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Abstract—We develop opportunistic scheduling policies for cognitive radio networks that maximize the throughput utility of the
secondary (unlicensed) users subject to maximum collision constraints with the primary (licensed) users. We consider a cognitive
network with static primary users and potentially mobile secondary users. We use the technique of Lyapunov Optimization to design an
online flow control, scheduling and resource allocation algorithm that meets the desired objectives and provides explicit performance
guarantees.
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1 INTRODUCTION

Cognitive radio networks have recently emerged as a
promising technique to improve the utilization of the
existing radio spectrum. The key enabler is the cognitive
radio [2] that can dynamically adjust its operating points
over a wide range depending on spectrum availability.
The main idea behind a cognitive network is for the un-
licensed users to exploit the spatially and/or temporally
underutilized spectrum by transmitting opportunistically.
However, a basic requirement is to ensure that the
existing licensed users are not adversely affected by such
transmissions. Such interference with the licensed users
may be unavoidable due to lack of precise channel state
information. In this paper, we develop an opportunis-
tic scheduling policy that maximizes the throughput
utility of the secondary (or unlicensed) users subject
to maximum collision constraints with the primary (or
licensed) users in a cognitive radio network. Our scheme
is shown to work in the presence of imperfect knowledge
about primary user spectrum usage and provides tight
reliability guarantees.

A survey on the technology, design issues and recent
work in cognitive radio networks is provided in [3],
[4]. The problem of optimal spectrum assignment to
secondary users in static networks is treated in [5]–[10]
where it is assumed that scheduling is aware of primary
user transmissions. Scheduling the secondary users un-
der partial channel state information is considered in
[11]–[13] which use a probabilistic maximum collision
constraint with the primary users.
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In this paper, we use the techniques of adaptive queue-
ing and Lyapunov Optimization to design an online flow
control, scheduling and resource allocation algorithm
for a cognitive network that maximizes the throughput
utility of the secondary users subject to a maximum rate
of collisions with the primary users. This algorithm op-
erates without knowing the mobility pattern of the sec-
ondary users and provides explicit performance bounds.
Lyapunov Optimization techniques were perhaps first
applied to wireless networks in the landmark paper [14],
where Lyapunov drift is used to develop a joint opti-
mal routing and scheduling algorithm. This method has
since been extended to treat problems of joint stability
and utility optimization in general stochastic networks
in [15]–[18] and wireless mesh networks in [19]. The
analysis presented in this paper applies the stochastic
network optimization framework of [18].

The main contributions of this work are described
below. This paper:

• Develops throughput optimal control policies for
cognitive networks with general interference and
mobility models.

• Introduces the notion of “collision” queues that are
used to provide strong reliability bounds in terms
of the worst case number of collisions suffered by
a primary user in any time interval. In particular,
the collision queue method here is adapted from
the virtual power queue technique of [17]. However,
the collision queues developed here are designed
to ensure reliability constraints, rather than average
power constraints. Different from [17], this requires
the inputs to the virtual queues to be random
collision variables that can be evaluated only after
packet transmission has taken place.

• Develops easier to implement constant factor ap-
proximations to the optimal resource allocation
problem.
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Fig. 1. Example cognitive network showing primary and
secondary users

2 NETWORK MODEL

We consider a cognitive radio network consisting of M
primary users and N secondary users as shown in Fig.
1. Each primary user has a unique licensed channel and
these are orthogonal in frequency and/or space. Thus,
the primary users can send data over their own licensed
channels to their respective access points simultaneously.
The secondary users do not have any such channels and
opportunistically try to send their data to their receivers
by utilizing idle primary channels. Such opportunities
are called “spectrum holes”.

2.1 Mobility Model
We consider a time-slotted model. The primary users
are assumed to be static. However, the secondary users
could be mobile so that the set of channels they can
access can change over time. In a timeslot, a secondary
user can access a subset of the primary channels poten-
tially depending on its current location. This information
is concisely represented by an N × M binary channel
accessibility matrix H(t) = {hnm(t)}N×M where:

hnm(t) =





1 if secondary user n can access
channel m in slot t

0 else

For example, the channel accessibility matrix for the
example network in Fig.1 is given by:

H(t) =




1 0 0 0
1 1 1 0
0 0 0 1
0 1 1 0
0 1 1 0




Specifically, secondary user 1 in Fig. 1 can currently
access channel 1 only (as indicated by the first row
of the H(t) matrix above), while secondary user 2 can
currently access either channels 1, 2, or 3 (as indicated
by the second row in the H(t) matrix). We assume that

the mobility process of the secondary users is such that
the resulting H(t) process is Markovian and has a well
defined steady state distribution. However, the transition
probabilities associated with this Markov Chain could be
unknown.

2.2 Interference Model
Let S(t) = (S1(t), S2(t), . . . , SM (t)) represent the current
primary user occupancy state of the M channels. Here,
Si(t) ∈ {0, 1} (for i ∈ {1, 2, . . . ,M}) with the interpreta-
tion that Si(t) = 0 if channel i is occupied by primary
user i in timeslot t and Si(t) = 1 if primary user i is idle
in timeslot t. We assume that exactly 1 packet can be
transmitted over any channel in a timeslot. A secondary
user can attempt transmission over at most 1 channel
subject to the constraints in H(t). This transmission is
successful only when the channel is not being used by its
primary user or any other secondary user. If a secondary
user transmits on a channel which is busy, there is a
collision and both packets are lost1.

To capture the interference that a secondary user
transmission may cause on other channels, for all n ∈
{1, 2, . . . , N}, m ∈ {1, 2, . . . , M}, we define Inm(t) as the
set of channels that secondary user n interferes with
when it uses channel m in timeslot t . We include m in
the set Inm(t). We further define the following indicator
variables (to be used later):

Ik
nm(t) =

{
1 if k ∈ Inm(t) ∀ k ∈ {1, 2, . . . ,M}
0 else

Clearly, Im
nm(t) = 1 for all m,n, t. Under this interfer-

ence model, the following two conditions are necessary
for a transmission by secondary user n on channel m in
slot t to be successful:

1) Sm(t) = 1
2) For all other secondary users i transmitting on a

channel j ∈ {1, 2, . . . , M}, we have m /∈ ⋃ Iij(t)
(where i ∈ {1, 2, . . . , N} \ {n})

This interference model is general enough to capture
scenarios in which the channels may not be orthogo-
nal with respect to the secondary user transmissions
although they are orthogonal for the primary user trans-
missions. Further, it is general enough to model scenarios
where these sets could also change over time (possibly
depending on the secondary user location). In most
practical situations, the cardinality of the interference
sets Inm(t) would be small. An important special case
is when the channels are indeed orthogonal for all
secondary user transmissions, so that Inm(t) = {m} for
all m,n, t.

As an example, consider secondary user 4 in Fig. 1,
and suppose this user transmits a packet over channel
2. Under an orthogonal channel model, we would have

1. We assume that multi-user detection/interference cancelation is
not available so that if the secondary user attempts to transmit its
own data when some other user is also transmitting, there is enough
interference at the access point and no data is successfully received.
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I42(t) = {2}, as this transmission would not interfere
with any other channels. However, in a model where
channels are not necessarily orthogonal, it might be that
channel 2 uses the same frequency as channel 1, in
which case we would have I42(t) = {2, 1}, as the current
location of node 4 may be close enough to interfere
with channel 1 (even though it is not close enough to
communicate over channel 1). Note that this I42(t) set
can potentially change over time if node 4 moves to a
location that would no longer interfere with channel 1.

2.3 Primary User Traffic Model
We assume that the primary user channel occupancy
process S(t) evolves according to a finite state ergodic
Markov Chain on the state space {0, 1}M and is inde-
pendent of the secondary user mobility process H(t). It is
further assumed to be independent of the control actions
of the secondary users. In particular, we assume that
the primary users do not attempt retransmissions when
collisions take place. For example, the primary users
may be using a voice application which can tolerate
some lost packets, but has strict delay constraints so that
retransmissions are not done. Another example is where
the primary users use erasure codes such that the data
can be recovered even when some packets are lost.

Each primary user m receives exogenous data at a rate
νm ≤ 1 packet/slot and can tolerate a maximum time
average rate of collisions given by ρmνm, where ρm <
1 is the maximum fraction of primary user m packets
that can have collisions and is known to the secondary
users. For example, ρm = 0.05 means that at most 5% of
primary user m packets can have collisions.

2.4 Channel State Information Model
The channel state information available to the sec-
ondary users is described by a probability vector P(t) =
(P1(t), P2(t), . . . , PM (t)) where Pi(t) is the probability
that primary user i is idle in timeslot t. The P(t) process
is assumed to be modulated by a finite state discrete time
Markov Chain (DTMC). Specifically, let χ(t) represent
a finite state DTMC that represents the state of the
primary users (where “state” is an abstract term here and
could be different in different examples, e.g., it could be
S(t−1), the channel occupancy state in the previous slot).
The χ(t) process is assumed to be independent of the
control actions. Then for each channel m and each slot

t, we define Pm(t) = Pr[Sm(t) = 1|χ(t)]. Thus, Pm(t) is
modulated by this process and hence is also independent
of the control actions.

We assume that this information is obtained either
through a knowledge of the traffic statistics of the pri-
mary users, or by sensing the channels, or a combination
of these.2 We discuss two examples of these scenarios in
the following.

Example 1: Using knowledge of traffic statistics: Consider
a single primary user whose channel occupancy pro-
cess S(t) is described by a 2 state Markov Chain as
shown in Fig. 2. Suppose the last state of the Markov
Chain is known at the beginning of each slot and let
χ(t) = S(t − 1). If the transition probabilities ε and δ
associated with this Markov Chain are known, then one
can compute P (t) = Pr[S(t) = 1|S(t − 1)]. Specifically,
Pr[S(t) = 1|S(t− 1) = 0] = δ and Pr[S(t) = 1|S(t− 1) =
1] = 1− ε. A secondary user can obtain this information,
for example, by querying the primary user base station
that knows χ(t), so that it is able to tell the current
P (t) value. It can be seen that in this example P (t) is
modulated by the 2 state χ(t) process.

Example 2: Using a combination of channel sensing and
traffic statistics: In the example above, suppose a sec-
ondary user also senses the current channel state S(t) and
uses a detection algorithm that outputs S̃(t) as follows:

if S(t) = 0, S̃(t) =
{

1 w.p. p
0 w.p. 1− p

if S(t) = 1, S̃(t) =
{

1 w.p. 1− q
0 w.p. q

Here, p and q can be thought of as the probabilities of
false detection associated with the sensing mechanism.
Similar models have been considered in [11], [12].

Let χ(t) = [S̃(t), S(t− 1)]. Then, a secondary user can
compute P (t) as follows:

If S̃(t) = 1:

P (t) = Pr[S(t) = 1|S̃(t) = 1, S(t− 1)]

= Pr[S̃(t) = 1|S(t) = 1, S(t− 1)]
Pr[S(t) = 1|S(t− 1)]
Pr[S̃(t) = 1|S(t− 1)]

=
(1− q)Pr[S(t) = 1|S(t− 1)]

(1− q)Pr[S(t) = 1|S(t− 1)] + pPr[S(t) = 0|S(t− 1)]

If S̃(t) = 0:

P (t) = Pr[S(t) = 1|S̃(t) = 0, S(t− 1)]

= Pr[S̃(t) = 0|S(t) = 1, S(t− 1)]
Pr[S(t) = 1|S(t− 1)]
Pr[S̃(t) = 0|S(t− 1)]

=
qPr[S(t) = 1|S(t− 1)]

qPr[S(t) = 1|S(t− 1)] + (1− p)Pr[S(t) = 0|S(t− 1)]

In this example too, it can be seen that P (t) is modu-
lated by the χ(t) process.

2. In addition, prediction based techniques could also be used to get
this information.
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Our model for the channel state information captures
the situations where the exact channel state may not be
available to the secondary users (e.g., due to limitations
in carrier sensing). These probabilities capture the in-
herent sensing measurement errors associated with any
primary transmission detection algorithm. Intuitively,
the “closer” P(t) is to S(t), the smaller the chances of
collisions.

2.5 Queueing Dynamics and Control Decisions

Each secondary user n receives data according to an
arrival process An(t) that has rate λn packets/slot. We
assume that the maximum number of arrivals to any
secondary user n is upper bounded by a constant value
Amax every timeslot. This data arrives at the transport
layer and flow control decisions on how many packets to
admit to the network layer are taken by each secondary
user. We assume that there are no transport layer buffers
and add/drop decisions are taken immediately.

Let Un(t) be the backlog in the network layer queue
of secondary user n at the beginning of timeslot t. Let
Rn(t) be the control decision that denotes the number of
new packets admitted into this queue in slot t. Define
µnm(t) as the control decision that allocates channel m
to secondary user n in slot t. In this model µnm(t) ∈
{0, 1} ∀ m, n with the interpretation that µnm(t) = 1 if
secondary user n transmits on channel m and µnm(t) = 0
else. Note that there is a successful transmission on
channel m only when the necessary conditions specified
earlier are met. Then the queueing dynamics of sec-
ondary user n under these control decisions is described
by:

Un(t + 1) = max[Un(t)−
M∑

m=1

µnm(t)Sm(t), 0] + Rn(t)

(1)

where

µnm(t) ∈ {0, 1} ∀ m,n (2)
µnm(t) ≤ hnm(t) ∀ m,n (3)

0 ≤
M∑

m=1

µnm(t) ≤ 1 ∀ n (4)

µnm(t) = 1 ⇐⇒
M∑

j=1

N∑

i=1
i 6=n

Im
ij (t)µij(t) = 0 ∀ m,n (5)

0 ≤ Rn(t) ≤ An(t) (6)

Here, inequality (3) represents the constraint imposed
by the channel accessibility matrix H(t). Inequality (4)
represents the constraint that a secondary user can be al-
located at most 1 channel. (5) represents the second nec-
essary condition for successful transmission expressed
in terms of the Ik

nm(t) variables. In the special case of
orthogonal channels, this simplifies to the constraint that

a channel can be allocated to at most 1 secondary user,
i.e.,

0 ≤
N∑

n=1

µnm(t) ≤ 1 ∀ m (7)

2.6 Discussion of Network Model
The above network model considers access point based
networks with static (or locally mobile) licensed and
fully mobile unlicensed users. Examples of real networks
that can be modeled like this include Wi-Fi, cellular
and mesh networks with both licensed and unlicensed
users. In such networks, the licensed users may not
schedule their transmissions and thus send at any time
they desire. The unlicensed users must make an effort
to opportunistically use the spectrum holes without
interfering too much with the licensed users, and hence
need sophisticated scheduling mechanisms.

A taxonomy of different approaches to spectrum shar-
ing in cognitive networks is provided in [4]. The network
model used in this paper falls into the “spectrum over-
lay” approach to spectrum sharing.

3 MAXIMUM THROUGHPUT OBJECTIVE

Let rn denote the time average rate of admitted data for
secondary user n, i.e.,

rn = lim
t→∞

1
t

t−1∑
τ=0

Rn(τ)

Let r = (r1, . . . , rN ) denote the vector of these time
average rates.

We define the following “collision” variables for each
primary user m ∈ {1, . . . ,M}:

Cm(t) =





1 if there was a collision with primary user
in channel m in slot t

0 else

Let cm denote the time average rate of collision for
primary user m, i.e.,

cm = lim
t→∞

1
t

t−1∑
τ=0

Cm(τ)

Let {θ1, . . . , θN} be a collection of positive weights.
Then the control objective is to design a flow control and
scheduling policy that yields time average rate vector r
that solves the following optimization problem:

Maximize:
N∑

n=1

θnrn

Subject to: 0 ≤ rn ≤ λn ∀ n ∈ {1, . . . , N}
cm ≤ ρmνm ∀ m ∈ {1, . . . , M}
r ∈ Λ

Here, Λ represents the network capacity region for the
network model as described above. It is defined as the
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set of all input rate vectors ~λ = (λ1, . . . , λN ) of the
secondary users for which a scheduling strategy exists
that can support ~λ (without flow control) subject to
the constraints imposed by the network. The notion
of network capacity for general networks with time
varying channels and energy constraints is formalized
in [15], [17], [18] where it is shown to be a function of
the steady state network topology distribution, channel
probabilities, and time average transmission rates.

Let r∗ = (r∗1 , . . . , r∗N ) denote the optimal solution to the
optimization problem defined above. In principle, it can
be solved if all system parameters are known in advance
including Λ. However, in practice, this region may not
be known to the network controller (e.g., because the
mobility patterns of the secondary users are unknown)
and the above maximization problem must be done for
input rates either inside or outside of the capacity region.
Even if all system parameters are known, the optimal
solution may be difficult to implement as it may require
centralized coordination among all users.

We next present an online control algorithm that over-
comes all of these challenges.

4 OPTIMAL CONTROL ALGORITHM

We now present the Cognitive Network Control Algorithm
(CNC), a cross-layer control strategy that can be shown
to achieve the optimal solution r∗ to the network opti-
mization problem presented earlier. It operates without
knowledge of whether the input rate is within or outside
of the capacity region Λ. Further, it provides deterministic
worst case bounds on the maximum secondary user
queue backlog at all times and the maximum number
of collisions with a primary user in a given time inter-
val. These are much stronger than probabilistic perfor-
mance guarantees. Finally, it offers a control parameter
V that enables an explicit trade-off between the average
throughput utility and delay. This algorithm is similar
in spirit to the “backpressure” algorithms proposed in
[17], [19] for problems of energy optimal networking in
wireless ad-hoc and mesh networks.

The algorithm is decoupled into two separate compo-
nents. The first component performs optimal flow con-
trol at the transport layers and is implemented indepen-
dently at each secondary user. The second component
determines a network wide resource allocation every slot
and needs to be solved collectively by the secondary
users.

In addition to the actual queue backlog Un(t), this
algorithm uses a set of collision queues Xm(t) for each
channel m. These queues are “virtual” in that they are
maintained purely in software. These are used to track
the amount by which the number of collisions suffered
by a primary user m exceeds its time average collision
fraction ρm. These could be maintained at the primary
user base station for each channel. We assume that the
secondary users are aware of the Xm(t) value for each
channel m that they can access at time t.

We define the collision queue Xm(t) for channel m as
follows:

Xm(t + 1) = max[Xm(t)− ρm1m(t), 0] + Cm(t) (8)

where Cm(t) is the collision variable for channel m as
defined in the previous section and 1m(t) is an indicator
variable, taking value 1 if primary user m transmits in
slot t and 0 else (so that 1m(t) = 1− Sm(t)).

The above equation represents the queueing dynamics
of a single server system with input process Cm(t) and
service process ρm1m(t). This system is stable only when
the service rate is greater than or equal to the input rate,
i.e.,

cm = lim
t→∞

1
t

t−1∑
τ=0

Cm(τ) ≤ lim
t→∞

ρm
1
t

t−1∑
τ=0

1m(τ) = ρmνm

This is precisely the collision constraint in the utility
optimization problem stated earlier. Thus, if our policy
stabilizes all collision queues as defined above, the maximum
average rate of collisions will meet the required constraint.
This technique of turning time average constraints into
queueing stability problems was introduced in [17]
where it was used for satisfying average power con-
straints.

4.1 Cognitive Network Control Algorithm (CNC)

Let V ≥ 0 be a fixed control parameter. Let the flow
control and resource allocation decision under the CNC
algorithm be RCNC

n (t) and µCNC
nm (t) respectively. These

are determined as follows:
Flow Control: At each secondary user n, choose the

number of packets to admit RCNC
n (t) as the solution to

the following problem:

Minimize: Rn(t)[Un(t)− V θn]
Subject to: 0 ≤ Rn(t) ≤ An(t) (9)

This problem has a simple threshold-based solution. In
particular, if the current queue backlog Un(t) > V θn,
then RCNC

n (t) = 0 and no new packets are admitted.
Else, if Un(t) ≤ V θn, then RCNC

n (t) = An(t) and all
new packets are admitted. Note that this can be solved
separately at each user and does not require knowledge
of θn weights of other users.

Resource Allocation: Choose a resource allocation
µCNC

nm (t) that solves the following problem:

Max:
∑
n,m

µnm(t)
[
Un(t)Pm(t)−

M∑

k=1

Xk(t)(1− Pk(t))Ik
nm(t)

]

Subject to: constraints (2), (3), (4), (5) (10)

After observing the outcome of this allocation at the
end of the slot, the virtual queues are updated as in (8)
based on the feedback received about a collision with
a primary user or a successful transmission. Note that
only collisions with a primary user affect (8), collisions
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between secondary users do not affect the virtual colli-
sion queues.

The above problem is a generalized Maximum Weight
Match problem where the weight for a pair (n,m) is
given by

(
Un(t)Pm(t) − ∑M

k=1 Xk(t)(1 − Pk(t))Ik
nm(t)

)
.

This is the difference between the current queue backlog
Un(t) weighted by the probability that primary user m is
idle and the weighted sum of all collision queue backlogs
Xk(t) for the channels that user n interferes with if it
uses channel m. The weight for a collision queue is
the probability that the corresponding primary user will
transmit. Note that if this difference is non-positive, then
the link (n,m) can be removed from the decision options,
simplifying scheduling. This problem is hard to solve in
general, though constant factor approximations exist that
are easier to implement. We discuss these in Sec. 6.

For the case when all channels are orthogonal from
the point of view of secondary users (which means a
secondary user transmission on a channel does not cause
interference to other channels), Inm(t) = {m} so that
Im
nm(t) = 1, Ik

nm(t) = 0 ∀ k 6= m. Then the above
maximization simplifies to the following problem:

Maximize:
∑
n,m

µnm(t)
[
Un(t)Pm(t)−Xm(t)(1− Pm(t))

]

Subject to: constraints (2), (3), (4), (7) (11)

The above maximization requires solving the Maxi-
mum Weight Match (MWM) problem on an N × M
bipartite graph of N secondary users and M channels.
This problem can be solved in polynomial time, though
this may require centralized control. We discuss simpler
constant factor approximations in Sec. 6. Also, we con-
sider a cell partitioned network in the simulations of
Sec. 7 for which a full maximum weight match can be
implemented in a distributed manner.

To get an intuition behind the algorithm, consider
the maximization in (11) for the orthogonal channel
case. A secondary user n would attempt transmission
over channel m only if Un(t)Pm(t) > Xm(t)(1 − Pm(t)).
Intuitively, this algorithm tries to schedule secondary
users with larger queue backlogs over those channels
that are more likely to be idle and that have smaller
“effective” collision queue values. Here, the effective
collision queue value is its actual value weighted by the
probability of that channel being busy with its primary
user. Intuitively, these collision queues enable stochastic
optimization by acting as dynamic Lagrange multipliers
[18]. Using (11), the dynamic weights of Xm(t) help
determine the best channel for attempting transmission.

4.2 Performance Analysis
We now characterize the performance of the CNC al-
gorithm. This holds for general secondary user mobil-
ity processes that are described by finite state ergodic
Markov Chains.

Theorem 1: (Algorithm Performance) Assume that all
queues are initialized to 0. Suppose all arrivals An(t)

are upper bounded so that An(t) ≤ Amax for all n, t.
Also suppose the H(t) and P(t) processes are Markovian
and have a well defined steady state distribution. Then,
implementing the CNC algorithm every slot for any
fixed control parameter V ≥ 0 stabilizes all real and
virtual queues (thereby satisfying the maximum time
average collision constraints) and yields the following
performance bounds:

1) The worst case queue backlog for each secondary
user n is upper bounded by a finite constant Un

max for
all t:

Un(t) ≤ Un
max

M=V θn + Amax (12)

Let θmax = maxn∈{1,...,N}{θn}. Then, from (12) we
have for any n

Un(t) ≤ Umax
M=V θmax + Amax (13)

2) For all m, t such that Pm(t) 6= 1, let ε > 0 be such
that Pm(t) ≤ 1− ε.3 Then, the worst case collision queue
backlog for all channels m is upper bounded by a finite
constant Xmax:

Xm(t) ≤ Xmax
M=Umax

(1− ε)
ε

+ 1 (14)

Further, the worst case number of collisions suffered by
any primary user m is no more than ρmT + Xmax over
any interval (of size greater than or equal to T slots)
over which the primary user transmits T times, for any
positive integer T .

3) The time average throughput utility achieved by the
CNC algorithm is within B̃/V of the optimal value:

lim inf
t→∞

1
t

t−1∑
τ=0

N∑
n=1

θnE {Rn(τ)} ≥
N∑

n=1

θnr∗n −
B̃

V
(15)

where B̃ = B +CU +CX +N +M and where B, CU , CX

are constants (defined precisely in (18), (31), (32)). The
constants CU and CX are determined by the stochastics
of the mobility and channel state probability processes
and it is shown in Appendix A that these are O(log V )
when these processes evolve according to any finite state
ergodic Markov model.

Therefore, by part (3) of the theorem, the achieved
average throughput utility is within O(log V/V ) of the
optimal value. This can be pushed arbitrarily close to
the optimal value by increasing the control parameter
V . However, this increases the maximum queue backlog
bound Umax linearly in V , leading to a utility-delay
tradeoff.

The above bounds are quite strong. In particular, the
maximum collisions bound in part (2) gives determin-
istic performance guarantees that hold for any interval
size. This is quite useful in the context of cognitive
networks since it implies that the licensed users are
guaranteed to suffer at most these many collisions. Prob-
abilistic guarantees (e.g [11], [13]) do not provide such
bounds.

3. Such an ε exists for any finite state ergodic Markov Chain.
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We next prove the first two parts of Theorem 1. Proof
of part (3) uses the technique of Stochastic Lyapunov
Optimization and is provided in the next section.

Proof of part (1): Suppose that Un(t) ≤ Un
max for all

n ∈ {1, . . . , N} for some time t. This is true for t = 0 as
all queues are initialized to 0. We show that the same
holds for time t + 1. We have 2 cases. If Un(t) ≤ Un

max −
Amax, then from (1), we have Un(t+1) ≤ Umax (because
Rn(t) ≤ Amax for all t). Else, if Un(t) > Un

max − Amax,
then Un(t) > V θn + Amax −Amax = V θn. Then, the flow
control part of the algorithm chooses Rn(t) = 0, so that
by (1):

Un(t + 1) ≤ Un(t) ≤ Un
max

This proves (12). 2

Proof of part (2): Suppose that Xm(t) ≤ Xmax for all
m ∈ {1, . . . ,M} for some time t. This is true for t = 0
as all queues are initialized to 0. We show that the same
holds for time t + 1. First suppose Pm(t) = 1. Then, by
definition, there is no collision with the primary user in
channel m in slot t so that Cm(t) = 0. Then, from (8),
we have Xm(t + 1) ≤ Xmax. Next, suppose Pm(t) < 1.
We again have 2 cases. If Xm(t) ≤ Xmax − 1, then from
(8), we have Xm(t + 1) ≤ Xmax (because Cm(t) ≤ 1
for all t). Else, if Xm(t) > Xmax − 1 = Umax

(1−ε)
ε , then

Xm(t)ε > Umax(1 − ε). This implies Xm(t)(1 − Pm(t)) ≥
Xm(t)ε > Umax(1− ε) ≥ UmaxPm(t) ≥ Un(t)Pm(t) for all
n ∈ {1, . . . , N}. Thus, the resource allocation part of the
algorithm chooses µnm(t) = 0 for all n. This would yield
Cm(t) = 0 (since no collision takes place with primary
user m), so that by (8):

Xm(t + 1) ≤ Xm(t) ≤ Xmax

This proves (14). 2

Now consider any interval (t1, t2) in which primary
user m transmits T times. Then, from the queueing
equation (8) we have that:

Xm(t2 + 1) ≥ Xm(t1) +
t2∑

τ=t1

Cm(τ)− ρmT

This follows by noting that ρmT is the maximum number
of “departures” that can take place in the queueing dy-
namics (8) during the interval (t1, t2). From this, we can
bound the worst case number of collisions suffered by
primary user m over any interval in which it transmits
T times as:

t2∑
τ=t1

Cm(τ) ≤ ρmT + Xmax

5 STOCHASTIC LYAPUNOV OPTIMIZATION

Let Q(t) = (Q1(t), . . . , QK(t)) be a vector process of
queue lengths for a discrete time stochastic queueing
network with K queues (possibly including some virtual
queues like the collision queues defined in the previous
subsection). Let L(Q) be any non-negative scalar valued

function of the queue lengths, called a Lyapunov func-
tion. Define the Lyapunov drift ∆(t) as follows:

∆(t)M=E {L(Q(t + 1))− L(Q(t))}
Suppose the network accumulates “rewards” every

timeslot (where rewards might correspond to utility
measures of control actions). Assume rewards are real
valued and bounded, and let the stochastic process
f(t) represent the reward earned during slot t. Let f∗

represent the target reward. The following result (a
variant of related results from [17], [18]) specifies a drift
condition which ensures that the time average of the
reward process f(t) is close to meeting or exceeding f∗.

Theorem 2: (Delayed Lyapunov Optimization with Re-
wards) Suppose there exist finite constants V > 0, B >
0, d > 0, and a non-negative function L(Q) such that
E {L(Q(d))} < ∞ and for every timeslot t > d, the
Lyapunov drift satisfies:

∆(t)− V E {f(t)} ≤ B − V f∗ (16)

then we have:

lim inf
t→∞

1
t

t−1∑
τ=0

E {f(τ)} ≥ f∗ − B

V

Proof : Inequality (16) holds for all t > d. Summing
both sides over τ ∈ {d, . . . , t− 1} yields:

E {L(Q(t))} − E {L(Q(d))} ≤B(t− d)− V (t− d)f∗

+ V

t−1∑

τ=d

E {f(τ)}

Rearranging terms, dividing by t, and using non-
negativity of L(Q) yields:

(t− d)f∗

t
− (t− d)B

tV
− E {L(Q(d)}

tV
≤ 1

t

t−1∑
τ=0

E {f(τ)}

The result follows by taking limit as t →∞. 2

We now use Theorem 2 to prove part (3) of Theorem
1. This is done by comparing the Lyapunov drift of the
CNC algorithm with that of a stationary randomized
algorithm STAT that makes control decisions every
slot purely as a function of the current channel state
information P(t) and H(t).

We first obtain an expression for the Lyapunov drift
under any control policy for our cognitive network
model.

5.1 Lyapunov Drift

Let Q(t) = (U1(t), . . . , UN (t), X1(t), . . . , XM (t)) represent
the collection of all real and virtual queue backlogs in the
cognitive network. We define the following Lyapunov
function:

L(Q(t))M=
1
2

[ N∑
n=1

U2
n(t) +

M∑
m=1

X2
m(t)

]
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Using queueing dynamics (1) and (8), the Lyapunov
drift ∆(t) under any control policy (including CNC) can
be computed as follows:

∆(t) ≤ B − E
{

N∑
n=1

Un(t)
( M∑

m=1

µnm(t)Sm(t)−Rn(t)
)}

− E
{

M∑
m=1

Xm(t)(ρm1m(t)− Cm(t))

}
(17)

where

B M=
N(A2

max + 1) +
∑M

m=1 ρ2
m + M

2
(18)

The collision variable Cm(t) can be expressed in terms
of the control decisions µij(t) and channel state S(t) as
follows:

Cm(t) =
N∑

i=1

M∑

j=1

µij(t)Im
ij (t)1[Ui(t)>0](1− Sm(t)) (19)

where 1[Ui(t)>0] is an indicator variable of non-zero
queue backlog in secondary user i. This follows by
observing that a collision with the primary user occurs
in channel m if the primary user is busy (i.e. Sm(t) = 0)
and if µij(t) = 1 for some secondary user i with non-
zero backlog using channel j that interferes with channel
m. We will find it useful to define the following related
variable:

Ĉm(t) =
N∑

i=1

M∑

j=1

µij(t)Im
ij (t)(1− Sm(t)) (20)

For a given control parameter V ≥ 0, we subtract the
reward metric V E

{∑N
n=1 θnRn(t)

}
from both sides of

the drift inequality (17) and use the fact that Ĉm(t) ≥
Cm(t) ∀t to get the following:

∆(t)− V E

{
N∑

n=1

θnRn(t)

}
≤ B

− E
{

N∑
n=1

Un(t)
( M∑

m=1

µnm(t)Sm(t)−Rn(t)
)}

− E
{

M∑
m=1

Xm(t)(ρm1m(t)− Ĉm(t))

}
− V E

{
N∑

n=1

θnRn(t)

}

(21)

5.2 Optimal Stationary, Randomized Policy

We now describe the stationary, randomized policy
STAT that chooses control actions only as a function
of P(t) and H(t) every slot. We have the following fact:

Optimal Stationary, Randomized Policy: For any rate
vector (λ1, . . . , λN ) (inside or outside of the network
capacity region Λ), there exists a stationary randomized
scheduling policy STAT that chooses feasible alloca-
tions RSTAT

n (t), µSTAT
nm (t) for all n ∈ {1, . . . , N},m ∈

{1, . . . ,M} every slot as a function of the channel state

information P(t) and H(t) and yields the following
steady state values:

E
{
RSTAT

n (t)
}

= r∗n ∀ t (22)

µSTAT
n

M= lim
t→∞

1
t

t−1∑
τ=0

E

{
M∑

m=1

µSTAT
nm (τ)Sm(τ)

}
≥ r∗n (23)

ĉSTAT
m

M= lim
t→∞

1
t

t−1∑
τ=0

E
{

ĈSTAT
m (t)

}
≤ ρmνm (24)

Specifically, the flow control decision RSTAT
n (t) under

this policy is determined as follows. At each secondary
user n, observe An(t) and choose Rn(t)STAT as follows:

RSTAT
n (t) =

{
An(t) with probability r∗n/λn

0 else

These probabilistic decisions are made every slot inde-
pendent of the current queue backlogs and are i.i.d with
probability r∗n/λn ≤ 1. Thus, we have

E
{
Rn(t)STAT

}
= E {An(t)} r∗n

λn
= r∗n

The above facts can be proven using techniques similar
to the ones used in [15]–[17] for showing the existence of
capacity achieving stationary, randomized policies that
make control decisions independent of queue backlog
and is omitted for brevity. We now prove an important
property of the CNC algorithm.

Claim: Suppose the CNC algorithm is implemented
on all slots up to time t. Thus, the queue backlogs Un(t)
and Xm(t) are determined by the history before time t
and are not affected by the control decisions made on
slot t. Then, given the current queue backlogs, the CNC
control decisions for slot t minimize the right hand side
of inequality (21) over all alternative feasible policies that
could be implemented on slot t, including the stationary,
randomized policy STAT .4

Proof : By changing the order of summations and using
(20), the right side of (21) can be expressed in a more
convenient form:

B −
M∑

m=1

ρmE {Xm(t)1m(t)}+ E

{
N∑

n=1

Rn(t)(Un(t)− V θn)

}

− E
{∑

n,m

µnm(t)
[
Un(t)Sm(t)−

M∑

k=1

Xk(t)(1− Sk(t))Ik
nm

]}

(25)

where we have omitted the t subscript in Ik
nm(t). Note

that E {Sm(t)|χ(t)} = Pr[Sm(t) = 1|χ(t)] = Pm(t) ∀m.
By writing the last two terms on the right hand side
as an iterated expectation by conditioning on the queue

4. Note that we are not claiming that the CNC policy, implemented
over time, minimizes the right hand side expectation of (21) at time
t. Indeed, another policy may result in a smaller expected queue size
outcome at time t. Rather, we are claiming that, given CNC is used up
to (but not including) time t (so that queue sizes at time t are already
determined by the sample path outcome of CNC up to this time), the
CNC control decisions made at time t act to greedily minimize the
right hand side over any other decisions that can be made at time t.
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backlog and χ(t), it can be seen that CNC chooses
control decisions (9) and (10) that minimize these terms
for every possible value of the backlog and χ(t), so that
the actual expectation is also minimized. We note that the
unconditioning is done with respect to the queue backlog
distribution that arises as a result of implementing the
CNC algorithm for all slots up to time t.

Using this fact, we have:

∆CNC(t)− V E

{
N∑

n=1

θnRCNC
n (t)

}
≤ B

− E
{

N∑
n=1

Un(t)
( M∑

m=1

µSTAT
nm (t)Sm(t)−RSTAT

n (t)
)}

− E
{

M∑
m=1

Xm(t)(ρm1m(t)− ĈSTAT
m (t))

}

− V E

{
N∑

n=1

θnRSTAT
n (t)

}
(26)

In Appendix A, we show that for all t > d (where d
is a finite positive integer and is computed in Appendix
A), this can be expressed as:

∆CNC(t)− V E

{
N∑

n=1

θnRCNC
n (t)

}
≤ B̃ − V

N∑
n=1

θnr∗n

(27)

This is in a form that fits (16). Thus, applying Theorem 2
proves (15). 2

6 DISTRIBUTED IMPLEMENTATION

Here we discuss constant factor approximations to the
resource allocation problem (10) that are easier to im-
plement in a distributed network. We focus on the
orthogonal channel case in which a secondary user
transmission on a channel does not cause interference
to other channels. As noted earlier, in this case, the
resource allocation problem (11) reduces to a Maximum
Weight Match (MWM) problem on an N ×M bipartite
graph between N secondary users and M channels. An
edge exists between nodes n and m of this graph if
hnm(t) = 1, i.e., if secondary user n can access chan-
nel m in slot t. The weight of this edge is given by
(Un(t)Pm(t)−Xm(t)(1−Pm(t))). While the MWM prob-
lem can be solved in polynomial time in a centralized
way, here we are interested in simpler implementations.
In particular, we use the idea of Greedy Maximal Weight
Match Scheduling that has been investigated in several
recent works including [20]–[22].

A maximal match is defined as any set of edges (m,n)
that do not interfere with each other such that adding
any new edge to this set necessarily violates a matching
constraint. A Greedy Maximal Weight Match can be
achieved as follows: First select the edge (m,n) with
the largest positive weight and label it “active”. Then
select the edge with the second largest positive weight
(breaking ties arbitrarily) that does not conflict with an

active edge and label it active. Continue in the same way,
until no more edges can be added. It is not difficult to
see that this final set of edges labeled “active” has the
desired maximal property. A Greedy Maximal Weight
Match can be computed with much less overhead as
compared to the Maximum Weight Match.

It can be shown that using such greedy maximal
weight matches instead of the maximum weight match
every slot can still support any rate within 1

2Λ. In par-
ticular, in Appendix C, we show that resource allocation
µGMM

nm (t) chosen according to a Greedy Maximal Weight
Match has the following property:

∑
n,m

µGMM
nm (t)

[
Un(t)Pm(t)−Xm(t)(1− Pm(t))

]

≥ 1
2

∑
n,m

µCNC
nm (t)

[
Un(t)Pm(t)−Xm(t)(1− Pm(t))

]
(28)

where µCNC
nm (t) is the optimal solution to (11). Using this,

we get the following result:
Theorem 3: (Performance Bound for Orthogonal Chan-

nels with Greedy Maximal Weight Match Scheduling)
The time average throughput utility achieved by the
CNC algorithm with Greedy Maximal Weight Match
Scheduling is within BGMM/V of 1

2

∑N
n=1 θnr∗n:

lim inf
t→∞

1
t

t−1∑
τ=0

N∑
n=1

θnE {Rn(τ)} ≥ 1
2

N∑
n=1

θnr∗n −
BGMM

V

(29)

where BGMM = (B̃ + B)/2.
We note that while using Greedy Maximal Weight

Match Scheduling provides a factor of 2 approximation
in terms of the time average throughput utility, the
deterministic bounds on maximum queue backlog and
worst case number of collisions remain the same as in
parts (1) and (2) of Theroem 1. This is because the
arguments there were based only on the fact that only
positive weight transmissions are scheduled, which also
holds for GMM.

Proof : Let RGMM
n (t) and µGMM

nm (t) denote the flow
control and resource allocation decisions under Greedy
Maximal Match Scheduling. Let ∆GMM (t) be the corre-
sponding Lyapunov drift. Note that for any given queue
backlog Q(t), RGMM

n (t) = RCNC
n (t). Then, using (25), we

have:

∆GMM (t)− V E

{
N∑

n=1

θnRGMM
n (t)

}
≤ B−

M∑
m=1

ρmE {Xm(t)1m(t)}+ E

{
N∑

n=1

RGMM
n (t)(Un(t)− V θn)

}

− E
{∑

n,m

µGMM
nm (t)

[
Un(t)Sm(t)−Xm(t)(1− Sm(t))

]}

Using property (28) and the fact that RGMM
n (t) =
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RCNC
n (t), the above can be written as:

∆GMM (t)− V E

{
N∑

n=1

θnRGMM
n (t)

}
≤ B−

M∑
m=1

ρmE {Xm(t)1m(t)}+ E

{
N∑

n=1

RCNC
n (t)(Un(t)− V θn)

}

− 1
2
E

{∑
n,m

µCNC
nm (t)

[
Un(t)Sm(t)−Xm(t)(1− Sm(t))

]}

From (9), note that RCNC
n (t) ≥ 0 if Un(t) ≤ V θn, else

RCNC
n (t) = 0. Therefore the second to last term under

the flow control of CNC is non-positive. Thus, the above
can be rewritten as:

∆GMM (t)− V E

{
N∑

n=1

θnRGMM
n (t)

}
≤ B

− 1
2

M∑
m=1

ρmE {Xm(t)1m(t)}

+
1
2
E

{
N∑

n=1

RCNC
n (t)(Un(t)− V θn)

}

− 1
2
E

{∑
n,m

µCNC
nm (t)

[
Un(t)Sm(t)−Xm(t)(1− Sm(t))

]}

Using (26) and (27), we get the following:

∆GMM (t)− V E

{
N∑

n=1

θnRGMM
n (t)

}
≤

BGMM − V

2

N∑
n=1

θnr∗n

This is in a form that fits (16). Thus, applying Theorem 2
proves (29). 2

7 SIMULATIONS

We simulate the CNC algorithm on an example cog-
nitive network consisting of 9 primary users and 8
secondary users as shown in Fig. 3. We consider a simple
cell-partitioned network with one primary user per cell.
The primary users are static and each has its own li-
censed channel that can be used by them simultaneously.
A secondary user can only attempt to transmit on the
channel associated with the primary user in its current
cell.

The secondary users move from one cell to another
according to a Markovian random walk. In particular, at
the end of every slot, a secondary user decides to stay
in its current cell with probability 1− β, else decides to
move to an adjacent cell with probability β/4 (where
β = 0.25 for the simulations). If there is no feasible
adjacent cell (e.g, if the previous cell is a corner cell and
the new chosen cell does not exist), then the user remains
in the current cell. It can be shown that the resulting H(t)
process forms an irreducible, aperiodic Markov Chain

7

7

8

654

321

9

6

2

4

8

51

3

Primary User

Secondary User

x

y

Fig. 3. Example cell-partitioned network used in simula-
tion

where the steady state location distribution is uniform
over all cells.

The channel state process Sm(t) for each primary user
m is governed by an ON/OFF Markov Chain with
symmetric transition probabilities between the ON and
OFF states given by 0.2 ∀m. The maximum collision
fraction ρm = 0.05 ∀m so that for each primary user,
at most 5% of its packets can have collisions.

New packets arrive at the secondary users according
to independent Bernoulli processes, so that a single
packet arrives i.i.d. with probability λ every slot. We
assume there are no transport layer storage buffers, so
that all packets that are not immediately admitted to
the network layer are necessarily dropped. Flow control
is performed according to (9) (with θn = 1 ∀n) and
resource allocation decisions are made every slot accord-
ing to (11). In this particular cell-partitioned network
structure with one channel per cell, the maximum weight
match can be decoupled into a distributed algorithm
implemented in each cell, and is the same as the greedy
maximal match that selects the largest weight user to
transmit in each cell.

In Fig. 4 we plot the average total occupancy (sum-
ming all packets in the queues of the secondary users)
versus the input rate λ . Each data point represents a sim-
ulation over 500, 000 timeslots, and the different curves
correspond to values of the flow control parameter V ∈
{1, 2, 5, 10, 100}, and the case V = ∞ (no flow control)
is also shown. In this case, the average total occupancy
increases without bound as the input rate approaches
network capacity. The vertical asymptote which appears
roughly at λ = 0.13 packets/slot corresponds to this
value. Fig. 5 illustrates the achieved throughput versus
the raw data input rate λ for various V parameters. The
achieved throughput is almost identical to the input rate
λ for small values of λ, and the throughput saturates at
a value that depends on V , being very close to the 0.13
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Fig. 4. Total average congestion vs. input rate for different
values of V

capacity level when V is large.
Also, it was found that all real and virtual queue back-

logs are always bounded by the maximum values given
in (12) and (14). In particular, ε = 0.2 for this network, so
that Xm(t) ≤ Xmax = Umax

1−ε
ε +1 = 4Umax+1 = 4V +5.

Finally, the maximum average fraction of collisions was
very close to the target ρm = 5%.

8 CONCLUSIONS

In this paper, we developed an opportunistic scheduling
algorithm for cognitive radio networks that maximizes
the throughput utility of the secondary users subject to
maximum collision constraints with the primary users.
We used the recently developed technique of Lyapunov
Optimization along with the notion of collision queues to
design an online flow control, scheduling and resource
allocation algorithm. This algorithm provides tight reli-
ability guarantees in terms of the worst case number of
collisions suffered by a primary user in any time interval.
Further, its performance can be pushed arbitrarily close
to the optimal value with a trade-off in the average delay.

APPENDIX A
LYAPUNOV DRIFT UNDER POLICY STAT
Here, we use “delayed” queue backlogs to express the
Lyapunov drift of the CNC algorithm in a form that
fits (16). Recall that RSTAT

n (t) and µSTAT
nm (t) denote

the resource allocation decisions under the stationary,
randomized policy STAT introduced in Sec. 5.2. We use
the following sample path inequalities. Specifically, for
all t > d, we have for each secondary user queue Un(t)
and for each collision queue Xm(t):

Un(t− d) + dAmax ≥ Un(t) ≥ Un(t− d)− d

Xm(t− d) + d ≥ Xm(t) ≥ Xm(t− d)− dρm

These follow by noting that the queue backlog at
time t cannot be smaller than the queue backlog at
time (t− d) minus the maximum possible departures in
duration (t− d, d). Similarly, it cannot be larger than the
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Fig. 5. Achieved throughput vs. input rate for different
values of V

queue backlog at time (t−d) plus the maximum possible
arrivals in duration (t − d, d). Using these in (26) and
using E

{
RSTAT

n (t)
}

= r∗n (from (22)), we get:

∆CNC(t)− V E

{
N∑

n=1

θnRCNC
n (t)

}
≤ B + CU + CX

− E
{

N∑
n=1

Un(t− d)
( M∑

m=1

µSTAT
nm (t)Sm(t)−RSTAT

n (t)
)}

− E
{

M∑
m=1

Xm(t− d)(ρm1m(t)− ĈSTAT
m (t))

}
− V

N∑
n=1

θnr∗n

(30)

where CU and CX are given by:

CU
M=dMN + dA2

maxN (31)

CX
M=d

M∑
m=1

(1 + ρ2
m) (32)

Using iterated expectations, we have the following:

E

{
N∑

n=1

Un(t− d)
M∑

m=1

µSTAT
nm (t)Sm(t)

}
=

E

{
N∑

n=1

Un(t− d) · E
{

M∑
m=1

µSTAT
nm (t)Sm(t)|T (t− d)

}}

(33)

E

{
M∑

m=1

Xm(t− d)(ρm1m(t)− ĈSTAT
m (t))

}
=

E

{
M∑

m=1

Xm(t− d) · E
{

ρm1m(t)− ĈSTAT
m (t)|T (t− d)

}}

(34)

where T (t− d) = (H(t− d), χ(t− d), Q(t− d)) represents
the composite system state at time (t − d) and includes
the topology state and queue backlogs.

By the Markovian property of the H(t), χ(t) (and
therefore P(t)) processes, any functionals of these states
converge exponentially fast to their steady state values
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(this is formalized in Appendix B). Since the policy
STAT makes control decisions only as a function of
P(t) and H(t), the resulting allocations are functionals
of these Markovian processes. Thus, there exist positive
constants α1, α2 and 0 < γ1, γ2 < 1 such that:

E

{
M∑

m=1

µSTAT
nm (t)Sm(t)|T (t− d)

}
≥ µSTAT

n − α1γ
d
1

E
{

ρm1m(t)− ĈSTAT
m (t)|T (t− d)

}
≥ ρmνm − ĉSTAT

m − α2γ
d
2

where µSTAT
n , ĉSTAT

m are the steady state values as de-
fined in (23), (24). Using these, the above can be written
as:

E

{
M∑

m=1

µSTAT
nm (t)Sm(t)|T (t− d)

}
≥ r∗n − α1γ

d
1 (35)

E
{

ρm1m(t)− ĈSTAT
m (t)|T (t− d)

}
≥ −α2γ

d
2 (36)

Thus, using (35), (36) in (33), (34), inequality (30) can be
expressed as:

∆CNC(t)− V E

{
N∑

n=1

θnRCNC
n (t)

}
≤ B + CU + CX

+ E

{
N∑

n=1

Un(t− d)α1γ
d
1

}
+ E

{
M∑

m=1

Xm(t− d)α2γ
d
2

}

− V

N∑
n=1

θnr∗n ≤ B + CU + CX + NUmaxα1γ
d
1

+ MXmaxα2γ
d
2 − V

N∑
n=1

θnr∗n

The last step follows from the bounds on Un(t−d) and
Xm(t− d) established in (12) and (14).

Define d1 = log(α1Umax)
log(1/γ1)

, d2 = log(α2Xmax)
log(1/γ2)

. Then choos-
ing d = max(d1, d2), we have:

∆CNC(t)− V E

{
N∑

n=1

θnRCNC
n (t)

}
≤ B + CU + CX

+ N + M − V

N∑
n=1

θnr∗n (37)

Since Umax and Xmax are O(V ), we have d ∼ O(log V ).

APPENDIX B
CONVERGENCE OF MARKOV CHAINS

Let Z(t) be a finite state, discrete time ergodic Markov
Chain. Let S denote its state space and let {πi}i∈S be
the steady state probability distribution. Then, for all
integers d ≥ 0, there exist constants α, γ such that:

|Pr{Z(t) = j|Z(t− d) = i} − πj | ≤ αγd (38)

where α ≥ 0 and 0 < γ < 1. This implies that the
Markov Chain converges to its steady state probability
distribution exponentially fast (see [23]).

Let f(Z(t)) be a positive random function of Z(t)
(negative case can be treated similarly). Define f =∑

j∈S πjmj where mj
M=E {f(Z(t))|Z(t) = j}. Then:

E {f(Z(t))|Z(t− d) = i}
=

∑

j∈S
E {f(Z(t))|Z(t) = j}Pr{Z(t) = j|Z(t− d) = i}

≤
∑

j∈S
mj(πj + αγd) (using(38))

≤ f + smmaxαγd

where mmax
M= maxj∈S mj and s = card{S}. This shows

that functionals of the states of a finite state ergodic
Markov Chain converge to their steady state value ex-
ponentially fast.

APPENDIX C
ON GREEDY MAXIMAL WEIGHT MATCHINGS

Here, we prove property (28) for Greedy Maximal
Weight Matchings (GMM) on a weighted graph. While
we need this property to hold only for bipartite graphs, it
is true in general for arbitrary graphs with non-negative
weights.

Let G = (V,E) be a graph with vertices V and edges E.
Let we denote the weight of an edge e ∈ E. We assume
that we ≥ 0 ∀e ∈ E. Let CMWM (G) denote the value
of the Maximum Weight Match on G and let n be its
size. Also, let CGMM (G) denote the value of a Greedy
Maximal Weight Match on G. Note that the size of any
Greedy Maximal Weight Match must be at least n/2. This
is true because GMMs have the maximal property, and
any maximal match has a size that is at least a factor of
2 away from the size of any other maximal match. We
have the following:

Claim: CMWM (G) ≤ 2CGMM (G)
Proof : Suppose w1 is the weight of the first edge e1

that is chosen by the greedy procedure (as described
in Sec. 6) while constructing a Greedy Maximal Weight
Match on G. Then we know that w1 is also the maximum
edge weight in G. Once e1 is chosen, all edges that
share a common vertex with it are labeled “inactive”
and are not considered for addition into the match. This
means that at most 2 edges of the Maximum Weight
Match may be labeled inactive. Further, the sum of their
weights cannot exceed 2w1. The other (n − 2) or more
edges of the Maximum Weight Match are candidates
for selection during the next iteration of the greedy
procedure. This argument can be repeated for each of the
first n/2 iterations of the greedy procedure and yields

CMWM (G) ≤ 2
n/2∑

i=1

wi ≤ 2CGMM (G)
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