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Energy Optimal Control for Time Varying
Wireless Networks

Michael J. Neely

Abstract— We develop a dynamic control strategy for min-
imizing energy expenditure in a time varying wireless network
with adaptive transmission rates. The algorithm operates without
knowledge of traffic rates or channel statistics, and yields average
power that is arbitrarily close to the minimum possible value
achieved by an algorithm optimized with complete knowledge of
future events. Proximity to this optimal solution is shown to be in-
versely proportional to network delay. We then present a similar
algorithm that solves the related problem of maximizing network
throughput subject to peak and average power constraints. The
techniques used in this paper are novel and establish a foundation
for stochastic network optimization.

Index Terms— Stochastic Optimization, Queueing Analysis,
Ad-Hoc Networks, Distributed Algorithms, Mobile Networks

I. INTRODUCTION

Wireless systems operate over time varying channels that are
influenced by random environmental conditions, wireless fad-
ing, and power allocation decisions. To improve performance
and meet the ever increasing demand for high throughput
and low delay, modern wireless devices are designed with
channel monitoring capabilities and rate adaptive technology.
Such technology is currently being implemented for cellular
communication with High Data Rate (HDR) services [3], and
the ability to measure and react to channel information is
expected to improve significantly.! It is of central importance
to develop control strategies that take maximum advantage of
this information to improve network performance and energy
efficiency.

In this paper, we develop throughput optimal control strate-
gies that conform to peak power constraints while minimizing
average power expenditure. This design goal is crucial in
all modern wireless scenarios, regardless of whether trans-
missions take place at a basestation, a hand-held unit, or
at a node within an ad-hoc sensor network. Indeed, peak
power constraints are important in systems with fixed hardware
saturation levels or external environment regulations, while
average power levels are important to extend network lifetime
in systems with limited energy resources.

Here, we consider an ad-hoc network with N nodes and
L wireless links, as shown in Fig. 1. We assume a slotted
structure with slots equal to 1 time unit. Packets randomly
arrive to the network every timeslot and must be delivered to
their destinations, perhaps by routing over multi-hop paths.
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Indeed, it is claimed in [4] that channel measurements can be obtained
almost as often as the symbol rate of the link in certain local area wireless
networks.
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Fig. 1. A cell-partitioned wireless network, and an example set of rate-power
curves for 5 different channel states.

The transmission rates of each data link are determined every
timeslot by link channel conditions and network power allo-
cation decisions according to an L-dimensional rate function
[i(P(t),S(t)), where P(t) is a vector of power allocations
and S(t) is a vector of parameters describing the current
channel conditions. For most of this paper, we assume that all
nodes maintain the same locations relative to one another for
the duration of the network operation. Although the network
topology remains fixed in this scenario, link conditions may
vary dramatically due to environmental effects, local mobility,
or wireless fading. Extensions to networks with arbitrary
mobility patterns are developed in Section VI.

Power vectors are restricted to a compact set II of acceptable
power allocations, so that P(t) € II for all ¢. The set II
includes the peak power constraints for each node together
with any additional constraints the network might impose on
instantaneous transmissions. All of our results are presented
for general power sets II and general rate functions /1(13, §)
An example of concave rate-power curves for one data link
with a discrete set of possible channel states is shown in Fig.
1. Such curves might also depend on the signal to interference
ratio at the intended receiver, so that ,ul(ﬁ, 5) for a given link
[ is determined by the full vector of power allocations and
channel states [22] [12] [23]. However, to simplify the multiple
access control layer while capturing the geographic structure
and interference properties of ad-hoc networks, we focus our
implementation examples on a cell partitioned network model.

Under this model, the network region is divided into cells,
each containing a distinct set of nodes. Specifically, we define
cell(n) as the cell of each node n € {1,..., N}, and define
tran(l) and rec(l) as the transmitting and receiving nodes
associated with a given wireless link { € {1,...,L}. We
assume that each cell can support at most one active link
transmission per timeslot, and that nodes can transmit only
to other nodes in the same cell or in adjacent cells. That is,
the feasible power set II includes the constraint that if P, > 0
for some link [, then P; = 0 for all links ! = [ such that
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cell(tran(l)) = cell(tran(l)). We further assume that the
transmission rate of each link depends only on the channel
state and the power allocated to that link, so that Z(P,S) =
(1 (P1,S1)s -, pr(Pr,Sp)). This structure arises if nodes
in neighboring cells transmit over orthogonal frequency bands.
In this way, if a node is transmitting then it cannot concurrently
receive from nodes within the same cell, and any data it
receives from adjacent cells must be on a different frequency
band. If the cell structure is rectinlinear, it is well known
that only 9 orthogonal subbands are required to ensure all
neighboring cells have distinct subbands, and this number can
be reduced to 7 if cells are arranged according to a hexagonal
pattern. While the cell partitioned structure is not critical to
our analysis, it simplifies exposition and allows scheduling
decisions to be decoupled cell by cell. Relaxations of the
model or further restrictions on power assignment can easily
be incorporated by modifying the set constraint II or the rate
function ji(P,S).

The goal of this paper is to develop a power allocation
and routing algorithm that supports all incoming traffic while
minimizing average power expenditure. We develop a robust
policy that does not require knowledge of input rates or
channel probabilities yet uses a total power expenditure that
is arbitrarily close to the minimum average power expended
by a system optimized with complete knowledge of future
events. Distance to this minimum power level is controlled by
a parameter V effecting an explicit tradeoff in average end-
to-end network delay.

Previous work in the area of power allocation for wireless
systems can be categorized into static optimization solutions
[5]-[12] and dynamic control algorithms [14]-[13]. In [5], a
utility optimization problem is presented for a static wireless
downlink, and pricing schemes are developed to enable power
allocations to converge to a fair allocation vector. Linear
programming, geometric programming, and other convex op-
timization methods are considered in [6]-[10] for routing and
power allocation problems in wireless systems and sensor
networks. Such techniques rely on the mathematical theory of
Lagrangian duality (see, for example, [28]). This theory was
applied in the landmark paper [29] to develop mechanisms for
optimal static resource allocation in a non-wireless network.
We note that convex optimization approaches traditionally
yield single-operating point solutions, which may not be well
suited to cases when optimal networking involves dynamic
allocation of resources. Indeed, in [12] it is shown that
minimizing energy in a static ad-hoc network with interference
involves the computation of a periodic transmission schedule,
yielding dramatic improvements over any fixed resource al-
location. A similar scheduling problem is shown to be NP-
complete in [11].

Prior work in the area of stochastic optimization and dy-
namic control for wireless networks considers much smaller
systems with more a-priori statistical information, including
[23] [24] [25] for energy efficient scheduling in single queue
systems, and [26] [27] for multi-user downlinks with infinite
backlog. A downlink with randomly arriving traffic and peak
and average power constraints is considered in [13] using
a theory of Lyapunov drift, although the algorithm requires

perfect knowledge of channel probabilities in order to meet
the average power requirement. Lyapunov theory can be used
to design stabilizing power allocation and routing algorithms
that do not require knowledge of arrival rates or channel
statistics in cases where there are only peak power constraints
on the wireless devices [22]. Historically, Lyapunov theory
has been extremely useful in the development of stable queue
control policies for radio networks and switching systems [14]-
[22]. However, there was previously no Lyapunov method for
performing queueing network optimization (such as stabilizing
a network with minimum average power).

In this paper, we develop a simple Lyapunov drift technique
that enables system stability and performance optimization
to be achieved simultaneously [2] [1] [30]. The technique
extends the Lyapunov methods of [14]-[22] and bridges the
gap between convex optimization theory and stochastic queue-
ing control problems. We note that alternative approaches
to stochastic network optimization have recently appeared
in [31] [32] [33] using fluid model transformations and/or
stochastic gradient theory. Our Lyapunov technique is similar
to the notion of a stochastic gradient (see Chapters 4-5 of
[2] for a comparison between static gradient search methods
and Lyapunov scheduling), although it was developed from a
queueing stability perspective and yields explicit bounds on
average power and delay.

For simplicity of exposition and to highlight the issues of
power allocation, in the first half of this paper we consider only
single-hop networks with no routing. The paper is organized
as follows: In the next section we consider a motivating
example of a 2-user wireless downlink. In Section III we
develop a control policy for minimizing average power for
one-hop networks. In Section IV we treat a related problem
of maximizing throughput subject to peak and average power
constraints (for cases when traffic is either supportable or
insupportable). Extensions to multi-hop networks and mobile
networks are treated in Sections V and VI, and simulations
are presented in Section VII.

II. A SIMPLE EXAMPLE

To illustrate the decisions involved in energy-optimal
scheduling, we consider the following example of a two-queue
wireless downlink, where a single node (labeled ‘node 07)
transmits data to two different stations over downlink channels
1 and 2 (as in Fig. 1 in the case when only node 0 is active).
The system operates in slotted time, and every slot the channel
states are measured, power allocation decisions are made, and
new arrivals are queued according to their destinations.

Let Uy (t) and Us(t) represent the current backlog queued
for transmission to destinations 1 and 2, respectively, and
consider the decision of whether or not to allocate power to
channel 1. Clearly no power should be allocated if U; (¢) = 0.
When Ui (¢) > 0, we must decide whether to allocate power
on the current slot or wait for a more energy-efficient future
channel state. In this example, we consider only ON/OFF
power constraints and assume that either no power is allocated
to any channel, or full power of 1 Watt is allocated to either
channel 1 or channel 2. Link conditions for each channel 1
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t 0]1]2|3|4]5|6|7/|8

Arrivals | A;(¢) [3]0(3]0[0|1[0]|1]0

As(t) 2101|011 ]1[0]0]O

Channels | S1(t) |6 |G |M | M |G| G|M|M|G

Sa(t) I M|M|B|M|B|M|B|G|B

Policy Us(t) | 0] 2 212 m|o

Better Ui(t) |03 ]3]6]|0@ 1|1

Choices | Ux(t) | O |2 |2 |8 |12 |3]|03]0
Fig. 2. An example set of arrivals, channel conditions, and queue backlogs

for a two queue wireless downlink under two different scheduling algorithms,
illustrating the power efficiency gains enabled by having full knowledge of
future arrivals and channel states.

and 2 vary between ‘Good, ‘Medium, and ‘Bad’ states:
(Pa(t), Po(t)) € T12{(0,0),(1,0), (0, 1)}
S1(t), S2(t) € {G, M, B}
Assume identical rate functions for ¢ = 1, 2, given by:

wi(0,S;) = 0 units/slot ~ for all S; € {G, M, B}
wi(1,G) =3, 1;(1, M) =2, u;(1, B) = 1 (units/slot)

That is, a link can transmit 3 units of data in the ‘Good’ state,
2 units in the ‘Medium’ state, and 1 in the ‘Bad’ state.

Let A;(t) and As(t) represent the number of new data
units arriving during slot ¢ and destined for nodes 1 and
2, respectively. Queueing dynamics proceed according to the
equation:

Us(t + 1) = max(Us(t) — i (Pi(#), Si(D), 0] + Ai(2)

Suppose arrivals A, (t) and channel states .S;(¢) for the first 9
timeslots ¢ € {0, ..., 8} are as given in Fig. 2, and consider the
policy of allocating power to the channel with the largest rate-
backlog product U; (t)u:(1, .S;(¢)). This policy can be shown to
stabilize the system whenever possible [15] [19] [21], although
it is not necessarily energy-efficient. According to the figure,
both queues are empty at time ¢ = O when arrivals enter the
system according to vector (A;(0), A2(0)) = (3, 2), resulting
in a backlog vector (U3(1),U2(1)) = (3,2) at the beginning
of slot 1. Because the channel states at slot 1 are given
by (S1(1),52(1)) = (G, M), the rate-backlog indices for
channels 1 and 2 at slot 1 are given by Uy (t)u1(1,S1(t)) =9,
Us(t)p2(1, S2(t)) = 4, so that the Max U, u; policy places full
power to channel 1 (as indicated by the boxed values in the
figure).

Because there were no new arrivals during slot 1, the result-
ing backlog vector at time ¢ = 2 is given by (U;(t), Ua(t)) =
(0,2), as shown in the figure. The policy proceeds by ex-
pending 1 Watt of power for time ¢ € {1,...,8}, and the
scheduling decision at slot ¢ = 8 will leave the system again
empty at time ¢ = 9. If the same arrival and channel patterns
were extended periodically every 9 timeslots, the Max U, u;
policy would allocate 1 Watt of power 8 timeslots out of every
9, yielding a time average power consumption of P,, = 8/9
Watt. Similar power consumption levels are observed when
the policy is simulated for random arrivals and channel states

with the same steady state distributions as this example (see
Section VII).

Now consider the alternate policy of waiting until slot 3 to
allocate power, and then making decisions as shown in the
figure. These decisions also leave the system empty at slot 9,
but yield an average power expenditure of P,, = 5/9 Waltt
over the 9 slot interval. Average power can be further reduced
if channel states and arrivals are extended periodically (or
probabilistically) over the infinite time horizon, and it can be
shown that the minimum average power required to stabilize
such a system is given by P}, = 0.518.

The above example illustrates the energy gains available
by more intelligent scheduling. In cases where power can be
allocated as a continuous variable, more complex decisions
are involved: Should we exploit better channel states by
transmitting at higher data rates with the same power level, or
by transmitting at the same data rate with reduced power? In
the next section, we develop a simple decision making strategy
that does not require knowledge of future events, traffic rates,
or channel statistics, yet yields an average power expenditure
that is arbitrarily close to optimal.

ITII. SINGLE HOP NETWORKS

Consider the wireless network of Fig. 1 with N nodes and L
links, where each link corresponds to a directed transmission
from one node to another. Packets randomly arrive to the
system and are queued according to their destinations. This is
a single-hop network, and hence incoming data is associated
with a particular transmission link [ € {1,...,L} and is
assumed to leave the network once it is transmitted. Let A;(¢)
represent the amount of bits arriving for transmission over
link [ during slot ¢, and let U;(t) represent the current queue
backlog (or ‘unfinished work’) in queue . Let S(¢) and P(t)
represent the [L-dimensional vectors of channel states and
power allocations. In vector notation, the queueing dynamics
are:

U(t+ 1) = max[U(¢) — ji(P(t), 5(1), 0] + At) (1)

where ﬁ(ﬁ, S ) is the rate function associated with the given
physical layer modulation and coding strategies used for
wireless communication.

We assume that there are a finite number of channel state
vectors S, and that ﬁ(ﬁ, S ) is a continuous function of the
power vector P for each channel state 5.2 Every timeslot
a power vector ]3(t) is chosen in reaction to queue backlog
and current channel conditions, subject to the constraint that
P(t) € II for all ¢, where II is a compact set of acceptable
power vectors. Throughout this paper, we use these general
rate functions and set constraints to present our main re-
sults. However, in all examples of distributed implementation,
we assume the rate function has the structure: [i(ﬁ, §) =
(1 (P, S1)s- -5 pr(Pr,Sr)). Further, in our examples we
assume that II consists of all vectors P satisfying the cell-
partition constraint (i.e., that if P, > 0 for some link /, then
P; =0 for all [ # [ satisfying cell(tran(l)) = cell(tran(l))),

2Qur results hold more generally for any (potentially discontinuous) rate-
power curve that satisfies the upper semi-continuity property [2].
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and such that each entry P, is limited by a peak value
Ppyear according to either the continuous power constraint
0 < P < Pyear or the discrete ON/OFF power constraint
]Dl € {OaPpeak}~

A. Minimum Power For Stability

Here we characterize the minimum average power required
to stabilize the system. We begin with a precise definition of
stability in terms of the overflow function g(M) associated
with a queue with unfinished work process U (¢):

g(M)£E lim sup ~ Z Pr(U

t—oo —0

(1) > M]

The function g(M) represents the largest limiting fraction of
time the unfinished work is above the value M.

Definition 1: A queue with unfinished work process U(t)
is stable if g(M) — 0 as M — oo. A network of queues is
stable if all individual queues are stable.

In the special case when queue backlog evolves according to
an ergodic Markov chain with a countably infinite state space,
then this notion of stability is equivalent to the existence of
a steady state probability distribution for the chain. However,
the above stability definition is more general in that it does
not require a countably infinite state space, nor does it require
ergodicity. A more detailed discussion of stability issues is
given in [34] [35] [2].

Assume that inputs and channel processes are ergodic with
arrival rates \ = (A1) and channel probabilities 7g. In [2],
the network capacity region A is defined as the closure of
the set of all rate vectors stabilizable under some power
allocation algorithm that conforms to the power constraint
P(t) € IL The following theorem specifies the minimum
average power required for network stability, among the class
of all algorithms with complete knowledge of future events.

Theorem 1: (Minimum Power for Stability) If the network
is stabilizable (so that Xe A), the minimum power required
for stability is given by P}, , where P, is the solution to the
following nonlinear optimization problem (defined in terms of
aux111ary probability variables ak and power vectors PS for
all S and for k € {1,2,...}):

ZsWsZk 1“7? Plf
/”'avaSﬂ-SZk lak,u( kas)z/\
PSEH af>0 forallk§

£+12 a,f —1 forall §

Minimize:

Subject to:

Further, the value of P}, is unchanged if the optimization
problem above is restricted to use at most L + 2 auxiliary
variables o and PS for any channel state S.

The theorem 1nd1cates that minimum power for stability is
achieved among the class of stationary policies that measure
the current channel state S’( ) and then randomly allocate
a power vector PS with probability ak This minimum is
attained by a partlcula.r policy because the number of channel
states is finite and the power set II is compact. The value of
Py, is the resulting average power of this stationary policy,

and fi,, is the resulting time average transmission rate vector.
This is expressed in the following corollary to Theorem 1.
Corollary 1: If channel states S(t) are i.i.d. over slots, min-
imum power for stability is given by the value P, minimized
over the class of all stationary randomized algorithms that
make decisions based only on the current channel state S (1),

and yielding for all timeslots ¢:
> E{R(t)

1
o lE {,z (]3(75), §(t)) | H(t)} > X )

where H (t) represents the history of past channel states during
slots 7 € {0,1,...,t —1}.

As the corollary assumes channel states are i.i.d. over slots,
the above expectation is the same for all slots ¢. Theorem 1 is
proven via the following two claims: (Claim 1) No algorithm
can achieve stability with a smaller average power P, and
(Claim 2) any rate vector X strictly interior to A can be
stabilized with an average power that is arbitrarily close to

- Claim 1 is proven in Appendix A by extending the
dimensionality of the system from L to L 4+ 1 and applying
Caratheodory’s Theorem [28] (where the k € {1,...,L + 2}
result is also obtained). Below we prove Claim 2:

Proof: (Claim 2) The network capacity region A is proven
in [2] to consist of all rate vectors X such that a stationary
power allocation rule exists satisfying (2). The value of P, is
by definition the average power consumption, minimized over
all such stationary rules. If X is strictly interior to A, there
exists a positive value e such that X+ €€ A (where €is the
L-dimensional vector with all entries equal to €). It follows
that there exists a stationary power allocation rule satisfying:

E {g (ﬁ(t),ﬁ(t))} >X+E> X
and we define P}, (e) as the minimum average power con-
sumed by any such stationary policy. The time average trans-
mission rate of each queue is strictly larger than the arrival

rate, and hence the network is stable [2]. This holds for
arbitrarily small values of e. Furthermore, it is not difficult

to show:?
: ) P, +

emaz

H(t)} =

P;U S P;U(e) S <1 - P* (em(u)

max
where €4, is the largest scalar such that (A; + €,42) € A. It
follows that P}, (¢) — P, as € — 0, so that stability can be
attained with power that is arbitrarily close to P;,,. O
We note that the concept of randomization used in Theorem
1 is vitally important to treat the general case where the
set {fi(P,S)| P € II} is not necessarily convex. Otherwise,
optimality can be achieved by a strategy that allocates a fixed
power vector P whenever the channel is in state S. Note
that even if there are only two possible channel states for
every link, the total number of channel state vectors is 2L,
Thus, while the above static optimization defines the minimum

3The right hand side of the inequality follows by noting P.*, (¢) is less than
or equal to the average power associated with the mixed strategy that uses
the P, strategy with probability 1 — €/€maq and the Puy (€maz) strategy
with probability €/€maz-
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power level P, it is not practical to envision solving the
optimization via standard techniques, even if the channel
state probabilities 7z are fully known. In the next section
we overcome this problem by developing a novel stochastic

optimization technique.

B. An Energy-Optimal Control Algorithm

Here we develop a practical control algorithm that stabilizes
the system and expends an average power that is arbitrarily
close to the minimum power solution P;,. For simplicity
of exposition, we assume the arrival vectors A(t) are i.i.d.
over timeslots with arrival rate E{A(¢)} = X, and that the
channel state vectors S (t) are i.i.d. over timeslots with channel
probabilities 775.4 The algorithm below uses an arbitrary
control parameter V' > 0 that affects a tradeoff in average
queueing delay.

Energy-Efficient Control Algorithm (EECA): Every times-
lot, observe the current levels of queue backlog ﬁ(t) and
channel states S(#) and allocate a power vector P(t) =

(Py,...,Pp) according to the following optimization:
Maximize: Zle 20U, () (P, S(t)) — VP, 3)
Subject to: P=(P,.. LPp)yell

The EECA algorithm is similar to the power allocation
algorithm of maximizing >, Uy (P, S) [21] [15] [19], with
the exception that the optimization metric is modified by a
weighted power term —V P, for each link /. It is interesting to
note that the resulting metric is similar to the index policy of
[27] developed for minimizing power in a system with infinite
backlog and no queueing. However, the “index” that is used
in [27] is a constant Lagrange multiplier that is pre-computed
based on channel probability information, while our “index”
includes a dynamic queue state U;(t) that is updated from slot
to slot but requires no pre-computation or a-priori statistical
knowledge.

Distributed Implementation: For cell-partitioned networks,
we have [i(P,S) = (u(Py,S1),...,u0(Pr,SL)). In this
case, the above optimization is implemented according to the
following simple algorithm: Each node measures the channel
state S;(t) for each of its own outgoing links [ and computes
a quality value Q;, where Q; is the maximum value of
2U(t) i (P, S;(t)) — V P, over either the continuous interval
0 < P, < Pyeqr, or the 2-valued set P, € {0, Ppeqr }. Define
P as the quality maximizing power level for link [. Define 2,
as the set of links [ € {1,..., L} such that tran(l) = n. Each
node n then computes [}, and ()}, defined as follows:

* A * A
—= arg max = *
n=argmax Q, Q,=Q

The value of @)}, is the contribution that node n brings to the
summation in (3) if it is chosen for transmission. Each node
then broadcasts its value of ()}, to all other nodes in its cell,
and the node n with the largest ()7 is selected to transmit in

4We note that the ii.d. assumptions are not necessary, and the same
algorithms can be used for general ergodic arrivals and channels, resulting
in modified but more involved delay expressions [2].

that cell (ties are broken arbitrarily). Transmission takes place
over link | = I*, with power level P;. In cases where each
cell can support more than one transmission, the algorithm is
simply implemented by selecting the ser of nodes with the
largest quality metrics.

Example 1: Under the ON/OFF constraint P; € {0, Ppear }.

the power P, for each link [ is given by:

]5 _ Ppeak if 2Ul(t)//['l(Ppeaka Sl (t)) > VPpeak
! 0 else

In this case, we see that power is allocated only when the
backlog exceeds a channel state dependent threshold.

Example 2: Suppose we have a continuous constraint 0 <
P, < Pyear and that rate functions have a logarithmic profile:
wi(P,S) = log(1l + vsP), where g is an attenuation/noise
coefficient associated with channel state S. In this case, the
optimal power level is a continuous function of the queue
backlog. Indeed, for any link [ with channel state S;(t) = S
and queue backlog U;(t) = U, the quality maximizer P is a
critical point of 2U (P, S) — V P over the interval 0 < P <
Pycqi. Differentiating with respect to power, we have:

2U~s

d
= 2Uw(P,S) ~ VP = —15_ _
20 (P.S) = VP = 1

dP
and it easily follows that:

2U(t) 1

|4 sty

P, = min [max [ 0} , P, peak:| U

2 out

max? :umaz’ and

To evaluate the above algorithm, define A
B as follows:

AZ £

max

mox 3 B {47)
ey,
out A D Q
Hmaz = max H (P7 S)
{n,S,P€Il} lg'l:" !

A2 e + (o )? 4)

B £

Now assume that X is strictly interior to the network capacity
region A, and define the scalar value €,,,, as the largest value
that can be added to each component of X so that the resulting
vector is still within the capacity region, i.e., (A\; + €maz) € A.

Theorem 2: If X is strictly interior to A, then the EECA

algorithm with any V' > 0 stabilizes the system, with a
resulting average congestion bound given by:

- 1 t—1
U2l -
S Ui e Y-
1 7=0

Furthermore, average power P,, is given by:

BN +VNPyea

26max

<

> E{Ui(n)}
l

t—1
— 1
P 21 - <P +BN/V
1im sup m Tz:% = 4 qv + /

t—o0

> E{P(r)}
l

where P}, is the minimum power solution of the optimization
in Theorem 1.

Thus, the V' parameter can be chosen so that BN/V is arbi-
trarily small, yielding average power that is arbitrarily close to

the optimum. However, the congestion bound grows linearly
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with V. By Little’s Theorem, average backlog is proportional
to average bit delay. Hence, average power can be pushed
arbitrarily close to the minimum value, with a corresponding
linear increase in average delay. This holds because the V'
parameter effectively determines the amount by which the time
average transmission rate vector Hav 18 larger than the input
rate \. Pushing fi,, downward towards X decreases average
power consumption while increasing queueing delay. Theorem
2 is proved in the next subsection using a novel drift argument.

C. Performance Analysis

To prove the performance results of the previous subsection,
we first establish a novel Lyapunov drift technique enabling
stability and performance optimization to be achieved simul-
taneously. Let U (t) be a vector process of queue backlogs
that evolves according to some probability law. To measure
aggregate network congestion, define a Lyapunov function
L(ﬁ) as the sum of squares of the individual queue backlogs:
L(U)2 S, U?. Let P(t) = (Py(t),...,P(t)) represent a
process of non-negative auxiliary control variables. Let g(ﬁ)
be any non-negative cost function of the vector P, and let g*
represent a target cost value. The goal is to stabilize the U (t)
process while keeping the time average cost of g(P(t)) near
or below the value of g*. (Note that if P represents a power
vector and g(P) = >, P, then minimizing cost corresponds
to minimizing time average power).

Define the one-step conditional Lyapunov drift A(U(t)) as
follows:>

ATE)LE{LT @+ 1) - LT TO}  ©
where the expectation is taken over the potential randomness
of the channel state and control decision during slot ¢, given
the current backlog vector U (t).

Lemma 1: (Lyapunov Drift with Performance Optimiza-
tion) If there are positive constants V, B, e such that for
all timeslots ¢ and all vectors U (t) the one-step conditional
Lyapunov drift satisfies:

AT®) +VE{g(P®) | T} <
B—eX,Ui(t) +Vg* (6

then the system is stable and time average backlog satisfies:

< BV

ZUl—hmbupf Z ZE{UZ -

while time average cost satisfies:

M-1
gélimsup% Z E{g(ﬁ(T))} <g*+B/V

M—o0 —0

From the above statement, it is clear that if the V' parameter
can be increased while holding all other constants fixed, then
the time average cost can be pushed arbitrarily near or below

iStrlctly speaking, proper notation for the conditional Lyapunov drift should
be A(U(t),t), as the expectation may also depend on the timeslot. However,
we use the more concise notation A(U (t)), which should be understood as
a formal representation of the right hand side of (5).

the target cost level g*, with a corresponding tradeoff in
average queue backlog.

Proof: The drift condition is satisfied for all timeslots t.
Taking an expectation of (6) with respect to the distribution
of U(t) and using the law of iterated expectations yields:

E{L0(t+1) - L)} + VE{g(P)} <
B - eX E{Ui(t)} + Vg

Summing over timeslots ¢ € {0,..., M — 1} and dividing by

M yields:
E{L(T(M))—L(U
M

(0))} Y v Mol { (ﬁ(T))}S
S SIS E{U(D} + Vet (D)

By non-negativity of the Lyapunov function and of the g(ﬁ)
function, a simple manipulation of (7) yields:

M-1 B+Vg*+E{L(U(0)}/M

M S R (r)) < 2O

Taking limits of the above inequality as M — oo yields the

time average backlog bound. In [2] [22], it is shown that this

time average backlog bound implies system stability.
Similarly, by again manipulating (7) we obtain:

. Z { E{L(ﬁ(@))}

VM

Taking limits as M — oo yields the result. O

The art of stochastic optimal networking is designing a
strategy to ensure the drift condition of Lemma 1 is satisfied.
In the remainder of this section, we illustrate the technique
with a constructive proof of Theorem 2. The first step is to
establish a general expression for Lyapunov drift under any
power allocation policy.

Lemma 2: If arrivals /I(t) are i.i.d. every slot with rates
E{A(t)} =X = (A1,...,Az), then the conditional Lyapunov
drift under any power allocation policy satisfies:

AT O)2E{LT(E+1) - LO) | T®)} <

BN — 25, Uy(t) []E {m(ﬁ(t), St))| ﬁ(t)} - Al} )

where B is defined in (4). O

The lemma follows simply by squaring the dynamical
queueing equation (1) and taking expectations, and is proved
in Appendix B. We now massage the right hand side of (9)
into a form suitable for application of Lemma 1 by adding the
same value to both sides of the inequality. We have:

AT®)+VEE{R®| T} < BN +25, Uit

~E{S, 20:0m(P®),5(1) - VR®] 100} (0

The design principle behind the EECA algorithm of section
II-B is now apparent: Given U(t) at time t, the EECA
algorithm (3) is designed to minimize the right hand side of
inequality (10) over all possible power allocation strategies.

Suppose now that X is strictly interior to the capacity region
A, and let € be a positive value such that X + €€ A. Because
channel states are i.i.d. over slots, from Corollary 1 it follows

(M} <g +5+ ®)
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that there exists a stationary randomized power allocation
strategy that chooses power independent of queue backlog and
yields for all timeslots ¢:

ZE{Pl(t) ’ﬁ(t)} _
E{m (P0).50) 100} =

where P, (€) is the minimum power required to stabilize the
data rates X + € Note that P,,(¢) — P, as ¢ — 0. Because
this stationary rule is simply a particular power allocation
strategy, the final term in (10) under the EECA algorithm is
less than or equal to the resulting value under the stationary
rule. However, this value in (10) under the stationary rule can
be explicitly calculated using (11) and (12), and we have:

Pyo(€) D

A+ € (for all 1) (12)

AT+ VY E {Pl(t) | ﬁ(t)} < BN +2Y Uit
l l

QZUZ

Canceling the U;(¢)\; terms in the above expression yields:

(M +€) = VP,(e)

ATE)+VY E {Pl(t) | ﬁ(t)} < BN — 263" Ui(t)
1 1
+V P,y (e)

The above expression is in the exact form specified in Lemma
1 in the case g(P) = ), F;. It follows that time average
unfinished work satisfies:

BN P, BN NPpeak
ZUI +V av( ) < +V peak (13)
2e 2e
and time average power satisfies:
M_Zpl < P,,(¢) + BN/V (14)

The performance bounds in (13) and (14) hold for any value
€ > 0 such that X + € € A. However, the particular choice of
€ only affects the bound calculation and does not affect the
EECA allocation policy or change any sample path of system
dynamics. We can thus optimize the bounds in (13) and (14)
separately over all possible ¢ values. The bound in (14) is
clearly minimized by taking a limit as € — 0, yielding:

N P <P, +BN/V

Conversely, the bound in (13) is minimized by considering
the largest feasible e such that A\ 4+ € € A (defined as €,,,42),
yielding:

S0 < BN + VNPpeai

. 2€maz

This proves Theorem 2.

Fig. 3. A capacity region A (illustrated in 2 dimensions) with a rate vector
XD strictly in the interior. The rate vector A(2) is outside of the capacity
region.

IV. AVERAGE POWER CONSTRAINTS

In this section we consider a related problem of maxi-
mizing network throughput subject to both peak and average
power constraints. Specifically, we consider the same one-hop
network of the previous section, but assume that each node

n € {1,..., N} must satisfy the average power constraint:
=
tlgglogz Y E{P(n)}| <P, s)
=0 LIeQ,
where (2, is the set of all outgoing links of node n, and P},

is the average power constraint of node n.

Using a proof similar to that given in Theorem 1, it can
be shown that the new capacity region A reduces to the set
of all rates X for which there exists a stationary randomized
power allocation scheme that makes decisions based only on
the current channel state S(t), and such that (2) is satisﬁed for
all ¢, and the additional constraints E {3, ca, Di(t )} <
P” are also satisfied for all ¢ and all n € {1 N } Here
we consider cases where the arrival rate vector X is either
inside the capacity region or outside of the capacity region.
This requires an additional set of admission control decisions
to be made on top of the power allocation decisions, as only
a fraction of the arriving traffic can be successfully delivered
if inputs exceed capacity (see Fig. 3).

Let R;(t) represent the packets accepted into the net-
work at queue [ on timeslot ¢ (where R;(t) < A;(t), that
is, Ry(t) is the portion of new arrivals that are accepted
on slot ¢, Where the remaining data is dropped). Define
Ri2limy o + Z E{Rl( )} as the long term expected
admission rate into queue [, and let Ry, = (Ry,...,Ryp).
The goal is to design a joint strategy for power allocation
and admission control that satisfies all power constraints while
maximizing the weighted throughput metric ), 0;R; (where
0; values are arbitrary positive weights) subject to the demand
requirement R,, < A and the stability requirement R,, €
A. Define B* as the optimal admission rate vector for this
problem. This optimum could in principle be computed if
the arrival rates X and the capacity region A were known in
advance. Below we design a practical algorithm that performs
arbitrarily close to the utility of R*.
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A. The Virtual Power Queue

We first establish a novel mechanism for ensuring the
average power constraints are met at every node. To this end,
each node n maintains a virtual power queue with occupancy
X, (t) equal to the maximum excess power expended beyond
the average power constraint over any interval ending at slot
t. Indeed, defining X,,(0) = 0, we propagate the X, (¢) values

as follows:
X, (t+ 1) = max[X,,(t) — P",0 Z Pyt (16)
1€Q,

Thus, the X,,(¢) process acts as a single server queue with
constant server rate given by the average power constraint
PP, with ‘arrivals’ given by the total power allocated for
outgoing transmissions of node n on the current timeslot. The
intuition behind this construction is given by the following
observation: If a power allocation algorithm conforms to
the power constraint ﬁ(t) € II for all t while stabilizing
all actual queues Uy (t) and all virtual queues X, (t) (for
l € {1,....,L}, n € {1,...,N}), then the strategy also
satisfies the average power constraints for each node. This
observation holds because if the excess backlog X, (t) in
virtual power queue n is stabilized, it must be the case that
the time average ‘power arrivals’ Zleﬂn P; (corresponding
to time average power expenditure in node n) is less than or
equal to the ‘service rate’ P, . Formally, this observation is
stated according to the following lemma (proven in Appendix
D):

Lemma 3: If the Virtual power queue X, (t) is stable
and satisfies hmsuptﬂoo n P E{X (1)} < oo, then

hmsupt—»oo t Z’T 0 e, ]E{Pl )} < P‘?U

B. An Energy Constrained Control Algorithm (ECCA)

We use the virtual power queues in the following energy
constrained control algorithm. Assume the weights 6; are
known to the controllers, and let V' > 0 represent an arbitrary
control parameter.

Admission Control: Every timeslot and for each queue [,
we allow the full set of new arrivals A;(t) into the queue
whenever U;(t) < V6;/2. Else, we drop all new arrivals for
queue [ entering on that timeslot.

Power Allocation: Allocate power P(t)
the following optimization:

Max: Zn 1 ZZGQ
Subject to: Pell

=P according to
Uity (P, 5(1) - Xu(O)R] (D)

The virtual power queues X, (t) are then updated via (16).

Note that distributed implementation of this algorithm for
the case ji(P,S) = (u1(P1,S1), ..., ur(Pp,SL)) is similar
to the implementation of EECA given in Section III-B. The
only difference here is that the quality maximizing values P,
are computed by using the value 2X,(¢) instead of the scalar
V' [compare (17) and (3)]. To simplify the analysis of the above
algorithm, we additionally assume that the total arrivals to any
node are bounded by a constant value A,,,, every timeslot,
that is, Zleﬂn Aj(t) < Apaq for all nodes n. Further, we
make the following additional system assumptions:

Property 1: If (Py, ..., Pr) €11, then setting one or more
of the entries P; to zero yields another vector that is contained
in II.

Property 2: There exists a finite value 8 > 0 such that:

,ui(ﬁ,g) < ui(ﬁ—Pi€i7§)+ﬁPi

for all power vectors Pc II, all channel states S , and all links
i €{1,...,L} (where &; is an L dimensional unit vector with
a “1” in the ¢th entry and zeros in all other entries).

In the case when rate functions are differentiable with re-
spect to power, the value 0 represents the maximum directional
derivative with respect to power, maximized over all links and
channel states.

Theorem 3: For any input rate vector X, the above ECCA
algorithm conforms to both peak and average power con-
straints and yields queue backlog and excess energy that is
deterministically upper bounded for all ¢ as follows:

ve,

Ut < Ui 5 + Amaz
mamABV
Xn(t) < Xn :7 %Ielgx{el} +6Ama¢+ peak

for all nodes n and all links [, where P”eak is the maximum
value of ) 3, ., P over P ¢ TI. Further, if arrivals and channel
states are i.i.d. over timeslots, then the algorithm achieves a
throughput performance bound of:

(B
TR NS B ON (18)
where B is defined as in (4), and where:
CA N Z peak Pn) } (19)

Note that the queue backlog is bounded for every instant
of time. Hence, the algorithm yields the same performance
if all buffers are finite with buffer size Buffer = V0,,4./2 +
Ajnaz- In systems with finite buffers, the parameter V' could be
defined according to this equation, resulting in performance:

Z 0R, > Z 6ZRI B + C)N@mam

2(Buffer —
and hence performance can be pushed arbitrarily close to
optimality by increasing the buffer size. The excess energy
bound is also very strong, and implies that the total energy
expended by node n over any interval of size T slots is less
than or equal to TP} + X"** (and in particular the average
power constraints are satisfied). It is remarkable that these
performance guarantees do not depend on the channel statistics

or arrival rates.

maw)

C. Performance Analysis

We analyze the above strategy in a manner similar to the
EECA algorithm of the previous section. In particular, the
R, (t) variables play the role of packet arrivals A;(t):

Uy(t + 1) = max[Uy(t) — i (P(t), S(t)),0] + Ry(t)  (20)
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The virtual queue backlogs X (t) e
Define the Lyapunov function L(U
and define the one-step drift:

AT (), X (1)~
E{L@(t+1), X(t+1) - LOW®), X®) | 00, X0}
To simplify formulas, below we use the shortened notation
A ul,U and X to represent A(U(t)), i (P(t), S(t)), U(t),

and X (t).
Lemma 4: The one-step drift satisfies:

A<NB+C)—2Y UE{m-R| 0, X}
l

2y |-e{ 3 Ri0.5)
1eQ
The lemma follows by summing the corresponding drift of

the actual queues and virtual queues (using update equations
(20) and (16), compare with Lemma 2), and the deriva-
tion is omitted for brevity. Adding and subtracting the term
vy alE{Rl | U‘,X’} to the right hand side of the drift

expression and rearranging terms yields:

ASN(BJrC’)—I—VZGﬂE{RlIﬁ,)?} 23" x,Pp,
l n

volve according to (16).

X) Zl Ul Zn Xn’

+§l:(2Ul _VO)E {Rl | U,X}

N
~23 > E{Uim - X1 | U, X}
n=11€Q,

The design methodology of the ECCA algorithm is now ap-
parent: The admission control algorithm minimizes the second
to last term of the above expression over all possible admission
decisions, and the power allocation algorithm minimizes the
last term of the above expression over all possible power
decisions.

In particular, the optimal input rate vector R =
(R%,...,R}) could in principle be achieved by the simple
backlog-independent admission control algorithm of including
all new arrivals A;(t) for a given link [ and slot ¢ independently
with probability oy = R} /), yielding:

E{R|U X} =E{R}=aE{A} =R QD

Likewise, because R* € A, there must exist a stationary power
allocation policy that chooses power independent of backlog
and yields:

E{u|0, X} =E{u} 2R @
E{ZPIW,X}:E{ZB}@& (23)
leQ, 1eQy,

Plugging in the expectations (21)-(23) of the particular
backlog-independent policies into the last two terms of the
above drift expression for the ECCA algorithm thus preserves
the bound, and yields:

AU®),X(#) <N(B+0)

+V 5 0E {Ri(t) | U (24)

}-vyor;

where we have canceled the common terms ), 2U; R} and
> . XnP7,. Taking expectations of (24) with respect to U, X
and summing fromt =0tot =M — 1 yields:

MZZQZE{RZ }>Z(91Rl—37+0)

-E {L(ﬁw),X(o»} /(MV)

which yields (18) as M — oc.

Furthermore, the backlog bound U;(t) < U™** follows
immediately from the definition of the ECCA admission
control policy: No new arrivals are admitted if U (¢t) > V6,/2,
so that U;(t) < V0;/2 + Apae for all ¢ (where in the worst
case we add an amount A,,,, when backlog is exactly at the
V6,/2 threshold).

Likewise, by definition of the ECCA power allocation
algorithm together with Properties 1 and 2 of Section IV-B,
we have that for any node n, any link [ € 2,,, and time ¢ such
that X, (¢) > BU(t):

Ui() (P, (1)) — X ()P < Uy(t)u(P — P&, S(t))

+BUL(t) P — X (t) P
< Ui(t)m(P — Plel’S( )

where the inequality is achieved if and only of P, = 0. There-
fore, if X,,(t) > BU;(t), then the ECCA algorithm necessarily
chooses P;(t) = 0. Thus, if X, (t) > fmax;eq, U™, then
P,(t) =0foralll € Q, and so by (16) the X, (¢) value cannot
further increase. It follows that X, (¢) < fmaxjeq, U™ +

Pl for all ¢, proving Theorem 3.

V. MULTI-HOP NETWORKS

Here we consider the same network as before but assume
that data can be routed over multi-hop paths to reach its
destination. We optimize over all possible power allocation
and routing algorithms. Thus, incoming data is not necessarily
associated with any particular link, and so we redefine the
arrival processes in terms of the origin and destination of the
data: AS(t)2 amount of data exogenously arriving to node n
at slot ¢ that is destined for node c. All data (from any source
node) that is destined for a particular node ¢ € {1,...,N}
is defined as commodity ¢ data. Data is stored in each node
according to its destination, and we let US(t) represent the
current backlog of commodity ¢ data in node n.

Suppose power vector ]3(7,‘) is allocated in slot ¢, so that the
transmission rate over a link [ is 1 (P(t),S(t)). A routing
decision must be made to establish which commodity to
transfer over link /. In general, multiple commodities could be
transfered over the same link simultaneously,6 and we define
routing variables uf(t) as the rate allocated to commodity c¢
data over link [ during slot ¢. The problem is to allocate power
every timeslot according to the power constraint P (t) € Il and
then to route data according to the link rate constraint:

Zul m(P(t),S(t)) (25)

SWe find that the capacity achieving solution needs only route a single
commodity over any link during a timeslot.
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Recall that €2, is the set of all links [ such that tran(l) =
Further define ©,, as the set of all links [ such that rec(l) =
The resulting 1-step queueing equation for backlog U () thus

satisfies (for ¢ # n):
Z py (t

e,

+AG(t Z pi (t

€6,

US(t+1) < max[US(t
(26)

The above expression is an inequality rather than an equality
because the incoming commodity ¢ data to node n may
be less than ;.o pf(t) if the corresponding transmitting
nodes have little or no data of this commodity waiting to be
transfered.

In [22] [2], the network layer capacity region A is defined
as the closure of the set of rate matrices ()\gf)) that can be
stably supported, considering all possible power allocation
and routing strategies. There, it was shown that any rate
matrix ()\gf)) € A is supportable via a randomized algorithm
for choosing power allocations ]3(15) and routing variables
i (t). Here, we assume the rate matrix is inside the capacity
region, and develop an energy efficient stabilizing algorithm.
However, note that the objective of minimizing average power
expenditure in a multihop network may place an unfair power
burden on centrally located nodes that are used by many
others. Thus, to balance power more evenly, we consider the
more general objective of minimizing the time average of
Y n 90X icq, Pi(t)), where g, (p) is any convex increasing
cost function of the power expended by node n.

Define U} (t) = 0 for all ¢, and define:

A2 A maxZIE {(4
fimaz =  Wax (P, S)
{n,S,Pell} lco,
D £ (Amaz + N%am)Q + (Uroﬁt;m)Q (27)

Let L(U) = Y, .(US)?. The one-step drift A(U) for any
policy is found by’ squaring the dynamical equation (26) as in
Lemma 2, and is given in [22] as follows:

Lemma 5: If arrivals and channel states are i.i.d. over
timeslots, then:

AU) +V 3, E{gn(Xieq, A1) Ut)} < DN
+23, US(HAY

~ S E{Sieq, So 26O 0y (8) = Uiy (1)

_Vgn(ZleQ bt ‘ Ut }
The above drift expression for multi-hop networks is the same

as that given in [22], with the exception that we have added
the optimization metric V') E {gn(zleﬂn Pt)| U®)}.
Minimizing the right hand side in the above drift expression
over all power allocations satisfying P € 1I and all routing
strategies satisfying (25) leads to the following multi-hop
EECA algorithm:

1) For all links {, find the commodity ¢/ (¢) such that:

i (t) = argmax {Uf, o) (1) = Uciy (1)}

and define:

W (t) = max[U, {

tran(l) (t) - U,!

rec(l) (t)’ O]

2) Power Allocation: Choose a power vector P(t) € II that

maximizes:
Do D0 2P SO)WS V(Y P)| (@28)
n e, e,

3) Routing: Over link I, if W*(¢) > 0, transmit commodity
¢;(t) in the amount of w(P(t),S(t)), using idle fill if
necessary (in cases when there is not enough data to
transmit).

Distributed Implementation: Given a cell partitioned net-
work with backlog values U¢(t) for all neighbor nodes a,
the distributed method for allocating power and choosing
which node transmits in every cell is similar to the im-
plementation of EECA in Section III-B, with the excep-
tion that the quality maximizer values P, now maximize
(20 (P, Si(t))W, ngm(l)(Pl)}, representing the contri-
bution to (28) if hnk [ is chosen for transmission (recall that,
under the cell partition model, a given node n may activate
only one outgoing link [ € 2,, during a timeslot).

To find the backlog values of neighbors, note that for
rectilinear networks there are at most 10 queues that change
their backlog values during a timeslot in any given cell. This
is because the transmitting node may transmit to another
node in the same cell (increasing the queue level of the
transmitted commodity in the receiving node, and decreasing
it in the transmitting node), and there are at most 8 other
data receptions in the same cell (due to potential tranmissions
from the 8 adjacent cells). Knowledge of backlog levels in
neighboring nodes can thus be maintained by broadcasting the
backlog changes to all nodes in the same cell and in adjacent
cells. Each update requires a triplet of information: (n,c,d),
where n is the node, c is the commodity that was changed,
and 0 is the amount of the change. Thus, the bandwidth of
the broadcast control channel must be sufficient to support the
transmission of up to 10 update triplets per cell per timeslot.

Let D represent the set of all (n,c) pairs for which there
are valid network queues Uﬁc)(t) (so that (n,n) ¢ D), and let
UL (£)20 for all (n,c) ¢ D.

Theorem 4: If the rate matrix (/\sf)) is interior to the
capacity region A, then the above multihop EECA algorithm
for routing and power allocation stabilizes the network and
yields a time average congestion bound of:

S0z < DYV S0 00 Pt

2€ma;v

(wWhere €44 is the largest € such that (Asf ) 4 el,(f)) € A, with
15{:) being an indicator function equal to 1 if (n,¢) € D, and
0 else). Further, the time average cost satisfies:

Zgn_ lim fz [ZE{gn<Z P(r )H <g +¥

e,
where g* represents the minimum time average cost of any
stabilizing policy.
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The proof is similar to the proof of Theorem 2, and so we
present only an outline: The dynamic algorithm minimizes the
final term of Lemma 5 over all policies. In [22] it is shown
that if there is an e such that (A + €1{”) € A, then a
single stationary power allocation and routing strategy can be
developed to satisfy E {uf(t)} = ff, where the (ff) values
are multi-commodity flows such that for all (n,c) € D:

Zfzc— fo:

1eQ, l€eo,

A e

(recall that €2, and O, respectively represent the set of
outgoing and incoming links for node n). Thus, under this
stationary policy we have:

Z Z Z E {/J‘lc(t)} ( tcran(l) (t) - U;‘:ec(l) (t))

n leQ, c
= D Ui) (Z E{u(t)} = E{Mf(t)}> 29)
nec 1eQ, €O,

D Ui + o) (30)
where (29) follows by switching the sums and (30) follows
by noting U¢(t)£0 whenever (n, c) ¢ D. Further, the station-
ary policy also satisfies > VE {g(zleﬂn P(t)} = g*(e),
where g*(e) is the minimum cost for stabilizing rates ()\gf) +
elgf)) and satisfies g*(¢) — g¢* as € — 0. Plugging these
particular policies into the last term of the drift expression in
Lemma 5 thus preserves the bound and yields:

AU®)) +V 32, E{gn(Cieq, ) UM} <
DN —23% Us(t)e+Vg*

which yields the result upon application of Lemma 1. O

We note that the multi-hop EECA algorithm delivers all data
to its destination without knowing the network topology. The
algorithm effectively accomplishes this by expending initial
energy transmitting data to neighbors in order to learn efficient
routes, which emerge from backlog information.

A. Multi-hop ECCA

Here we show that the ECCA algorithm can also be ex-
tended to a multi-hop setting, providing maximum throughput
subject to average power constraints. In particular, each node
n maintains its own virtual power queue X, (t), but makes
decisions based on a differential backlog metric rather than
absolute backlog. We assume that Properties 1 and 2 of Section
IV-B hold.

However, there is one important modification that we make
in order to ensure queue levels in both the actual queues and
the virtual power queues remain bounded for all time: We
enforce the additional constraint that no node can transfer
data of a particular commodity to a relay node that is not the
destination of that commodity unless the differential backlog
of that commodity between the two nodes is greater than or
equal to a fixed value ~. The value ~y is chosen large enough to
ensure the resulting backlog of that commodity in the relay at
time ¢ + 1 is not larger than the corresponding backlog in the
transmitting node at time ¢. Note that the most data that can

enter a node in a single slot is ,ui,’{w + Ajnae (considering the
sum of the maximum endogenous and exogenous arrivals).
Hence, setting v = ufﬁaz + A,ae ensures the condition
is satisfied. This transmission restriction can then easily be
implemented by defining a modified optimal commodity ¢; (t)
and a modified differential backlog metric W;*(t) for every
link [ as follows. First, we define constants ~; for each link [
and each commodity c:

WC:{S

That is, the 7 value is equal to 0 whenever the receiver of
link [ is the destination of commodity ¢ data, and is equal to
~v when the receiver of link [ is not the destination and hence
would act as a relay for commodity ¢ data. The & (¢) and
VT/Z*(t) values are then defined as follows:

if rec(l) # ¢
else

G (t) = argmax {Ug 1y (8) = Utue(8) = 77 }

- c; cy (t c;
Wi (1) = max{Uy7,,, ) (6) = UL ) =47 0]

rec

€2y

Note from (31) that W;(t) > 0 only if the differential
backlog is larger than ~. Consider now the objective of
maximizing the weighted throughput > HZEZ (subject to
network peak and average power constraints), for arbitrary
positive weights 6¢. With this goal, we define the following
Multi-hop ECCA Algorithm as follows:

1) Admission Control: Every timeslot and for each input
(n, ), we accept the full set of exogenous arrivals A (¢)
whenever US(t) < VS /2. Else, all new arrivals AS ()
are rejected on that timeslot.

2) Power Allocation: Allocate power ]3(16) =P according
to the following optimization:

Max: SN S0 [Wl*(t)m(ﬁ, S(t)) - X,,(t)Pl}
Subject to: Pell

3) Virtual Queue Update: The virtual queues X, (t) are
updated according to (16).

4) Routing: Over link [, if VT/I*(t) > 0, transmit commodity
& (t) in the amount of 1;(P(t), S(t)), using idle fill if
necessary.

As before, we assume that no node receives more than
Anaq bits of data exogenously during a single slot. Arrivals
and channel states are assumed to be i.i.d. every slot, and
the network is assumed to be initially empty at time 0. The
following theorem establishes performance of the Multi-hop
ECCA algorithm.

Theorem 5: For arbitrary rate matrices (,\ﬁf)) (possibly out-
side of the network capacity region), the ECCA algorithm
ensures:

(@) UL(t) < 0mazV/2 + Apag for all time ¢ and for all
queues (n, c), where 04,2 max,.{0¢}.

(b) All nodes satisfy their average power constraints. Specif-
ically, the total power expenditure of any node n over any
set of T' slots is no more than TP}, + X% where X™%*
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represents a bound on the worst case virtual power queue
backlog X, (t), and is given by:

ﬁvemaz
2

where [ is defined according to Property 2 of Section IV-B.
(c) The resulting weighted throughput values satisfy:

Xn(t) S Xma;cé + ﬁAmaw + Ppeak

> 0cR; > 65R;, — CN/V

nc

(32)

where CAC+D+2yu2 . C, D are defined in (19), (27), and
where (R} ) is the optimal throughput matrix (maximizing the
weighted sum of throughput over all feasible rates).

The proof of part (c) uses a Lyapunov drift argument similar
to the proofs in the previous sections, and is given in Appendix
C. Below we prove parts (a) and (b).

Proof: (Parts (a) and (b)) We prove (a) by induction over
timeslots. Let U, 4. (t) represent the maximum backlog of any
commodity in any node of the network at timeslot {. Assume
that Usnaz (t) < 0mazV/2 4+ Amas (this clearly holds for ¢ =
0). We prove the same is true at time ¢ + 1.

Consider any node n with backlog US (¢+1) at time t+1. We
assume that n # ¢, as we have U”(t) = 0 for all ¢. If node n
received endogenous data of commodity c that was transmitted
by some other node a at time ¢, then US(t) — US(t) > ~
(otherwise, the modified differential backlog for the link (a,n)
would be zero and hence no data would be transmitted under
the Multi-hop ECCA algorithm). As US(t) can increase by at
most y every timeslot, we have US (¢t + 1) < US(¢) + , and:

U’VCL (t + 1) S U(;(t) S UTYLGJL’ (t) S emCL.’L'V/z + A?nax’

In the alternate case when node n did not receive any
endogenous data of commodity ¢ at time ¢, then the com-
modity ¢ backlog can only increase due to exogenous arrivals.
If there were no exogenous arrivals, then clearly we have
ULt +1) S UL(t) < OmazV/2 + Apmas. Otherwise, if there
were exogenous arrivals, it must be the case that US(t) <
OmazV /2 (otherwise the ECCA admission control algorithm
would reject all commodity ¢ data exogenously arriving to
node n during slot t), and hence US (t4+1) < 0102 V/24+ Amaz-
Thus, in all cases we have US(t + 1) < 0naaV/2 + Ao,
proving part (a). Because all queues UZS(t) are uniformly
bounded, all differential backlogs W;*(t) are also bounded by
the same value, and hence (by the same argument as given in
Theorem 3 for the single-hop ECCA algorithm), the virtual
power queues X, (t) must be bounded by X™* for all time.

I

VI. MOBILE NETWORKS

Here we treat extensions to fully mobile networks. Note
that up to this point, we have assumed that nodes remain in
their respective cells for all time and hence link dynamics
depend only on random fading, environmental effects, or local
“in-cell” mobility. In this section, we consider link dynamics
that also depend on topological changes arising from full user
mobility. In particular, for the cell partitioned network model,
we assume that every timeslot nodes randomly choose to either

remain in their same cell or visit another cell. It turns out that
the same algorithms developed in the previous sections can
be applied to this mobile network model, although the node
mobility impacts the delay analysis as well as the algorithm
implementation.

A. Delay Analysis

Note that the link condition between any two nodes of
a mobile network depends on the node mobility process,
which may not be i.i.d. over timeslots. For example, if nodes
move according to a Markovian random walk, then channel
state variations are correlated over timeslots because future
channel states depend on current node locations. Thus, the
performance bounds developed in the previous sections cannot
be directly applied, as these results assume channel states that
are independent from slot to slot. However, we note that the
same algorithms developed for the i.i.d channel model can be
applied directly to networks with arbitrary ergodic channel
state variations, including models where channel states depend
on Markovian random walks (or any other mobility pattern that
exhibits a steady state).

Indeed, it can be shown under these more general channel
models that stability is maintained, and performance also
converges to optimal performance as the control parameter
V is increased. However, the non-i.i.d. channel model alters
the average delay bound. This can be shown by repeating the
same Lyapunov drift arguments over the course of K timeslots,
rather than just a single timeslot. The value of K is chosen for
the analysis to be large enough so that the mobility process
sampled every K slots is “sufficiently close” to an i.i.d. process
(and hence, the value of K may depend on the network size).
Rather than repeating all of our analysis using K-slot drift, we
simply note that the end result yields a delay expression that
is (roughly) scaled by a factor of K. The interested reader is
referred to [2] [22] for analytical details of such K-slot drift
arguments.

B. Implementation Complexity

Mobile networks present an additional challenge of im-
plementation complexity. Recall that the multi-hop network
control algorithms of Section V require knowledge of the
backlog levels of all commodities in neighboring nodes. In cell
partitioned networks, it was shown in Section V that there are
at most 10 backlog changes per cell per timeslot. Hence, in
networks without mobility, nodes can infer the backlog levels
of their neighbors by keeping track of the backlog updates.
However, in mobile networks, two nodes might suddenly
become neighbors after being apart for a long period of time,
and hence neither knows the backlog levels of the other.
In this case, all backlog values must be exchanged. This is
simple in the case when there is only a single commodity
or a small number of commodities being delivered over the
network, but requires O(N) queue updates in the general
case where each node maintains N — 1 internal queues that
store data destined for each of the other network nodes. It
is possible to reduce this control overhead by updating only
O(1) of the queue components every timeslot, and having each
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node maintain a running estimate of the queue backlogs of all
other queues. However, this complexity reduction can increase
network delay by a factor proportional to the estimation error
(see [2]). In the mobile network simulations of the next
section, we assume that nodes are aware of the queue backlogs
of their neighbors on every slot.

VII. SIMULATIONS

Here we present simulation results of our network control
algorithms. Consider first the two-queue downlink example of
Section II. Packets arrive to the system according to Poisson
processes with rates A\; = 8/9, Ao = 5/9, which are the same
as the empirical rates obtained by averaging over the first 9
timeslots of the example in Fig. 2. Channel states arise as
ii.d. vectors (S1(t), S2(t)) every slot. The probability of each
vector state is matched to the empirical occurrence frequency
in the example, so that Pr[(G,M)] = 3/9,Pr[(M,B)] =
2/9, Pr[(M,M)] = 1/9, etc. We first simulate the policy
of serving the queue with the largest rate-backlog index
U;(t)p;(t), a strategy that stabilizes the system whenever pos-
sible but does not necessarily make energy efficient decisions
[15] [19] [21]. The simulation was run for 10 million timeslots.
The resulting average power is P,, = 0.898 Watts, and the
resulting time average backlog is 2.50 packets.

Next, we consider the EECA algorithm, where power
allocation decisions are determined by the solution of the

optimization problem (3). First note that A2, =37 A2 +
i = 2.54, pot = 3, and hence from (4) we have B = 11.54.

It follows from Theorem 2 that the resulting average power
differs from optimality by no more than 11.54/V, where V is
the control parameter of the algorithm (note that N = 1 in this
example). Furthermore, it can be shown that €,,,, = 0.489 for
this example, and hence by Theorem 2 we know the average
backlog in the system satisfies the following inequality:

11.544+V
0.978

By Little’s Theorem, dividing both sides of the above inequal-
ity by (A1 + A2) yields an upper bound on average delay.

We simulated the EECA algorithm for 20 different values
of the control parameter V, ranging from 1 to 10* Each
simulation was run for 10 million timeslots. In Fig. 4 the
resulting average power is plotted against the time average
backlog. The corresponding upper bound is also shown in the
figure. We find that average power decreases to its minimum
value of 0.518 Watts as the control parameter V' is increased,
with a corresponding tradeoff in average delay. In Fig. 5 we
plot average backlog versus the V' parameter together with the
backlog bound, illustrating that average delay grows linearly
in V, as suggested by the performance bound. As a point of
reference, we note that at V' = 50, the average power is 0.53
Watts and the average sum backlog is 21.0 packets.

ﬁl +ﬁg <

A. Minimum Energy Scheduling for Mobile Networks

Here we consider an ad-hoc mobile network with 28 users
and a cell structure arranged as a 4 x 4 grid, as shown in
Fig. 6. For simplicity, we assume there can be at most one

Average Power versus Average Backlog
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Fig. 4. Average power versus average backlog for a two queue downlink
under the EECA algorithm.
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Fig. 5. Average backlog versus the V' parameter from 10 million iterations
of the EECA algorithm for a two queue downlink. The analytical upper bound
is also plotted.

transmission per cell per timeslot, and that all transmissions
use full power of 1 Watt. We assume transmission rates are
adaptive, and that 3 packets can be transfered if the receiver
is in the same cell as the transmitter, while only 1 packet can
be transfered if the receiver is in one of the adjacent cells to
the North, South, East, or West. Data arrives to each node
according to a Bernoulli arrival process with rate A = 0.5
packets/slot (so that a single packet arrives with probability
0.5, else no packet arrives). We assume source-destination
pairs are given by the grouping 1 « 2, 3 <~ 4, ..., 27 < 28§,
so that node 1 packets are destined for node 2 and node 2
packets are destined for node 1, node 3 packets are destined
for node 4 and node 4 packets are destined for node 3, etc.
We simulate the multi-hop EECA algorithm for both a
Markovian random walk model and an i.i.d. mobility model,
with the objective of minimizing total power expenditure. In
the Markovian mobility model, every timeslot nodes indepen-
dently move to a neighboring cell either to the North, South,
East, or West, with equal probability. In the case when a node
on the edge of the network attempts to move in an infeasible
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Energy versus Delay for an ad-hoc mobile network
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Fig. 6. An ad-hoc mobile network with adaptive transmission rates, and the
resulting per node average power expenditure versus average node congestion
for V' between 0 and 200.

direction, it simply stays in its current cell. In the i.i.d.
mobility model, nodes randomly choose new cell locations
every timeslot independently and uniformly over the set of all
16 cells. It is not difficult to show that both mobility models
have the same steady state node location distribution. Hence,
the network capacity region and the minimum average power
requried for stability are exactly the same for both mobility
models (recall that Theorem 1 implies that the minimum
power for stability depends only on the steady state channel
distribution). In this case, the minimum power for stability
under the given traffic load can be exactly computed, and is
equal to 0.303 Watts.

Simulations were conducted using control parameters V in
the range from 0 to 200, and the results are given in Fig.
6. In the figure, each data point represents an independent
simulation for a particular value of V' over the course of 4 mil-
lion timeslots. The resulting per-node average power is plotted
against the resulting per-node average queue congestion. From
the figure, it is clear that under both mobility models, average
power expenditure quickly converges to the minimum power
level as the control parameter V' is increased (and hence, delay
is increased). The average delay under Markovian mobility
is slightly larger than the delay under i.i.d. mobility. As an
example set of data points, we note that for the Markovian
mobility model at V' = 0, the per-node average backlog is
89.2 packets (about 3.3 packets on average in each of the
27 internal queues), and per-node average power expenditure
is 0.477 Watts. At V = 40, the per-node average backlog
is 263.6 packets, and per-node average power expenditure
is 0.305 Watts. For values of V' beyond 50, average power
expenditure differs from the optimal value of 0.303 only in
the fourth or fifth significant digits, while average congestion
continues to increase.

B. Heterogeneous Mobility and Maximum Throughput

Here we simulate the multi-hop ECCA algorithm for the
same 4 x 4 cell partitioned network with 28 users, with
the objective of maximizing total throughput subject to an
average power constraint of 0.2 Watts for every node. For
this maximum throughput metric, we set all 6 values to
1. Source-destination pairs are the same as before, as are
the packet transfer rates for in-cell and inter-cell transmis-
sion. However, here we consider the following heterogeneous
mobility model: Users 0, 2,4,6,8,10,12,14 are restricted to
moving (uniformly) in the upper left 2 x 2 squares. Users
1,3,5,7,9,11,13, 15 are immobile, and remain in the bottom
right 2 x 2 squares (two in each of the four squares). All other
users move uniformly throughout the network according to the
Markovian mobility model.

We assume that one packet exogenously arrives to each
node every timeslot, so that A,,,, = 1 (admission decisions
for accepting/rejecting this packet are made according to the
ECCA threshold rule). Further, we note that p%, = 7
in this case, as a given node can at most receive one in-
cell transmission containing 3 packets and 4 adjacent-cell
transmissions containing 1 packet. Adding this to the value
Anaz yields v = 8, so that data is not passed to a relay node
unless there is a differential backlog of 8 or more packets.
According to Theorem 35, this implies that no queue will ever
contain more than V/2+ 1 packets, and that the excess energy
X, (t) at every node n is bounded by 5V/2 + 3+ 1 (where
B = 3 packets/Watt in this case). Simulation results are shown
in Fig. 7. Each data point again represents a simulation over
4 million timeslots for a particular value of V', where V' takes
values in the range 10 to 250. In Fig. 7, it is shown that average
per-node throughput quickly increases from 0.1 packets/slot
(when V' = 10) to 0.258 packets/slot (when V = 250).
As an example, when V' = 40 the per-node throughput is
0.257 packets/slot, and the per-node average backlog is 186.3
packets. Simulations also verify that average backlog grows
linearly with V, although this data is omitted for brevity. We
further note that the resulting average power expenditure at
each node was almost exactly equal to the average power
constraint of 0.2 Watts. This suggests that the power resources
of all nodes are being fully utilized, and that total throughput
would increase if the average power constraint is increased at
any or all of the nodes.

These simulations verify that the given algorithms yield
performance that can be pushed arbitrarily close to optimum,
with a corresponding tradeoff in average backlog (and hence,
average delay). While these particular simulations consider
only the simple case of allocating either zero power or full
power, we note that it is not difficult to implement the
scheme for rate-power curves with a continuum of power
choices. Furthermore, the simulations treat the simple case
of cell partitioned networks, where there is no inter-cell
interference. However, we emphasize that the theory we have
developed applies to arbitrary rate-power curves /1(13, ,§) with
any interference properties, although the resulting resource
allocation problems (3) and (17) may be difficult to compute
in a distributed manner. Distributed algorithms and random
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Fig. 7. Per-node throughput versus average per-node congestion for the
ECCA algorithm with heterogeneous Markovian mobility.

access methods for approximately solving resource allocation
problems in networks with interference are developed in [36]
[22] [2] [37], and such algorithms can likely be applied in this
context to yield simple distributed approximations of energy
optimal control.

VIII. CONCLUSIONS

We have developed energy-efficient control strategies with
performance that can be pushed arbitrarily close to optimal,
with a corresponding tradeoff in average network delay. Our
algorithms adapt to local link conditions without requiring
knowledge of traffic rates, channel statistics, or global network
topology. For simplicity of exposition, channels were modeled
as being independent from slot to slot. However, the algorithms
yield similar results for more general channel processes and
node mobility processes, and are robust to situations when
channel statistics or traffic loadings change over time [2]. The
analysis presented here uses a new Lyapunov drift technique
enabling stability and performance optimization to be achieved
simultaneously. This research creates a general framework
for designing practical control algorithms that are provably
optimal.

APPENDIX A — MINIMUM POWER FOR STABILITY

Here we prove Claim 1 of Theorem 1: Consider any
allocation rule for choosing P (t) subject to P (t) € I, perhaps
one that uses full knowledge of future arrivals and channel
states. If the rule stabilizes the system, then:

t—1
1
Eavéhgggf E Z Zpl(T)
7=0 l

where P}, is the minimum power obtained from the optimiza-
tion in Theorem I, and P, is the lim inf of the empirical
average power expenditure.

To prove (33), we first establish some convenient notation.
For each S, define Tz(M) as the set of timeslots ¢ €
{0,..., M} during which the channel state vector is equal to
S, and let |[T5(M)|| represent the total number of such slots.
Define the conditional empirical average of transmission rate
and power consumption as follows:

L5 . pd (i(P(r).5):T' B(v))
(78,00 PS(OM)) £ 5, crany a2

> Py, (33)

Lemma 6: For every M, there exist probabilities a?: (M)

and power vectors 135 (M) € 1I such that:

. L+2 . .
(M) = Y aini(PEn).8) ¢4
) Lo
PS5 (M) = Zak )T/ BS (M) (35)

Proof: Define 35 (P)2 ( i(P,S); 1 P) as a function map-
ping the L dlmensmnal power vector into L + 1 dimensional
space. Then el M)II ZTGT () &(P(r)) is a convex combi-
natlon of pomts in the image “of the L+1 dimensional function

( ) (for P € 1II), and is therefore (by Caratheodory’s
theorem [28]) expressible by a convex combination of at most

L + 2 elements of the image. O
Now define:
- A HT )|l S
fiao (M) 2 Z o (M) (36)
Po(M) £ (37)

Z HT§]$4M Pab; (M)
5

For each M, the number of ozg(M) and ﬁ,f(M) values is
at most (L + 2)Card({S}) (where Card({S}) represents the
number of possible channel state vectors). By compactness,
we can thus find an appropriate subsequence of integers
{M;} such that M; — oo and such that there exist limiting
probabilities ak and power levels Pk € II satisfying:

PP (M) = By, ag(Mi) = af , Pay(M;) — Py, (38)

Formally, such a subsequence {M;} with the above con-
vergence properties is formed by first choosing a preliminary
subsequence of integers {M i} such that P, (M;) — P, as
M; — oc. The values Pk (M), af(Mi) can thus be viewed
collectively (for all channel states Sandallk € {1,...,L+2})
as an infinite sequence of vector values contained in a compact
set, and hence there must exist a subsequence {M; } for which
the values converge (as a vector) to a point in the set. Hence,
the properties of (38) are satisfied.

Using (35) in (37), we have for each M;:

HT M) = o 53
Z S ag (M)TPE (M) | (39)
k=1
Because channel states are ergodic, we have w g
for all S. Thus, using (38) in (39) we have:
P, = lim P, (M;)
71— 00

L+2

(40

and likewise, from (36), (34) and continuity of the rate
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function with respect to power, we have:’

L+2
ﬁavéilirgo Hav(M;) = Z%? Z Ozfﬁ (Plf, S)
5 k=1

Now note that stability implies that the input rate to any
queue is less than or equal to the lim inf of the service rate
(see [2], [21], Appendix D), so that A\ < fi,,. It follows that:

L+2

<Y re > ofi (P5.9)
g k=1

From (40) and (41) it follows that P, is the average power
associated with a stationary power allocation scheme of the
type specified by the optimization problem of Theorem 1.
Because P, is defined as the minimum average power over
all such schemes, it follows that P, > P~ , completing the
proof. [J

(41)

APPENDIX B — THE DRIFT EXPRESSION

Here we prove the drift expression of Lemma 2: Suppose
arrivals A;(t) are i.i.d. every slot with rate E{A;(t)} = A
For each queue [, consider the evolution equation U;(t+1) =
max|U;(t) — i (P(t), S(t)), 0] + A;(t) from (1). By squaring
this equation and noting that (max|x,0])? < 22, we obtain:

(Uit +1)* < (Ui(£)* + 1f = 2U0() (= Ar) + A7

where we have simplified the notation by writing 4y and
A; in place of p;(P(t),S(t)) and A;(t). Taking conditional
expectations and summing over all [ yields:

ATW) < S E{uf + 421 T(1)}
—2 5, uit) (BE{m | 00} - N)

Noting that the first term on the right hand side of the above
expression is bounded by N(u2% )2 + NAZ  proves the
result. [J

APPENDIX C — MULTI-HOP ECCA

Here we prove part (c) of Theorem 5. Define the Lyapunov
function L((US), X) = 3, (US)? + 3, X2. The dynamics
of US(t) and X, (t) proceed as in (26) and (16), with the
exception that exogenous arrivals A¢(¢) in (26) are replaced
with admitted arrivals R (t). The conditional Lyapunov drift
(conditioned on knowledge of U< (t), X (t)) thus satisfies:

A (), X)) < (D+ON + DILACEEAC)
=23 > E{if(0)} (Ufiany(8) = Ueey(8) =)
nc e,
_2ZXn(t) Pgbv _E{ Z F)l}
n e,

where the non-negative ~ term has been conveniently
added to the right hand side, and where all expectations

TUpper semi-continuity can be used here to obtain the same inequality (41)
for the more general case of discontinuous rate-power functions [2].

above are implicitly conditioned on knowledge of (US(t))
and X (t). Adding and subtracting the optimization metric
VY, 0SE{RS(t)} and rearranging terms yields:

A (). X)) < (0 +0) N+VZ€ E{RS(1)}
+2Z [Ue(t)
722 Z E{:u’l tran l)( ) U;":P(' ( )77)

nc lefd,
_QZXn(t) ng_E{ZB}
n e,

The Multi-Hop ECCA admission control policy was designed
to minimize the third term on the right hand side of the above
inequality, while the power allocation and routing policies
were designed to minimize the fourth and fifth terms. Thus,
the right hand side is less than or equal to the resulting
expression when these terms use expectations corresponding to
the optimal stationary control policy, where E { RS (t)} = R,
E{ZZGQ P} < Py, and E{uf} = ff, where (ff) are
flows satlsfylng D one 2eq, J1( tmn(z)(t) - Ufec(l)(t)) =
Y one US(t) Ry . (see [2] [22]). Plugging these expressions into
the right hand side of the above inequality creates many terms

that can be cancelled, yielding:
)} -V R

A<CN+VY 05E{RS(t
which proves the result upon application of Lemma 1. [

0. V2 E{R; (1)}

nc

APPENDIX D — VIRTUAL QUEUES
Here we prove a general queue stability fact that directly
implies the result of Lemma 3. Consider any discrete time
queue with unfinished work function U(¢) and with any
general arrival and transmission rate processes A(t) and p(t),
where U(t + 1) = max[U(t) — u(¢),0] + A(t). Suppose the
queue is strongly stable, so that:
t—1
hmsup ZE{U )P=M <o
=0
Lemma 7: 1If a queue is strongly stable and has a transmis-
sion rate p(t) that is upper bounded, so that p(t) < fymae for
all ¢, then: B
lim inf [m(t) — A(t)] = 0
where 7i(t)21 S U E {pu(7)}, and A(H) 21 STV E{A(T)}
Proof: Flrst suppose that the following inequality holds:
limsupE{U(¢)} /t =0 (42)
t—o0

Now note that for any time ¢ we have:

t—1 t—1
0)+ Y A(r) =Y ulr)
7=0 7=0
Dividing by ¢ and taking expectations yields:

E{UM} _ E{UO)} [A(t) — 7(t)]

t - t
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Taking the limsup of both sides and using (42)
yields 0 >  limsup, . [A(t) —7(¢)], and hence
0 < liminf, .o [E(t) — A(1)].

It thus suffices to prove that (42) is satisfied whenever
the conditions of the lemma hold. To show this, suppose
that (42) does not hold, so that there exists a value € > 0
and a subsequence of times {t¢,} such that ¢, — oo and
E{U(tn)} /tn > €. We reach a contradiction.

Choose any arbitrarily large constant V' such that V' > M,
and let 7;, denote the number of timeslots after time ¢,, until
E{U(t)} crosses below the V threshold. If E{U(¢,,)} < V,
then we define T;, to be 0. Note that 7, is finite for all n,
as otherwise E{U(¢t)} > V for all ¢ > t,, which would
contradict the fact that the lim sup time average expected value
of U(t) is equal to M. Because transmission rates are upper
bounded by fi;4., We have for any time ¢t > ¢,,:

E{U®)} > E{U(t)} — ftmaalt -
Z 6tn — Mmax (t - tn)

and hence E{U(t)} > V whenever (t — t,) < (et, —
V) /timaz- It follows that T,, > (etn, — V') /pmas- Hence:

T, € %4
tn

tn)

Z -
N/mam tn/’[‘max

and so liminf; oo Th/tn > €/fimaz, implying that

limsup; . tn/Tw < pmas/€. However, note by definition

that:

tn+Tn—1

1 T,
— E{U > yV—"
T g wmy = vy
1
N V%ﬂg+1

Taking limits of the above inequality and recalling that M =
limsup, . L UV E{U(7)}, we have:

1
M>V——r——
Hmax / e+1
However, this inequality holds for arbitrarily large values of
V', contradicting the fact that M is finite. OJ
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