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ABSTRACT
This paper provides the first attempt for a full-fledged query opti-
mizer for MapReduce-based spatial join algorithms. The optimizer
develops its own taxonomy that covers almost all possible ways of
doing a spatial join for any two input datasets. The optimizer comes
in two flavors; cost-based and rule-based. Given two input data sets,
the cost-based query optimizer evaluates the costs of all possible
options in the developed taxonomy, and selects the one with the
lowest cost. The rule-based query optimizer abstracts the developed
cost models of the cost-based optimizer into a set of simple easy-to-
check heuristic rules. Then, it applies its rules to select the lowest
cost option. Both query optimizers are deployed and experimentally
evaluated inside a widely used open-source MapReduce-based big
spatial data system. Exhaustive experiments show that both query
optimizers are always successful in taking the right decision for
spatially joining any two datasets of up to 500GB each.
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1 INTRODUCTION
Spatial join is a fundamental operation that joins two spatial datasets
based on a spatial predicate, e.g., overlap, cover, touch. It is a core
operation in many important applications. For example, locating
synapses to model human brains [37], determining cells proximity
in medical images [49], and identifying intersections in topological
features (e.g., cities, roads, rivers) as a means of urban planning [21].
Due to its importance, there have been numerous research efforts in
the last three decades to introduce new spatial join algorithms (e.g.,
see [6, 8–10, 22, 24, 25, 29, 31, 33, 35, 42, 43, 52]). Most recently,
and coupled with the recent explosion of big spatial data [17], recent
research efforts are dedicated to take advantage of the widely-used
MapReduce platform [11] to enable spatial joins for big spatial
data [2, 16, 24, 44, 48, 51–53].

Unlike the case of traditional spatial algorithms where there are
extensive studies on benchmarking and query optimization issues
(e.g., see [4, 18, 20, 23, 28, 30, 41, 45–47]), there are no similar
efforts in Map-reduce-based spatial join algorithms. With the wide
spectrum of spatial join possibilities in MapReduce environments, it
becomes challenging to understand which spatial join technique will
be best suited for which input. Unfortunately, query optimization
techniques for traditional spatial joins are not applicable to the case
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of MapReduce spatial joins as they do not take into consideration
the specifics of the MapReduce environment.

In this paper, we aim to provide the first attempt of having a com-
prehensive MapReduce-based spatial join query optimizer. Given
two input spatial datasets, our query optimizer would find the best
way to execute the spatial join between them. Our query optimizer
comes up with a very thorough taxonomy of doing a spatial join
in MapReduce. All existing algorithms (e.g., [2, 16, 24, 44, 48, 51–
53]) along with non-explored yet algorithms for MapReduce-based
spatial join can be mapped to our taxonomy as special cases. Then,
given two input spatial datasets, our query optimizer walks through
its developed taxonomy to find the lowest cost option. In general, our
taxonomy abstracts any MapReduce-based spatial join algorithm to
two phases, namely, partitioning and joining phases, which are exe-
cuted in the map, and reduce functions, respectively. The objective of
the partitioning phase is to ensure that each input data set is spatially
partitioned into a set of Hadoop File System (HDFS) blocks. And,
each partition is annotated with a Minimum Bounding Rectangle
(MBR) that encloses all the spatial objects inside it. Then, the joining
phase produces the output result by joining corresponding partitions
from the two input datasets that have overlapping MBRs.

Our query optimizer taxonomy differentiates between three cases
of the two input data sets, 𝑅 and 𝑆: (1) Case 1: None of the two
input datasets 𝑅 and 𝑆 is spatially partitioned. In this case, we have
to spatially partition both 𝑅 and 𝑆. Our query optimizer considers
five different options for spatial partitioning, namely, Grid [38],
QuadTree [19], KDTree [7], STR [32], and STR+ [32]. Then, a
one-to-one join will be applied between corresponding partitions
from 𝑅 and 𝑆. (2) Case 2: Only one of the two input datasets, say
𝑅, is spatially partitioned. In this case, we can either (a) ignore
the current partitioning of 𝑅 and spatially partition both 𝑅 and
𝑆 on one of the five possible options of Case 1, or (b) spatially
partition 𝑆 on the same partitioning scheme of 𝑅. In both options,
a one-to-one join will be applied between corresponding spatial
partitions of 𝑅 and 𝑆. (3) Case 3: Both input datasets 𝑅 and 𝑆 are
spatially partitioned. In this case, we can either (a) ignore the current
partitioning of both 𝑅 and 𝑆 and spatially repartition them on one of
the five possible options of Case 1, (b) ignore the current partitioning
of only one of the input datasets, say 𝑆, and spatially repartition
it on the the same partitioning scheme of 𝑅, or (c) keep 𝑅 and 𝑆
as is and skip the whole partitioning phase. We will then follow by
joining corresponding spatial partitions of 𝑅 and 𝑆. This spatial
join which will end up being one-to-one join in case of the first two
options, and a one-to-many join in case we go for the third option,
i.e., skipping the partitioning phase.

Our query optimizer comes up in two flavors, cost-based and
rule-based. The cost-based query optimizer develops accurate cost
models for all the possible options in our taxonomy. These options
include: (a) the five options in Case 1 that correspond to the five



considered spatial partitioning methods, (b) the six options for Case 2
that correspond to the five options of Case 1 and the option for
partitioning one dataset on the other, and (c) the eight options of
Case 3 that correspond to the five options of Case 1 in addition to the
two options of partitioning one input dataset 𝑅 or 𝑆 on the other one,
and the last option of skipping the whole partitioning phase. The
cost model is built while taking into account three sets of parameters:
(1) The characteristics of input data sets, which include the number
of partitions in each one of them, the utilization of input partitions,
and the ratio of data objects that need to be replicated across multiple
spatial partitions. (2) Platform-specific parameters, which include
the number of machines in the MapReduce cluster as well as the
number of map and reduce tasks assigned to each machine, and
(3) A set of performance statistics that are experimentally evaluated
and collected, which include the cost of reading/writing one HDFS
partition, the cost of moving one partition from one machine to
another, and the cost of in-memory joining two spatial partitions.
Our rule-based query optimizer abstracts our developed cost model
into a set of simple easy-to-check heuristic rules. Then, given two
input datasets 𝑅 and 𝑆 with their characteristics, we apply our rules
to come up with the best spatial join option to join them.

Our query optimizer is deployed inside a widely used open-source
MapReduce-based big spatial data system, SpatialHadoop [16].
Within such deployment, we have performed exhaustive experi-
mental evaluation on real big spatial datasets extracted from Open-
StreetMap [40] where we join two relations of up to 500GB each.
All our experiments show that both our cost-based and rule-based
query optimizers are always successful in selecting the right way
of doing a spatial join between any two input datasets. There are
very few cases where the cost-based query optimizer gets the right
choice while the rule-based one did not get it. This is mainly due to
the accuracy of the cost model, but that is modulo the overhead in
calculating the cost models.

The rest of the paper is organized as follows. Section 2 introduces
our taxonomy of MapReduce-based spatial join algorithms. Our cost-
based and rule-based query optimizers are presented in Sections 3
and 4, respectively. Section 5 introduces our experimental evaluation.
Sections 6 and 7 summarize the related work and conclude the paper.

2 LANDSCAPE OF MAPREDUCE-BASED
SPATIAL JOIN ALGORITHMS

Figure 1 gives our proposed landscape for almost all possible ways
of executing a spatial join operation in a MapReduce environment.
The input to spatial join is two files 𝑅 and 𝑆, stored in the Hadoop
Distributed File System (HDFS). The output is a set of objects
pairs (𝑟𝑖,𝑠𝑖), 𝑟𝑖 ∈ 𝑅 and 𝑠𝑖 ∈ 𝑆, where 𝑟𝑖 and 𝑠𝑖 satisfy a spatial
join predicate. Without loss of generality, we assume topological
spatial join predicates (e.g., overlap, inside, meet), where the topol-
ogy of joined object pairs overlap. Our landscape categorizes all
MapReduce-based spatial join solutions based on three input cases
of 𝑅 and 𝑆: (1) Case 1: The two input files 𝑅 and 𝑆 are partitioned
using the default Hadoop partitioning (Section 2.1). (2) Case 2: One
input file, say 𝑅, is spatially partitioned while the other input file,
𝑆, has its own default Hadoop partitioning (Section 2.2). (3) Case 3:
The two input files 𝑅 and 𝑆 are spatially partitioned (Section 2.3).

In any of these three cases, the spatial join operation is done
through two phases, namely Partitioning and Joining. The main
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Figure 1: Landscape of Spatial Join Algorithms in MapReduce.

purpose of the partitioning phase is to ensure that the HDFS blocks
of both input files 𝑅 and 𝑆 are partitioned in a way that each block
includes data that are spatially related. The joining phase is mainly to
join corresponding partitions from 𝑅 and 𝑆, i.e., partitions that may
have overlapping entries. The key performance of any spatial join
operation relies on the ability of minimizing the number of joined
partitioned, which is achieved by carefully partitioning each input
data set in the partitioning phase. Hence, our taxonomy in Figure 1
shows that the partitioning phase in each of the three input cases
employs a Decision Point that decides on how to execute this phase
in a way that will be best for the overall spatial join operation. The
rest of this section describes the three input cases in details, along
with the possible options to the Decision Point in each case.

2.1 Case 1: No Spatial Partitioning
In this case, the two input files 𝑅 and 𝑆 are partitioned using the de-
fault Hadoop HDFS partitioning. Assuming a block size of 128MB,
HDFS partitions a file 𝑅 by storing the first 128MB of 𝑅 in one
partition, then the second 128MB in a second partition, and so on.
Since HDFS partitioning has nothing to do with spatial data, nearby
objects may go to very different partitions. This means that a straight-
forward implementation of the spatial join would need to join every
single partition from 𝑅 with every single partition from 𝑆, which
is prohibitively expensive for large number of partitions. Hence, as
far as the spatial join operation is concerned, HDFS partitioning is
considered as if the data is not partitioned at all. Figure 2a gives
an example of two non-partitioned input data sets 𝑅 and 𝑆. This is
depicted by having one Minimum Bounding Rectangle (MBR) that
contains all spatial data in each input file. The details of partitioning
and joining phases in Case 1 are as follows:

Partitioning Phase. To avoid a nested loop join of HDFS blocks of
𝑅 and 𝑆, this phase spatially partitions the two input files 𝑅 and 𝑆
using the same partitioning scheme 𝑃 . Having the same partitioning
scheme 𝑃 for both 𝑅 and 𝑆 enables having one-to-one join between
corresponding blocks form 𝑅 and 𝑆. Prior approaches in spatially
partitioning an HDFS file 𝑅 on a partitioning scheme 𝑃 follow a
four-steps approach [2, 16, 50]: (1) Load a sample of 𝑅 in memory,
(2) Build an in-memory index 𝑃 using the sampled data, (3) Allocate
a set of HDFS blocks, each annotated with a Minimum Bounding



Rectangle (MBR) that corresponds to all lowest level nodes of the
index 𝑃 , (4) Place each record in 𝑟 ∈ 𝑅 in the HDFS block(s) with
MBR that overlaps 𝑟. However, this approach is geared towards
partitioning each file independently, which is not efficient for spatial
join, where we should take into consideration the two input data sets
together. Hence, we adapt this approach to take the sampled data
from both 𝑅 and 𝑆 together in a way that is proportional to their
sizes. Then, we build one in-memory index 𝑃 for the two samples.
After that, we allocate two independent sets of HDFS blocks for
both 𝑅 and 𝑆, yet, with the same exact MBRs. Finally, we place
records from each data set into the corresponding allocated HDFS
blocks, based on their MBRs. The only decision that needs to be
taken in this case is to decide on which partitioning scheme 𝑃 to be
used. Formally, Decision Point 1 is defined as follows:

DECISION POINT 1. Given two input files 𝑅 and 𝑆, find the
best partitioning technique that will be used for re-partitioning both
of them to minimize the cost of spatial join between 𝑅 and 𝑆.

Our query optimizer considers the following five partitioning
schemes that are mostly used in big spatial data systems [2, 16, 50]

∙ Option 1: Grid. The Grid partitioning technique does not require
a random sample as it divides the input space into a set of

√
𝑀 ×√

𝑀 equal-size grid cells where 𝑀 is the number of partitions
that can accommodate the larger of the two datasets 𝑅 and 𝑆.

∙ Option 2: QuadTree. This partitioning technique constructs an
in-memory quad-tree [19] using the sampled data.

∙ Option 3: KDTree. This technique constructs an in-memory
KDTree using the sampled data.

∙ Option 4: STR. This technique builds the in-memory index by
bulk loading an R-tree [26] using the STR bulk loading algo-
rithm [32]. The leaf nodes of the R-tree are used as boundary
partitions. As the partitions may not cover the whole space, parti-
tions may expand to cover all input data.

∙ Option 5: STR+. This technique is similar to STR, except that
objects that overlap with multiple cells are replicated.

Figure 2b gives an example where both input datasets, 𝑅 and 𝑆,
are partitioned using Grid partitioning on a 4 × 3 grid.

Joining Phase. Since both 𝑅 and 𝑆 are partitioned using the same
scheme, their HDFS blocks will have the same exact Minimum
Bounding Rectangles (MBR). Hence, each partition in 𝑅 will be
joined with only one partition from 𝑆 that has the same MBR, i.e.,
one-to-one join. With a default partition size of 128MB, two par-
titions from 𝑅 and 𝑆 can easily fit in memory. Therefore, joining
a pair of partitions is done using any traditional in-memory spatial
join algorithm (e.g., see [30] for a comprehensive survey of such
algorithms). Since a spatial data object may be stored in more than
one overlapping partition, we employ a duplicate avoidance tech-
nique [13] within our in-memory spatial join algorithm to ensure
that each pair of joined objects will be produced only once. Figure 1c
shows the joining phase for Case 1, where each of the 12 𝑅 partitions
is joined with only one partition from 𝑆.

2.2 Case 2: One Spatial Partition
In this case, one input file, say 𝑅, is spatially partitioned while
the other input file, 𝑆, has its own default Hadoop partitioning,
i.e., non-partitioned with respect to spatial join. An input file could
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Figure 3: Case 2 - Option 6.
be spatially partitioned if it is stored in one of the MapReduce-
based spatial systems, e.g., ESRI Hadoop [50], Hadoop-GIS [2],
SpatialHadoop [16]. Figure 3a gives an example of input files, where
𝑅 is only spatially partitioned using a QuadTree. The details of
partitioning and joining phases are as follows:

Partitioning Phase. As depicted in Figure 1, our query optimizer
would go through on of these two ways: (1) Ignore the partitioning
of 𝑅, and repartition both 𝑅 and 𝑆 on a new partitioning scheme
as in Case 1, or (2) Spatially partition 𝑆 on the same scheme of 𝑅.
Formally, Decision Point 2 is defined as follows:

DECISION POINT 2. Given two input files 𝑅 and 𝑆, where only
𝑅 is spatially partitioned, find whether we should ignore 𝑅 parti-
tioning and repartition it with 𝑆 on a similar partitioning (Case 1),
or we should only spatially partition 𝑆 on the same scheme of 𝑅.

Given the five partitioning schemes we had for Case 1, this deci-
sion point needs to select one of these six options:
∙ Options 1 to 5: Ignore the partitioning of 𝑅, and re-partition

𝑅 along with 𝑆 using one of the five partitioning techniques
described in Case 1 (Section 2.1). To select the best partitioning
scheme, we go through Decision Point 1.

∙ Option 6: Keep the partitioning of 𝑅, and partition only 𝑆 based
on the boundaries of 𝑅. In this case, there is no need to bulk
load a sample of 𝑆 into an in-memory index to get the partition
boundaries. Instead, we use the partition boundaries as is from 𝑆.
Figure 3b shows using Option 6 for the input of Figure 3 where,

𝑆 is partitioned using the same QuadTree of 𝑅.

Joining Phase. All the six options of the partitioning phase end
up in having both 𝑅 and 𝑆 partitioned on the same partitioning
scheme. Then, the joining phase ends up to be a one-to-one join
between corresponding partitions, similar to the joining phase in
Case 1. Figure 3c shows the one-to-one join process in this case.
2.3 Case 3: Two Spatial Partitions
In this case, the two input files 𝑅 and 𝑆 are already spatially parti-
tioned, though it is not on the same partitioning scheme. Figure 4a
gives an example where 𝑅 is spatially partitioned using a QuadTree,
while 𝑆 is spatially partitioned using a KDTree. The details of parti-
tioning and joining phases in Case 3 are as follows:
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Figure 4: Case 3 - Option 8.
Partitioning Phase. As depicted in Figure 1, our query optimizer
would go through on of these three ways: (1) Ignore the partitioning
of 𝑅 and 𝑆, and repartition both of them on a new partitioning
scheme as in Case 1, (2) Ignore the partitioning of one of the two
input files, say 𝑆, and repartition it according to the other input file
𝑅, same as in Case 2, or (3) Skip the partitioning phase, and proceed
with 𝑅 and 𝑆 as is to the joining phase. Formally, Decision Point 3
is defined as follows:

DECISION POINT 3. Given two spatially partitioned input files,
𝑅 and 𝑆, find whether we should re-partition both 𝑅 and 𝑆 on the
same partitioning scheme as in Case 1, only re-partition 𝑅 (𝑆) on
the partitioning scheme of 𝑆 (𝑅) as in Case 2, or proceed with 𝑅
and 𝑆 as is to the joining phase.

Given the five partitioning schemes we had for Case 1, this deci-
sion point needs to select one of these eight options:
∙ Options 1 to 5: Ignore the partitioning of 𝑅 and 𝑆, and re-

partition them using one of the five partitioning techniques de-
scribed in Case 1 (Section 2.1). To select the best partitioning
scheme, we go through Decision Point 1.

∙ Options 6 and (7): Same as Option 6 in Case 2, ignore the parti-
tioning of one of the two input files, say 𝑅 (𝑆), and re-partition it
on the same partitioning scheme of the other file 𝑆 (𝑅).

∙ Option 8: Skip the partitioning phase, and go directly to the
joining phase.

Joining Phase. In case we go with any of the first seven options in
the partitioning phase, the joining phase will be simply a one-to-one
join between corresponding 𝑅 and 𝑆 partitions, as in Cases 1 and 2.
When going for Option 8, in the rare case that both input files are
partitioned using the same exact partitioning scheme, we go for a
one-to-one join as in the first seven options. Otherwise, we go for
a one-to-many join where one partition from 𝑅 can be joined with
multiple partitions from 𝑆. Figure 4b shows the one-to-many join
where one of 𝑆 partitions is joined with four partitions from 𝑅.

3 COST-BASED QUERY OPTIMIZER
This section discusses our spatial join query optimizer that aims to
find out the lowest cost way to do a spatial join for two input datasets
𝑅 and 𝑆. The query optimizer evaluates the cost of all possible
options for the three decision points discussed in Section 2, and
depicted in Figure 1, to come up with the lowest cost option.
Algorithm. Algorithm 1 depicts the pseudo code for our query
optimizer that takes two input datasets 𝑅 and 𝑆 and returns the
spatial join result between them. The algorithm keeps track of the
current best (i.e., lowest cost) option through three variables: PartR
and PartS, initialized by Null, that indicate the way to (re)partition
𝑅 and 𝑆, respectively, and JoinMethod, initialized by OnetoOne
that indicates how to do the joining phase. The algorithm then starts

Algorithm 1 Function SPATIALJOIN(Dataset 𝑅, Dataset 𝑆)
1: 𝒫 ← { GRID, QUAD, KDTREE, STR, STRPLUS }
2: PartR← NULL, PartS← NULL, JoinMethod← OnetoOne

/* Evaluating Options 1 to 5 (Decisions 1, 2 and 3) */
3: MinC←Min. cost of five partitioning options𝒫 (Sec. 3.1)
4: PartR, PartS← Partitioning 𝑝 with MinC, where 𝑝 ∈ 𝒫

/* Evaluating Options 6 and 7 (Decisions 2 and 3) */
5: if 𝑅 is spatially partitioned then
6: if MinC≥ Cost of re-partitioning 𝑆 on 𝑅 (Sec. 3.2) then
7: MinC← Cost of re-partitioning 𝑆 on 𝑅
8: PartR← NULL, PartS← Partitioning of 𝑅
9: end if

10: end if
11: if 𝑆 is spatially partitioned then
12: if MinC≥ Cost of re-partitioning 𝑅 on 𝑆 (Sec. 3.2) then
13: MinC← Cost of re-partitioning 𝑅 on 𝑆
14: PartR← Partitioning of 𝑅, PartS← NULL
15: end if
16: end if

/* Evaluating Option 8 (Decision 3) */
17: if Both 𝑅 and 𝑆 are spatially partitioned then
18: if MinC≥ Cost of joining 𝑅 and 𝑆 (Sec. 3.3) then
19: PartR, PartS← NULL, JoinMethod← OnetoMany
20: end if
21: end if
22: if PartR then Re-partition 𝑅 using PartR end if
23: if PartS then Re-partition 𝑆 using PartS end if
24: return JOIN (𝑅, 𝑆, JoinMethod)

by computing the cost for the five possible options of partitioning
both 𝑅 and 𝑆, namely, Grid, QuadTree, KDTree, STR, and STR+.
The details of cost computations for each partitioning method are
described later in Section 3.1. Note that we do these computations
regardless of whether 𝑅 and 𝑆 are spatially partitioned or not, as
these five options will be taken into consideration in each of the three
decision points, described in Section 2. Based on these computations,
we update the values of PartR and PartS to include the partitioning
scheme that had the lowest computed cost (Line 4 in Algorithm 1).
If neither 𝑅 nor 𝑆 is spatially partitioned (i.e., Case 1), we skip the
rest of the algorithm till Line 22, where we partition 𝑅 and 𝑆 on
PartR and PartS, and return the final result using OnetoOne join.

If any of 𝑅 and 𝑆 is spatially partitioned, we would need to
evaluate the cost of the option of partitioning 𝑅 using 𝑆 partitioning
scheme and vice versa (Lines 5 to 16 in Algorithm 1). The details of
the cost computations of partitioning one input file on the other are
described later in Section 3.2. Note that these computations is done
even if both 𝑅 and 𝑆 are spatially partitioned as this will be needed
for Decision Points 2 and 3. In case, any of these computations ends
up to be of a lower cost than the best of the five options computed
earlier, we set a new minimum computation cost, and update the
values of PartR and PartS, accordingly. If only one of 𝑅 and 𝑆
is spatially partitioned (i.e., Case 2, Section 2.2), we skip the rest
of the algorithm till Line 22. In this case, one of PartR and PartS
was set to Null, which means that one of 𝑅 and 𝑆 would be re-
partitioned, while the other one will be left intact. Then, we end up
doing OnetoOne join between 𝑅 and 𝑆.

Finally, if both 𝑅 and 𝑆 are spatially partitioned (i.e., Case 3,
Section 2.3), we would need to compute the cost of Option 8 in
Decision Point 3, which skips the partitioning phase, and go directly
to one-to-many join. The details of such cost computations are de-
scribed later in Section 3.3. If this cost ends up to be lower than
any of the earlier options, we set both PartR and PartS to Null, and
the join method to be OnetoMany. Then, we directly proceed to
one-to-many join of 𝑅 and 𝑆 without doing any repartitioning.
Spatial join cost. In all cases, the cost of the spatial join operation
is the sum of the costs of both the partitioning and joining phases.



The cost of the partitioning phase is composed of two components:
(1) The cost of estimating the partitioning boundaries of the two
input datasets, 𝐶𝑒𝑠𝑡, and (2) The cost of actually partitioning the
objects in the two input datasets, 𝐶𝑝𝑎𝑟𝑡. Meanwhile, the cost of
the joining phase is composed of two components: (1) The cost
of moving the pairs of overlapping partitions into the same node,
𝐶𝑝𝑟𝑒𝑝, and (2) The cost of actually joining the contents of these
overlapping partitions 𝐶𝑗𝑜𝑖𝑛. Thus, the total cost is computed as:

𝐶𝑡𝑜𝑡 = 𝐶𝑒𝑠𝑡 + 𝐶𝑝𝑎𝑟𝑡 + 𝐶𝑝𝑟𝑒𝑝 + 𝐶𝑗𝑜𝑖𝑛 (1)

The rest of this section calculates these costs for all the options
that are mentioned in Algorithm 1.
Used terms. Throughout this section, we will use the following
terms: 𝑁𝑅 and 𝑁𝑆 are the number of partitions, i.e., HDFS blocks,
in input files 𝑅 and 𝑆, respectively. 𝐻 is the number of machines in
the MapReduce cluster. 𝐾 and 𝐿 are the number of map and reduce
tasks in each machine, respectively. Without loss of generality, we
assume that input file 𝑅 is larger than 𝑆. In case that only one of the
two input files is spatially partitioned, we assume that it is 𝑅.

3.1 Evaluating Costs of Options 1 to 5
This section computes the spatial join cost for Options 1 to 5, which
will feed into Line 4 in Algorithm 1. Per Equation 1, this cost is
composed of the following four terms:
Estimation cost, 𝐶𝑒𝑠𝑡1 . In case of Grid partitioning, 𝐶𝑒𝑠𝑡1 is set
to 0 as the partition boundaries are preset regardless of input data.
For other partitioning schemes, bulk loading a sampled data would
require reading all the input partitions form 𝑅 and 𝑆. Assuming a
single machine, this would cost

[︀
𝑁𝑅 + 𝑁𝑆

]︀
𝐶𝑒, where 𝐶𝑒 is the

cost of reading and sampling one partition. 𝐶𝑒 is similar for all five
options, where it is experimentally evaluated and stored as a constant
during the sampling phase. However, since we have a total of 𝐾 ×
𝐻 map tasks running in parallel, 𝐶𝑒𝑠𝑡1 can be expressed as:

𝐶𝑒𝑠𝑡1 =
[︀𝑁𝑅 +𝑁𝑆

𝐾𝐻

]︀
𝐶𝑒

Partitioning cost, 𝐶𝑝𝑎𝑟𝑡1 . This cost depends on the number of
partitions that will be allocated for spatially repartitioning 𝑅 and 𝑆.
Since both 𝑅 and 𝑆 will be spatially partitioned on the same scheme,
they would have the same number of spatial partitions, regardless of
their input size. That number will be dependent on the number of
input partitions of the larger input, 𝑁𝑅. However, the total number
of allocated spatial partitions for both 𝑅 and 𝑆 may be more or less
than the 2 × 𝑁𝑅, based on two main factors:

(1) Block Utilization (𝑈𝑅). This is the utilization value between 0 and
1 that represents how much the HDFS blocks are utilized, with 1
means fully utilized. In case 𝑅 has default Hadoop partitioning,
𝑈𝑅 is set to 1 as an inherent property of HDFS blocks. In case
𝑅 has spatial partitioning, 𝑈𝑅 ranges between 0 and 1. 𝑈𝑅 is
computed for the larger input 𝑅 while estimating its boundaries.

(2) Data Replication (𝐷𝑝). This is the average number of partitions
that an input 𝑟 ∈ 𝑅 would overlap with their boundaries, as 𝑟
would be replicated in each overlapping object. In case of STR
partitioning, 𝐷𝑝 is set to 1 as it has the inherent property that
partitions can expand to contain any object as a means of avoiding
replication. For other options, 𝐷𝑝 is experimentally computed in
the sampling phase for each scheme. Hence, our query optimizer
stores four constant values for 𝐷𝑝 as one for each scheme.

Hence, the number of allocated partitions would be 2𝑁𝑅𝑈𝑅𝐷𝑝.
In case both 𝑈𝑅 and 𝐷𝑝 are one, i.e., 100% utilization and no repli-
cation, the number of output partitions will be double the number
of input partitions of the largest input. Assuming a single machine,
the cost of writing the output partitions would be 2𝑁𝑅𝑈𝑅𝐷𝑝𝐶𝑏,
where 𝐶𝑏 is the cost of writing one partition. 𝐶𝑏 is the same value
for all options, where it is experimentally evaluated in the sampling
phase and stored as a constant. However, since we have a total of 𝐾
× 𝐻 map tasks running in parallel, 𝐶𝑝𝑎𝑟𝑡1 can be expressed as:

𝐶𝑝𝑎𝑟𝑡1 =
[︀2𝑁𝑅𝑈𝑅𝐷𝑝

𝐾𝐻

]︀
𝐶𝑏

Preparation cost, 𝐶𝑝𝑟𝑒𝑝1 . This is the cost of shuffling the new
spatial partitions of 𝑅 and 𝑆 such that all pairs of joined partitions
are in the same machine. Since our join is one-to-one, and the number
of spatial partitions for 𝑅 and 𝑆 is the same, we would need to shuffle
only the partitions of one of these relations, say 𝑅. As discussed
in the partitioning cost above, the number of spatial partitions for
𝑅 would be 𝑁𝑅𝑈𝑅𝐷𝑝. Assuming a single machine, the cost of
shuffling the spatial partitions of one input would be 𝑁𝑅𝑈𝑅𝐷𝑝𝐶𝑝,
where 𝐶𝑝 is the cost of moving one partition to another machine. 𝐶𝑝

is the same value for all options, where it is experimentally evaluated
and stored as a constant during the sampling phase. However, the
preparation cost is part of the joining phase, which is all performed
through the reducers. Since we have a total of 𝐿 × 𝐻 reducers
running in parallel, 𝐶𝑝𝑟𝑒𝑝1 can be expressed as:

𝐶𝑝𝑟𝑒𝑝1 =
[︀𝑁𝑅𝑈𝑅𝐷𝑝

𝐿𝐻

]︀
𝐶𝑝

Joining cost, 𝐶𝑗𝑜𝑖𝑛1 . We would need to do an in-memory one-to-
one join for all the 𝑁𝑅𝑈𝑅𝐷𝑝 spatial partitions in each input dataset.
Given that the cost of in-memory joining one pair of partitions is
𝐶𝑗 (experimentally evaluated and stored as a constant during the
sampling phase), and that this will be done in parallel, using 𝐿 × 𝐻
reducers, 𝐶𝑗𝑜𝑖𝑛1 can be expressed as:

𝐶𝑗𝑜𝑖𝑛1 =
[︀𝑁𝑅𝑈𝑅𝐷𝑝

𝐿𝐻

]︀
𝐶𝑗

TOTAL COST, 𝐶𝑡𝑜𝑡1 . The total cost of spatial join using any of the
first five options is the sum of estimation, partitioning, preparation,
and joining costs described above.

𝐶𝑡𝑜𝑡1 =
[︀𝑁𝑅 +𝑁𝑆

𝐾𝐻

]︀
𝐶𝑒 +

𝑁𝑅𝑈𝑅𝐷𝑝

𝐻

[︀2𝐶𝑏

𝐾
+

𝐶𝑝 + 𝐶𝑗

𝐿

]︀
(2)

Note that 𝐾, 𝐿, and 𝐻 are given environment parameters, 𝑁𝑅
and 𝑁𝑆 are input parameters, 𝑈𝑅 is computed during the estima-
tion process, 𝐷𝑝 is an experimentally estimated number for each
partitioning method, while 𝐶𝑒, 𝐶𝑏, 𝐶𝑝, and 𝐶𝑗 are experimentally
estimated during the sampling phase, regardless of the partitioning
method, and stored as constants in our query optimizer.

3.2 Evaluating Costs of Options 6 and 7
This section computes the spatial join cost for Options 6 and 7,
which will feed into Lines 6 and 12 in Algorithm 1. Without loss of
generality, we would assume that 𝑅 is spatially partitioned, while 𝑆
is not. So, we compute the cost of partitioning 𝑆 on 𝑅 scheme. Per
Equation 1, this cost is composed of:
Estimation cost, 𝐶𝑒𝑠𝑡2 . This cost is set to zero as we will the use
partition boundaries of 𝑅 as is, without doing any estimation.
Partitioning cost, 𝐶𝑝𝑎𝑟𝑡2 . This cost is computed in a similar way
to the partitioning cost in Section 3.1, except for two differences:



(1) Since we only need to partition one dataset, then the term 2𝑁𝑅
will be replaced by only 𝑁𝑅, and (2) Since we know the exact
number of partitions 𝑁𝑅 that we will generate for 𝑆, there is no
need to use the utilization and replication factors to estimate it.

𝐶𝑝𝑎𝑟𝑡2 =
[︀ 𝑁𝑅

𝐾𝐻

]︀
𝐶𝑏

Preparation (Joining) cost, 𝐶𝑝𝑟𝑒𝑝2 (𝐶𝑗𝑜𝑖𝑛2 ). This is also similar
to the preparation (joining) cost computed in Section 3.1, except that
there is no need to use the utilization and replication factors as we
already know that we need to exactly move 𝑁𝑅 partitions.

𝐶𝑝𝑟𝑒𝑝2 =
[︀ 𝑁𝑅

𝐿𝐻

]︀
𝐶𝑝, 𝐶𝑗𝑜𝑖𝑛2 =

[︀ 𝑁𝑅

𝐿𝐻

]︀
𝐶𝑗

TOTAL COST, 𝐶𝑡𝑜𝑡2 . The total cost of spatial join when parti-
tioning input 𝑆 on the partitioning scheme of 𝑅, is the sum of
partitioning, preparation, and joining costs described above.

𝐶𝑡𝑜𝑡2 =
𝑁𝑅

𝐻

[︀𝐶𝑏

𝐾
+

𝐶𝑝 + 𝐶𝑗

𝐿

]︀
(3)

3.3 Evaluating Cost of Option 8
This section computes the spatial join cost for Option 8, which will
feed into Line 18 in Algorithm 1. In particular, we compute the cost
of joining 𝑅 and 𝑆 directly using a one-to-many join, without any
partitioning. Per Equation 1, this cost is composed of:
Estimation (Partitioning) cost, 𝐶𝑒𝑠𝑡3 (𝐶𝑝𝑎𝑟𝑡3 ). As this option
does not encounter any partitioning, both these costs are set to 0.
Preparation (Joining) cost, 𝐶𝑝𝑟𝑒𝑝3 (𝐶𝑗𝑜𝑖𝑛3 ). This cost is based
on the number of overlapping partitions between 𝑅 and 𝑆, as this
will present the number of partitions that we need shuffle (join)
between nodes. The number of overlapping partitions is estimated
as 𝛽𝑅𝑆𝑁𝑅𝑁𝑆 , where 𝛽𝑅𝑆 is a value between 0 and 1, computed
as the selectivity estimation of joining 𝑅 and 𝑆, per the formula
in [5]. Hence, similar to the preparation (joining) cost computed in
Section 3.2, this cost will be

𝐶𝑝𝑟𝑒𝑝3 =
[︀𝛽𝑅𝑆𝑁𝑅𝑁𝑆

𝐿𝐻

]︀
𝐶𝑝, 𝐶𝑗𝑜𝑖𝑛3 =

[︀𝛽𝑅𝑆𝑁𝑅𝑁𝑆

𝐿𝐻

]︀
𝐶𝑗

TOTAL COST, 𝐶𝑡𝑜𝑡2 . The total cost of spatial join when skipping
the partitioning phase and directly doing one-to-many join between
𝑅 nd 𝑆 is the sum of preparation and joining costs described above.

𝐶𝑡𝑜𝑡3 =
[︀𝛽𝑅𝑆𝑁𝑅𝑁𝑆

𝐿𝐻

]︀[︀
𝐶𝑝 + 𝐶𝑗

]︀
(4)

4 RULE-BASED QUERY OPTIMIZER
Typically, a cost-based optimizer is accurate, yet, expensive as it
requires collecting and maintaining statistics as well as estimating
parameters to calculate its cost equations. Hence, in this section, we
introduce our rule-based query optimizer that abstracts our devel-
oped cost model in Section 3 to a set of simple easy-to-check three
heuristic rules. Then, given two input datasets 𝑅 and 𝑆, with 𝑁𝑅
and 𝑁𝑆 input partitions (i.e., HDFS blocks), respectively, we apply
the following three rules to come up with the best possible option to
execute a spatial join between 𝑅 and 𝑆.

RULE 1. In case that neither 𝑅 nor 𝑆 is spatially partitioned: If
both 𝑁𝑅 and 𝑁𝑆 are less than a given threshold 𝑡, then we partition
both 𝑅 and 𝑆 on Grid (Option 1), otherwise, we partition both 𝑅
and 𝑆 on STR (Option 4).

This rule is mainly for Case 1 (Section 2.1), where we need to
select among five possible partitioning options, all with the cost of
Equation 2 in Section 3.1. The main two factors in this equation

are the first part of it, which presents the estimation cost 𝐶𝑒𝑠𝑡1
and then 2𝑁𝑅𝑈𝑅𝐷𝑝. In case both 𝑁𝑅 and 𝑁𝑆 are considered
of small size (i.e., less than a system threshold 𝑡), the number of
partitions 2𝑁𝑅𝑈𝑅𝐷𝑝 becomes very small, and hence the effect of
partitioning and joining costs will decrease. This makes the effect of
estimation cost 𝐶𝑒𝑠𝑡1 a dominating factor, and hence we will select
the partitioning option with lowest estimation cost, which is Grid as
it has zero cost for boundary estimation. In case either 𝑁𝑅 or 𝑁𝑆 is
considered of large value (i.e., more than a system threshold 𝑡), the
number of partitions 2𝑁𝑅𝑈𝑅𝐷𝑝 becomes the dominating factor.
However, 𝑁𝑅 and 𝑈𝑅 would have the same value regardless of all
partitioning schemes, as these are properties of the input data. So,
the value 𝐷𝑅 becomes the decisive factor, and we go with the STR
option as it has the lowest possible value for 𝐷𝑃 , which is one.

RULE 2. In case only one input dataset, say 𝑅, is spatially
partitioned: If both 𝑁𝑅 and 𝑁𝑆 are less than a given threshold 𝑡,
then we partition both 𝑅 and 𝑆 on Grid (Option 1), otherwise, we
partition 𝑆 on the same partitioning scheme of 𝑅 (Option 6).

This rule is mainly for Case 2 (Section 2.1), where we need to
select among six possible options; five of them are calculated from
Equation 2, while the sixth option is calculated from Equation 3. In
case both 𝑁𝑅 and 𝑁𝑆 are small (i.e., less than a system threshold 𝑡),
per Rule 1, the best option in Equation 2 would be Grid partitioning,
where the first part of the equation is set to zero. Comparing this
with Equation 3 will make the utilization factor 𝑈𝑅 a dominating
factor. We roughly assume that for small data sizes, 𝑈𝑅 would be
of a small value, which will make the term 𝑁𝑅𝑈𝑅𝐷𝑅 much less
than 𝑁𝑅, and hence Equation 2 will be less than Equation 3, and
we will go with Grid partitioning for both 𝑅 and 𝑆 (Option 1). In
case either 𝑅 or 𝑆 is large, per Rule 1, we will use STR partitioning
of Equation 2 where 𝐷𝑝 is set to 1. Considering that 𝑈𝑅 would be
closer to 1 and that we do have an additional term in Equation 2 for
the boundary estimation, we will consider that Equation 3 would
have less value, hence we will go with Option 6, i.e., partitioning
𝑆 on the same partitioning scheme of 𝑅. Note that we have made
some approximation decisions here. We could have make our rules
more complicated by considering the actual value of 𝑈𝑅, and decide
accordingly. Yet, that will defeat the purpose of having simple set of
rules that approximate our actual cost model.

RULE 3. In case both 𝑅 and 𝑆 are spatially partitioned: As-
suming that 𝑅 is larger than 𝑆, if 𝛽𝑅𝑆𝑁𝑆 ≤ 1, we skip the whole
partitioning phase (Option 8), otherwise, we partition both 𝑅 and 𝑆
on Grid (Option 1) only if both 𝑁𝑅 and 𝑁𝑆 are less than a given
threshold 𝑡, otherwise we repartition 𝑆, on the same partitioning
scheme of 𝑅 (Option 6).

This rule is mainly for Case 3 (Section 2.3), where we need to
select among eight possible options; five of them are calculated
from Equation 2, two are calculated from Equation 3, and one is
calculated from Equation 4. We assume that one of the relations,
say 𝑅, is larger than the other one 𝑆. In all cases, the main decisive
factor here is the selectivity estimation 𝛽𝑅𝑆 of joining both 𝑅 and
𝑆. Comparing Equations 2, 3, and 4, if 𝛽𝑅𝑆𝑁𝑆 ≤ 1, then definitely
Equation 4 would have less cost than Equation 3 as 𝛽𝑅𝑆𝑁𝑅𝑁𝑆
would be less than 𝑁𝑅. Also, if 𝛽𝑅𝑆𝑁𝑆 < 1, it is highly likely that
Equation 4 would have less cost than Equation 2 as 𝛽𝑅𝑆𝑁𝑅𝑁𝑆 is
likely to be less than 2𝑁𝑅𝑈𝑅𝐷𝑃 . This means that we can set a rule



Algorithm 2 Function SPATIALJOIN(Dataset 𝑅, Dataset 𝑆)
1: PartR← NULL, PartS← NULL, JoinMethod← OnetoOne
2: if Both 𝑅 and 𝑆 spatially partitioned and 𝛽𝑅𝑆𝑁𝑆 ≤ 1 then
3: JoinMethod← OnetoMany
4: else
5: if 𝑁𝑅 ≤ 𝑡 and 𝑁𝑆 ≤ 𝑡 then
6: PartR, PartS← GRID
7: else
8: if 𝑅 is spatially partitioned then
9: PartS← Partitioning of 𝑅

10: else
11: if 𝑆 is spatially partitioned then
12: PartR← Partitioning of 𝑆
13: else
14: PartR, PartS← STR
15: end if
16: end if
17: end if
18: end if
19: if PartR then Re-partition 𝑅 using PartR end if
20: if PartS then Re-partition 𝑆 using PartS end if
21: return JOIN (𝑅, 𝑆, JoinMethod)

Parameter Estimated Value

Reading and sampling one block, 𝐶𝑒 14 MS
Writing one block, 𝐶𝑏 46 MS
Moving one block to remote machine, 𝐶𝑝 80 MS
Joining two blocks, 𝐶𝑗 140 MS
Data replication of Grid, 𝐷𝑔𝑟𝑖𝑑 3.1
Data replication of QuadTree, 𝐷𝑞𝑢𝑎𝑑 4.6
Data replication of KDTree, 𝐷𝑘𝑑𝑡𝑟𝑒𝑒 6.1
Data replication of STR+, 𝐷𝑠𝑡𝑟+ 2.2

Table 1: Estimated parameters and statistics for cost model.

that if 𝛽𝑅𝑆𝑁𝑆 ≤ 1, we just ignore the whole partitioning phase and
go directly to one-to-many join (Option 8). Note that this is kind of
conservative assumption, which is acceptable for a rule-based query
optimizer. In case that 𝛽𝑅𝑆𝑁𝑆 > 1, we would operate in a similar
way as in Rule 2, where we will partition both 𝑅 and 𝑆 on a grid if
both of them are considered small, otherwise, we will repartition the
smaller file 𝑆 into the partitioning scheme of 𝑅.
Algorithm. Algorithm 2 gives the pseudo code for our rule-based
optimizer that applies the above three rules to find the best way to
do a spatial join between two input datasets 𝑅 and 𝑆. The algorithm
keeps track of the current best options through three variables: PartR
and PartS, initialized by Null and JoinMethod, initialized by One-
toOne. The algorithm starts by checking the condition 𝛽𝑅𝑆𝑁𝑆 ≤ 1
that is needed in Rule 3. If the condition is true, we set the join
method to OnetoMany, skip the partitioning phase, and jump to the
end of algorithm to join 𝑅 and 𝑆 on a one-to-many join. If the condi-
tion is false, we check if both 𝑅 and 𝑆 are small, i.e., the number of
blocks 𝑁𝑅 and 𝑁𝑆 is less than a certain system threshold 𝑡. If this is
the case, we set both PartR and PartS to Grid (Line 6 in Algorithm 2)
and proceed towards the end of the algorithm to partition both 𝑅 and
𝑆 on Grid and do a one-to-one join. Note that we do so regardless of
whether 𝑅 and 𝑆 are spatially partitioned or not, as this is a common
action in the three rules above. In case either 𝑅 or 𝑆 is large, we
check if the larger dataset 𝑅 is already spatially partitioned. If this
is the case, we set PartS to the partitioning scheme of 𝑅, which is a
common case in Rules 2 and 3 (Line 9 in Algorithm 2). Then, we
proceed towards the end of the algorithm to partition 𝑆 and do a
one-to-one join. In contrast, if the smaller dataset 𝑆 is the one that
is partitioned, we will set PartR to the partitioning scheme of 𝑆,
which takes place only in Rule 2. Finally, in case neither 𝑅 nor 𝑆 is
spatially partitioned, we apply Rule 1 and set both PartR and PartS
to STR (Line 14 in Algorithm 2), followed by one-to-one join.

Parameter Default Value

HDFS Block Capacity 128 MB
Cluster Size (𝐻) 10
Num. Mappers / Machine (𝐾) 14
Num. Reducers / Machine (𝐿) 8
Map Task Memory Size 6 GB
Reduce Task Memory Size 8 GB

Table 2: Different MapReduce parameters.

5 EXPERIMENTS
In this section, we experimentally evaluate the performance of our
query optimizer with its two variants; Cost-based, described in Sec-
tion 3, and Rule-based, described in Section 4. To the best of our
knowledge, our query optimizer is the first optimizer specifically
designed for spatial join algorithms in the MapReduce environment.
The closest competitor to us is AsterixDB [3], a big data management
system, that supports spatial joins and contains a general rule-based
query optimizer. Therefore, we first compare the performance of our
query optimizer with AsterixDB in Section 5.1. Then, in Section 5.2,
we extensively investigate the performance of the two variants of
our query optimizer according to different datasets characteristics.
Finally, in Section 5.3, we show the effect of collected statistics and
estimated parameters on the accuracy of our query optimizer.
Datasets. All experiments are based on collected data from Open-
StreetMap [40]. Unless mentioned otherwise, our datasets contain
the boundaries representation of two geometric features; Lakes and
Parks around the whole world, where these datasets consist of poly-
gon objects. Each object record consists of an identifier, spatial
boundaries information, and a sequence of tags, each of which con-
tains a set of strings. These two datasets are synthesized to cover
different data sizes and skewness as shown later.
Statistics and Parameters. We estimate the statistics of our cost
model, described in Section 3, as in Table 1 and tune the MapReduce
parameters that will be used in the remaining experiments as in Ta-
ble 2. To obtain unbaised HDFS block-based statistics, we join two
different datasets; Buildings and Cities from OpenStreetMap [40],
rather than Lakes and Parks. Each of these datasets has four ver-
sions with sizes 10GB, 50GB, 100GB and 500GB. The value of
each parameter is estimated for each combination of these versions,
and then such values are averaged. To estimate the data replication
statistics, we apply the four partitioning techniques, corresponding
to Options 1, 2, 3 and 5, on the Buildings, and calculate the repli-
cation factor average of each technique. To tune the MapReduce
parameters, we run the spatial join in Case 1 with Option 4, which
uses the STR partitioning scheme to partition both input datasets
and then applies a one-to-one join between the generated partitions.
In this experiment, we join two pairs of uniform datasets from Lakes
and Parks; 500Gx3G and 500Gx500G. Finally, we set the system
threshold 𝑡 of our rule-based optimizer to the number of partitions
in a dataset of 60𝐺𝐵, which can fit in the memory of one machine.
Environment. We run all experiments on a cluster of 10 machines
(one master and 9 slaves), which is running Hadoop 2.6.0, Spa-
tialHadoop 2.4.2, and Ubuntu Linux 14.04. Each machine has 8
quad-core 3.00 GHz processors, 64GB RAM, and 4TB hard disk.
Metrics. In all experiments, we use the total running time of the
spatial join operation as an evaluation metric. We focus on joining
two spatial datasets with an overlap predicate as it is widely used.
However, the performance conclusions can be generalized to the
remaining topological spatial join predicates, e.g., inside, meet.
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Figure 5: Comparison with AsterixDB Query Optimizer.

5.1 Comparison with AsterixDB Query Optimizer
In this section, we compare the performance of our query optimizer
with its two variants; Cost-based (termed Cost-Optz) and Rule-based
(termed Rule-Optz), and the AsterixDB query optimizer while having
the three input cases and using three different input datasets. To have
a fair comparison, we deployed both SpatialHadoop (the host of our
query optimizer) and AsterixDB on the same cluster of machines,
and using the same parameters shown in Table 2.

Figure 5(a) shows the running time for each query optimizer in
the three input cases. In this experiment, we join Lakes and Parks
datasets, each of size 500G. In Case 2, we only index the Lakes
dataset with STR, and in Case 3, we index both datasets with STR
as well. For the three input cases, both Cost-Optz and Rule-Optz
were able to significantly reduce the running time compared to the
AsterixDB optimizer. Specifically, both our query optimizer variants
and AsterixDB optimizer have an average running time of 27.47 and
48.57 minutes, respectively. The poor performance of AsterixDB
comes from using generic optimization hints that are not designed
for performing spatial joins, for example, using an index whenever
it exists. However, it could be better to ignore existing indexes
and spatially re-partition data from scratch before applying the join
operation as suggested by our query optimizer. Note that Cost-Optz
and Rule-Optz have the same running time in Case 1 and Case 2
because they both select Option 1. However, in Case 3, Cost-Optz
and Rule-Optz select Option 8 and Option 6, respectively.

Figure 5(b) shows the running time of each query optimizer
while joining three different pairs of input datasets in Case 1. These
datasets include different geometric features from OpenStreetMap;
(1) Lakes and Parks, which contain polygon objects, (2) Nodes
and Cities, which contain point and polygon objects, respectively,
(3) Buildings and Roads, which contain polygon and line objects,
respectively. Each of these datasets has a size of 500GB. As can
be seen in the figure, both Cost-Optz and Rule-Optz significantly
outperform the AsterixDB optimizer. In the second dataset, both
Cost-Optz and Rule-Optz are 2 and 1.3 times faster than the As-
terixDB optimizer, respectively. The reason for that is AsterixDB
builds an STR-like [3] index for non-indexed datasets as an initial
optimization step, which is not the optimal option for the nearly-
uniform Nodes (points) dataset. In contrast, Cost-Optz selects the
Grid option, i.e. Option 1, which is the best solution for uniform
distributions. Note that Rule-Optz will choose Option 4, which is
similar to AsterixDB, however, it still outperforms the AsterixDB
performance because of the implementation efficiency of spatial join
in SpatialHadoop. The same performance conclusions apply to the
third dataset where both variants are still able to be 2.5 and 1.7 times
faster than the AsterixDB optimizer, respectively.

5.2 Effect of Input Data Characteristics
This section evaluates the performance of our query optimizer ac-
cording to different input data characteristics. Given an input case,
we compare the running time of the spatial join options decided
by Cost-Optz and Rule-Optz with the running time of all options in
that input case. In our experiments, we focus only on studying input
Case 1, and omit the results of Case 2 and Case 3 because our query
optimizer exhibits a similar performance behavior.

To generate a uniform variation of any dataset, e.g. Lakes, we
select a fixed uniformly-chosen fraction of objects from dense area.
Then, we replicate each object many times at random positions in
its neighborhood to obtain uniform datasets with different sizes.
To generate a skewed dataset, we replicate objects similar to the
uniform dataset, however, with much higher densities at some areas
compared to others. We assume that each dataset is mapped to a
fixed grid, where each cell could have dense area or not. Then, we
use the ratio of dense areas to the total number of cells in this grid
as skewness degree, where 0 means most uniform and 1 means most
skewed. We assume that a 1% sample of data is enough to estimate
the partitioning boundaries in all options, as shown in [14]. We also
assume that the best number of grid cells is predefined for each
dataset size, so that each cell contains 128MB of data at maximum.
Varying Dataset Size. Figure 6(a) provides the overall performance
of Cost-Optz, Rule-Optz and the five spatial join options in Case 1
while varying the Parks dataset size from 3GB to 500GB and fixing
the Lakes dataset at 500GB. The two datasets are completely uniform
(Skewness degree is 0). Cost-Optz is able to cover the best spatial
join options at all different sizes. However, Rule-Optz misses the
optimal decision at dataset size 60GB, where it selects Option 1, i.e.
using Grid, instead of Option 4, i.e. using STR. This confirms the
accuracy of our cost model in Cost-Optz, compared to the Rule-Optz,
however, that comes with the overhead of maintaining statistics.

In Figure 6(b), the experiment is run with the same five options
and dataset size settings in Figure 6(a), however, the objects of the
two datasets are completely skewed (skewness degree is 1). Com-
pared to the uniform case, there is no difference in the performance
behavior of the two variants. We can see from the figure that Cost-
Optz is still able to predict the best options at the different sizes,
while Rule-Optz misses at most one case, specifically at size of 60GB.
However, the Rule-Optz’s decision is 66% slower than Cost-Optz’s
one in case of skewed datasets, while the Rule-Optz’s decision is
16% slower than Cost-Optz’one in case of uniform datasets.
Varying Dataset Skewness. Figure 6(c) gives the overall perfor-
mance of Cost-Optz, Rule-Optz and the five options in Case 1 while
varying the skewness degree. We fix the Parks and Lakes datasets at
sizes of 3GB and 3GB, while changing the skewness degree from
0 to 1. Clearly, options 1 and 4 give the best performance in all
skewness cases, and Cost-Optz still selects them as the best decision.
However, Rule-Optz misses the best options at degrees of 0.5 and
1, yet, with only 10% delay from the optimal running time. The
reason for that is, though the input datasets are small, it could hap-
pen that the QuadTree prunes some empty partitions, and hence the
number of allocated partitions 2𝑁𝑅𝑈𝑅𝐷𝑝 becomes smaller than
the ones generated by other options. Considering such corner cases
in the Rule-Optz will complicate the decision making process, yet,
it will increase its accuracy. This leaves a room for future research
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Figure 6: Effect of data size and skewness on the overall performance.
to come up with better rules using our cost model. In our case, the
main objective of our rule-based query optimizer is to prune obvious
expensive options, while trying to estimate the best solution.

Figure 6(d) shows the performance of Cost-Optz and Rule-Optz
while fixing datasets of sizes of 500GB and 500GB and varying the
skewness degree. Both variants are able to obtain the best spatial
join running times with an accuracy of 100%. This confirms the
efficiency of our query optimizer in the large skewed input cases,
which are typical input scenarios. The efficiency comes from consid-
ering the block utilization, which is a skewness-affected factor, in
the decisions and cost modeling of our optimizer.

5.3 Effect of Statistics and Parameters Estimation
This section presents the effect of parameters and statistics estimates
on the performance of the query optimizer with its two variants. Us-
ing four different experiments, we study the effect of the parameter
estimates in the three input cases and with both skewed and uniform
datasets. We simulate Case 3 by indexing both Lakes and Parks
datasets, each of size 500GB, with QuadTree. For Case 2, we only
keep the Lakes index and ignore the Parks index.

Figures 7(a) and 7(b) show the performance of three variants of
Cost-Optz while using uniform and skewed datasets. These variants
are (1) typical Cost-Optz, (2) Cost-Optz without data replication 𝐷𝑝

(i.e. 𝐷𝑝 = 1), and (3) Cost-Optz without utilization 𝑈𝑅 (𝑈𝑅 = 1).
Such experiment shows the effect of ignoring either the replication
or the utilization estimate on the Cost-Optz performance. We average
the running times of each Cost-Optz variant across the three input
cases. In case of uniform datasets, we find that typical Cost-Optz is
at least 15% and 180% faster than Cost-Optz-no-𝐷𝑝 and Cost-Optz-
no-𝑈𝑅, respectively. This performance gap becomes higher in case
of skewed datasets, where the typical Cost-Optz is at least 1.25 and 2
times faster than the other two variants. We can see that the effect of
ignoring the utilization estimate is much larger than the replication
one. This is because the block utilization directly affects the number
of generated partitions and their skewness, unlike, data replication
which captures the additional overhead of small ratio of objects.

Figures 7(c) and 7(d) show the accuracy of Rule-Optz while
varying the value of system threshold 𝑡, described in Section 4.
The accuracy of Rule-Optz is defined as the ratio of decisions that
match the optimal decisions taken by Cost-Optz. We can see that
tuning the value of 𝑡 is crucial for obtaining heuristic decisions with
high accuracy. In this experiment, given 𝑡 of 60GB, the maximum
accuracy achieved in uniform and skewed cases are 90% and 80%,
respectively. We find that a good estimation for the value of 𝑡 is the
maximum dataset size that can fit in a single machine memory.

6 RELATED WORK
Traditional spatial join algorithms. There have been numerous
efforts to spatially join two input relations, e.g., see [30] for a
comprehensive survey. In general, these algorithms are categorized
into three categories based on whether the two input relations are
indexed or not, as follows: (a) None of the input relations is in-
dexed [29, 35, 42, 43, 54], (b) Only one of the input relations
is indexed [6, 12, 25, 33, 36], and (c) Both input relations are
indexed [8–10, 27, 31]. With such numerous algorithms, various
benchmarking studies were performed to show the strengths and
weaknesses of each algorithm with respect to various query work-
loads [23, 28, 41, 45, 46]. This helps in fueling query optimization
ideas that find the best way of doing a spatial join between two
relations in various settings.
Big Spatial Data. There is a recent explosion in the amount of spa-
tial data produced by various devices such as smart phones, satellites
and medical devices. This motivates several research efforts to sup-
port spatial operations for big spatial data, e.g. range queries [51],
KNN [15], spatial join [42, 52] and computational geometry [15].
In addition, many full-fledged systems have been proposed to pro-
vide an end-to-end big spatial data solution, e.g. SECONDO [34],
HadoopGIS [2], ESRI Hadoop [1, 50], and SpatialHadoop [16].
MapReduce-based spatial join algorithms. Research efforts in
MapReduce-based spatial join algorithms come in two flavors, either
as stand alone algorithms (e.g., [24, 44, 48, 52, 53]), or as part of
big spatial data engine (e.g., HadoopGIS [2], SpatialHadoop [16]).
In either case, the proposed algorithms are usually tailored towards
one specific scenario. For example, spatial join in SpatialHadoop
assumes that both input data sets are spatially partitioned, while
most of the algorithms assume that none of the two input data sets
is spatially partitioned [2, 24, 44, 48, 52, 53]. The common theme
of all these approaches is that they start by ensuring that the two
input data sets are spatially partitioned. Then, they join overlapping
partitions from the spatially partitioned input data sets. Contents
of overlapping partitions are joined using any in-memory spatial
join algorithm, e.g., [39]. Unfortunately, and up to our knowledge,
there are no prior efforts in benchmarking or in developing query
optimizations efforts in MapReduce-based spatial join algorithms.
7 CONCLUSION
This paper has delivered a full-fledged query optimizer for
MapReduce-based spatial join algorithms. The optimizer is equipped
by a very thorough taxonomy of doing a spatial join in the MapRe-
duce environment. The taxonomy is developed for all cases of input
datasets. Then, a detailed cost model is developed for each possible
case in this taxonomy. The cost models are fed into a cost-based
query optimizer that finds the lowest cost option of doing a spatial



5

20

40

80

Case 1 Case 2 Case 3

T
im

e
 i
n

 m
in

. 
(L

o
g

)

Cost-Optz
Cost-Optz-no-Dp
Cost-Optz-no-UR

(a) Replic. 𝐷𝑝 and Util. 𝑈𝑅 (Uniform)

5

20

40

80

Case 1 Case 2 Case 3

T
im

e
 i
n

 m
in

. 
(L

o
g

)

Cost-Optz
Cost-Optz-no-Dp
Cost-Optz-no-UR

(b) Replic. 𝐷𝑝 and Util. 𝑈𝑅 (Skewed)

40

60

80

100

1 3 60 120

A
c
c
u

ra
c
y
 (

%
)

Threshold t in GB (Log)

Rule-Optz-Case1
Rule-Optz-Case2
Rule-Optz-Case3

(c) Threshold 𝑡 (Uniform)

40

60

80

100

1 3 60 120

A
c
c
u

ra
c
y
 (

%
)

Threshold t in GB (Log)

Rule-Optz-Case1
Rule-Optz-Case2
Rule-Optz-Case3

(d) Threshold 𝑡 (Skewed)

Figure 7: Effect of query optimizer parameters on the overall performance.
join between two inputs. The paper also provided a rule-based query
optimizer that abstracts the developed cost model into a set of simple
heuristic rules. Exhaustive experiments based on a real deployment
inside SpatialHadoop, and based on real datasets of up to 500GB
show that both optimizers are always successful in selecting the right
spatial join decision. There are very few cases where the cost-based
query optimizer gets the right choice while the rule-based one did
not get it. This is mainly due to the accuracy of the cost model, but
that is modulo the overhead in calculating the cost models.
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