Plugging these expressions back into the final four terms on
the right hand side of (68) and rearranging terms yields:

∆(t)− V
∑
l∈L

E {gl(γl(t))} ≤ E {DQ(t) +DY (t)}

−
∑
l∈L

E {Ql(t)}+
∑
l∈L

∑
ω∈Sl

E {Ql(t)R∗ω(t)}

−
∑
l∈L

E {Yl(t)R∗l (t)}+
∑
l∈L

E {Yl(t)γ∗l (t)}

−V
∑
l∈L

E {gl(γ∗l (t))} (70)

We emphasize a subtle but important point in the above
expression: The expectations on the right hand side involve

queue backlogs Ql(t) and Yl(t) that have distributions that
arise from having implemented the FLOW-MAXIMAL al-
gorithm on every timeslot up to time t (so that these are
queue backlogs that arise in the actual algorithm). However,
the R∗l (t) and γ∗l (t) values are not actually used in the
algorithm implementation, are potentially different from the
FLOW-MAXIMAL decisions, and are considered as being
implemented only on slot t for computation of the expectation.

C. Establishing the Congestion Bound
Consider now the particular decisions R∗l (t) = γ∗l (t) = 0

for all l ∈ L, and note that these indeed satisfy the required
constraints (69). The inequality (70) thus becomes:

∆(t)− V
∑
l∈L

E {gl(γl(t))} ≤ E {DQ(t) +DY (t)}

−
∑
l∈L

E {Ql(t)}

Using this inequality for the drift ∆(t) directly in the Lya-
punov drift Theorem (Theorem 1), for f(t) =

∑
l∈LQl(t)

and g(t) = V
∑
l∈L gl(γl(t)) +DQ(t) +DY (t), yields:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
l∈L

E {Ql(τ)} ≤ DQ +DY

+V lim sup
t→∞

1
t

t−1∑
τ=0

∑
l∈L

E {gl(γl(τ))}

where DQ and DY represent time average expectation of the
DQ(t) and DY (t) processes. Using the fact that gl(0) = 0,
and that η is the largest right derivative of any utility function,
we have gl(γ) ≤ ηγ for all l. Hence, using the fact that steady
state exists, we have:∑

l∈L

E {Ql} ≤ DQ +DY + V η
∑
l∈L

γl (71)

where γl represents the time average expectation of the γl(t)
process. Using the fact that γl ≤ rl (from (67)), it follows
that

∑
l∈L γl ≤ rtot. Further, the DQ and DY averages can

be bounded as follows:

DY ≤ rtot
2

[Amax + 1]

DQ ≤ 1
2

∑
l∈L

E
{
Al(t)ÂSl

(t)
}

+
rtot
2

Using these in (71) proves the average queue bound (49).

D. Establishing the Utility Bound
Without loss of generality, assume that λl > 0 for all l ∈ L

(else, such a link with λl = 0 can be effectively removed from
the set of links L, as no data ever arrives for transmission
over this link). Define (r∗l ) as the solution to the optimization
problem (40)-(43), so that

∑
l∈L gl(r

∗
l ) = g∗δ . Note also that

the constraints in (40)-(43) ensure that r∗l ≤ λl. For each link
l ∈ L, consider the particular decisions for R∗l (t) and γ∗l (t):

γ∗l (t) = r∗l

R∗l (t) =
{
Al(t) with probability r∗l /λl
0 otherwise
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Note that the policy R∗l (t) is randomized, and the randomized
decision is made independently of everything else. These
decisions indeed satisfy the required constraints (69). Hence,
plugging into (70) yields:

∆(t)− V
∑
l∈L

E {gl(γl(t))} ≤ E {DQ(t) +DY (t)}

−
∑
l∈L

E {Ql(t)}+
∑
l∈L

∑
ω∈Sl

E {Ql(t)R∗ω(t)}

−
∑
l∈L

E {Yl(t)R∗l (t)}+
∑
l∈L

r∗l E {Yl(t)} − V g∗δ (72)

Note that:

E {Ql(t)R∗ω(t) | Zω(t) = m} =
r∗ω
λω
λ(m)
ω E {Ql(t) | Zω(t) = m}

E {Yl(t)R∗l (t) | Zl(t) = m} =
r∗l
λl
λ

(m)
l E {Yl(t) | Zl(t) = m}

Hence, similar to the linear-algebraic derivation in Section V,
we can show that for any time t at which the system is in
steady state (omitting details for brevity):

E {Ql(t)R∗ω(t)} ≤ E {Ql(t)} r∗ω +
C̃l,ω

βω + δω
(73)

E {Yl(t)R∗l (t)} ≥ E {Yl(t)} r∗l −
C̃l,l

βl + δl
(74)

where C̃l,ω is defined: C̃l,ω M=E {Rl(t− 1)R∗ω(t)} if ω ∈ L̃,
and 0 else. Note that C̃l,ω is defined using the actual decision
Rl(t−1) implemented on slot t−1 and the alternative decision
R∗ω(t) (not implemented) for slot t, and satisfies:

C̃l,ω ≤ E {Al(t− 1)R∗ω(t)} = (r∗ω/λω)E {Al(t− 1)Aω(t)}

Plugging (74) and (73) into (72) yields:

∆(t)− V
∑
l∈L

E {gl(γl(t))} ≤ E {DQ(t) +DY (t)}

+
∑
l∈L

∑
ω∈Sl∩L̃

C̃l,ω
βω + δω

+
∑
l∈L̃

C̃l,l
βl + δl

− V g∗δ

where we have used the fact that
∑
ω∈Sl

r∗ω ≤ 1. Using
the above drift expression in the Lyapunov drift Theorem
(Theorem 1) yields:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
l∈L

E {gl(γl(τ))} ≥ g∗δ − F/V (75)

where F is defined as in (51). By concavity of gl(r), Jensen’s
inequality yields:

1
t

t−1∑
τ=0

E {gl(γl(τ))} ≤ gl

(
1
t

t−1∑
τ=0

E {γl(τ)}

)
Taking limits of the above inequality and noting that the time
average expectation γl exists and satisfies γl ≤ rl for each
l ∈ L (by (67)), we have:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
l∈L

E {gl(γl(τ))} ≤
∑
l∈L

gl(rl)

Using this in (75) proves Theorem 6.
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