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Abstract. This paper presents Sphinx, a full-fledged open-source sys-
tem for big spatial data which overcomes the limitations of existing sys-
tems by adopting a standard SQL interface, and by providing a high
efficient core built inside the core of the Apache Impala system. Sphinx
is composed of four main layers, namely, query parser, indexer, query

planner, and query executor. The query parser injects spatial data types
and functions in the SQL interface of Sphinx. The indexer creates spa-
tial indexes in Sphinx by adopting a two-layered index design. The query
planner utilizes these indexes to construct efficient query plans for range
query and spatial join operations. Finally, the query executor carries out
these plans on big spatial datasets in a distributed cluster. A system
prototype of Sphinx running on real datasets shows up-to three orders
of magnitude performance improvement over plain-vanilla Impala, Spa-
tialHadoop, and PostGIS.

1 Introduction

There has been a recent marked increase in the amount of spatial data produced
by several devices including smart phones, space telescopes, medical devices,
among others. For example, space telescopes generate up to 150 GB weekly
spatial data, medical devices produce spatial images (X-rays) at 50 PB per
year, NASA satellite data has more than 1 PB, while there are 10 Million geo-
tagged tweets issued from Twitter every day as 2% of the whole Twitter firehose.
Meanwhile, various applications and agencies need to process an unprecedented
amount of spatial data including brain simulation [1], cancer detection [2], the
track of infectious disease [3], climate studies [4], and geo-tagged advertising [5].

As a result of that rise of big spatial data and its applications, several at-
tempts have been made to extend big data systems to support big spatial data.
This includes HadoopGIS [6], SpatialHadoop [7], MD-HBase [8], Distributed
Secondo [9], GeoMesa [10], GeoSpark [11], Simba [12], and ESRI Tools for
Hadoop [13]. However, these systems suffer from at least one of these limita-
tions: (1) The lack of the ANSI-standard SQL interface, and (2) performance



limitations for interactive SQL-like queries due to significant startup time and
disk IO overhead.

This paper introduces Sphinx4, a highly-scalable distributed spatial database
with a standard SQL interface. Sphinx is an open source project5 which extends
Impala [15] to efficiently support big spatial data. Impala is a distributed system
designed from the ground-up to efficiently answer SQL queries on disk-resident
data. It achieves orders of magnitude speedup [15–17] on standard TPC-H and
TPC-DS benchmarks as compared to its competitors such as Hive [18] and
Spark-SQL [19]. To achieve this impressive performance, Impala is built from
scratch with several key design points including: (1) ANSI-standard SQL in-
terface, (2) DBMS-like query optimization, (3) C++ runtime code generation,
and (4) direct disk access. While Sphinx utilizes this design to achieve orders
of magnitude speedup over competitors, it also makes it very challenging due
to the fundamental differences over the existing research in this area such as
SpatialHadoop [7], GeoSpark [11], and Simba [12].

Even though there has been a body of research in implementing parallel
spatial indexes and query processing in traditional DBMS [20, 21], this work is
not directly applicable in Impala due to three fundamental differences in their
underlying architectures. First, Impala relies on the Hadoop Distributed File
System (HDFS) which, unlike traditional file systems, only supports sequential
file writing and cannot modify existing files. Second, Impala adopts standard
formats of big data frameworks, such as CSV, RCFile, and Parquet, which are
more suitable to the big data environment where the underlying data should
be accessible to other systems, e.g., Hadoop and Spark. This is totally different
from DBMS which has exclusive access to its data giving it more space for
optimizing the underlying format. Third, the query processing of Impala relies
on runtime code generation where the master node generates an optimized code
which is then run by the worker nodes. However, traditional DBMS relies on
a precompiled fixed code that cannot be changed at runtime. As a collateral
result of these differences, Impala misses key features in traditional databases
including indexes which is one of the features we introduce in Sphinx.

Sphinx consists of four layers that are implemented inside the core of Impala,
namely, query parser, indexing, query planner, and query executor. In the query
parser, Sphinx introduces spatial data types (e.g., Point and Polygon), functions
(e.g., Overlap and Touch), and spatial indexing commands. In the indexing layer,
Sphinx constructs two-layer spatial indexes, based on grid, R-tree and Quad tree,
in HDFS. Sphinx also extends the query planner by adding new query plans for
two spatial operations, range and spatial join queries. Finally, the query executor
provides two core components which utilize runtime code generation to efficiently
execute the range and spatial join queries on both indexed and non-indexed
tables. Extensive experiments on real datasets of up to 2.7 billion points, show
that Sphinx achieves up-to three orders of magnitude speedup over traditional

4 The idea of Sphinx was first introduced as a poster here [14]
5 Project home page is http://www.spatialworx.com/sphinx/ and source code is avail-
able at https://github.com/gistic/SpatialImpala



Impala [15] and PostGIS and three times faster than SpatialHadoop [7]. We
believe that Sphinx will open new research directions for implementing more
spatial queries using Impala.

The rest of this paper is organized as follows. Section 2 gives a background
on Impala to make the paper self contained. Section 3 provides an overview
of Sphinx. The details of the query parser, indexing, query planner, and query
executor layers are described in Sections 4-7. Section 8 gives an experimental
evaluation of Sphinx using real data. Section 9 reviews related work. Finally,
Section 10 concludes the paper.

2 Background on Impala

Impala [15,16] is an open-source engine for distributed execution of SQL queries
in the Hadoop ecosystem. It achieves real-time response for analytic queries on
gigabytes of data and runs much faster than other comparable SQL engines,
including Hive [18] and SparkSQL [19]. In this section, we describe the key
features of Impala that are needed to understand the contributions of Sphinx.

Similar to other big data engines (e.g., Hadoop and Spark), Impala adopts
the Hadoop Distributed File System (HDFS) as its main storage engine. Impala
provides an ANSI-standard SQL interface which deals with input files as tables
and enforces the schema only as the file is read to reduce the loading time of
new data. This schema-on-read feature also allows Impala to use a wide range
of storage methods including text files in HDFS, HBase tables, RC Files, and
Parquet compressed column store. In Impala, users can provide user-defined
functions (UDF) and user-defined aggregate functions (UDAF), which Impala
integrates with SQL queries.

SQL queries in Impala are executed through the following four steps: (1) The
query parser decodes the input query and checks for any syntax errors. (2) The
query planner applies simple optimization rules (e.g., pushing the selection and
projection down) to generate a single-node query plan as an initial logical plan
that is never executed. (3) The query planner continues its job by converting
the initial logical plan to a distributed physical plan, which has enough details
to be executed on cluster nodes. The physical plan consists of query fragments
where each fragment can run independently on one machine, which minimizes the
movement of data across machines. (4) The query executor completes the job by
running the physical plan on cluster nodes. The query executor is implemented
mainly in C++ and uses runtime code generation, which makes it faster and
more memory efficient compared to other engines, e.g., Java [16].

3 Architecture

Sphinx is implemented in the core of Impala to provide orders of magnitude
speedup with spatial queries while maintaining backward compatibility with non-
spatial queries. Figure 1 provides a high level overview of Sphinx which shows
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Fig. 1. Overview of Sphinx

the four layers that have been extended from Impala, namely, query parser, query
planner, query executor, and storage/indexing layers, described briefly below.
Query parser. (Section 4) Sphinx modifies the query parser layer by adding
spatial data types (e.g., Point and Polygon), spatial predicates (e.g., Overlap
and Touch), and spatial functions (e.g., Intersect and Union). It also adds a
new Create Index command to construct a spatial index. This syntactic sugar
makes the system user-friendly, especially, for non-technical users.
Storage. (Section 5) In the storage/indexing layer, Sphinx employs a two-layer
spatial index of one global index that partitions the data into blocks and local
indexes that organize records in each block. Users can build this index using
the Create Index command in Sphinx or import an existing index from Spa-
tialHadoop. This allows Sphinx to inherit the various indexes [22] supported by
SpatialHadoop.
Query planner. (Section 6) In the query planner layer, Sphinx adds two new
query plans for range query and three plans for spatial join. Sphinx automatically
chooses the most efficient plan depending on the existence of spatial indexes.
Query executor. (Section 7) In the query executor layer, the query plan, cre-
ated by the planner, is physically executed on the worker nodes of the cluster.
Sphinx introduces two new components, R-tree scanner and spatial join, which
are both implemented in C++ for efficiency. These new components use run-
time code generation to optimize the generated machine code based on query
selectivity and the types of constructed indexes, if any.

4 Query Parser

Sphinx modifies the query parser of Impala to allow users to express spatial
queries in an easy way. In particular, Sphinx adds a new Geometry data type
that expresses spatial objects, and four sets of spatial functions that manipulate
geometry objects. In addition, Sphinx introduces the CREATE INDEX command to



build spatial indexes. Finally, we extend the CREATE EXTERNAL TABLE command
to import SpatialHadoop indexes into Sphinx.

4.1 Geometry Data Type

Impala supports only the primitive relational data types, such as numbers,
Boolean, and string. In addition, it does not provide a way to add user-defined
abstract data types (ADT). Therefore, Sphinx modifies the query parser to intro-
duce the new primitive datatype Geometry, which represents shapes of various
types including Point, Linestring, Polygon, and MultiPolygon, as defined by
the Open Geospatial Consortium (OGC) [23]. Furthermore, we adopt the Well-
Known Text (WKT) format as a default textual representation of shapes for
better integration with existing systems, such as PostGIS and Oracle Spatial.

4.2 Spatial Functions

Sphinx adds OGC-compliant spatial functions which are categorized into four
groups, namely, basic functions, spatial predicates, spatial analysis, and spatial
aggregates. Functions in the first three categories are implemented as user-defined
functions (UDF), while those in the last one are implemented as user-defined
aggregate functions (UDAF). It is imperative to mention that all those functions
only work in Sphinx as the input and/or the output of each function is of the
Geometry datatype, which is supported only in Sphinx.

Basic Spatial Functions which are used to either construct shapes, e.g.,
MakePoint, or retrieve basic information out of them, e.g., Area.

Spatial Predicates test the spatial relationship of two Geometry objects, such
as, Touch, Overlap, and Contain. The return value is always Boolean, which
allows these functions to be used in the WHERE clause of the SQL query.

Spatial Analysis functions are used to manipulate Geometry objects, such
as Centroid, Intersection, and Union. These functions are usually combined
together to perform spatial analysis on a large dataset.

Spatial Aggregate Functions take as input a set of geometries and return
one value that summarizes all of the input shapes, e.g., Envelope returns the
minimum-bounding rectangle (MBR) of a set of objects.

4.3 Spatial Operations

Users can use the above spatial data types and functions to express several spatial
operations such as the range query and spatial join operations. The following
example show how the range query finds all points in the table P that lie in the
rectangle defined by two corner points (x1, x2) and (y1, y2).

SELECT COUNT(*) FROM Points AS P

WHERE Contains(MakeBox(x1, y1, x2, y2), P.coords)



The following example uses spatial join to associate points with ZIP code
boundaries using the point-in-polygon predicate.

SELECT * FROM Points JOIN ZIPCodes

ON Contains(ZIPCodes.geom, Points.coords)

4.4 Spatial Indexing

Sphinx introduces the new CREATE INDEX command which the user can use to
build spatial indexes. The following example builds an R-tree index on the the
field coordinates in the table Points.

CREATE INDEX PointsIndex

ON Points USING RTREE (coordinates)

In addition, we extend the CREATE EXTERNAL TABLE command in Impala to
allow users to import existing indexes built using SpatialHadoop [7] as shown in
the example below.

CREATE EXTERNAL TABLE OSM_Points

(

... /* Columns definitions */

)

INDEXED ON coords AS RTREE

LOCATION(‘/osm_points’)

5 Spatial Indexing

In this section, we describe how Sphinx constructs spatial indexes on HDFS-
resident tables. The main goal of spatial indexing is to store the records in
a spatial-aware manner by grouping nearby records and storing them physi-
cally together in the same HDFS block. Sphinx employs the two-layered index
previously employed by other major big spatial data systems including Spatial-
Hadoop [22] and Simba [12] where one global index partitions records into blocks
and several local indexes organize records in each block. Figure 2 shows an ex-
ample of an R+-tree global index build in Sphinx for a 130 GB of geotagged
tweets. Each rectangle in the figure represents a block of 128 MB of records.

This section shows two methods of using indexes in Sphinx. The first method
constructs the index within Sphinx while the second method imports imports an
existing index constructed by SpatialHadoop. The next two sections show how
these indexes are used with two fundamental spatial queries, range query and
spatial join.



Fig. 2. An R+-tree index in Sphinx built on a table which stores geotagged tweets in
the US with a total size of 130 GB
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Fig. 3. Indexing plan in Sphinx

5.1 Index Construction in Sphinx

Figure 3 shows the index construction plan in Sphinx which consists of four steps,
sample, divide, partition, and local index. This method is similar to the index
method used in SpatialHadoop [22] and other systems [12, 24]. Implementing
the construction plan in Sphinx allows it to be more efficient by supporting the
optimized file formats in Impala including RCFile and Parquet. The four steps
are described below.

(1) Sample: This step reads a uniform random sample of the table to be in-
dexed. Previous work [22] shows that a 1% sample is enough to produce a high
quality index. Distributed random sampling is typically implemented by scan-
ning the entire file and selecting each record in the sample with a probability
of 1%. However, due to a limitation in Impala, we cannot apply any random
functions in the SQL query. To work around this limitation, we apply a filter
function that applies a hash function to the record, uses the hash code to initial-
ize a random number generator, and generates one number from that generator.
This way, the function becomes deterministic which satisfies the requirements of
Impala.



(2) Divide: The divide step reads the sample and divides the input space into
n partitions such that each partition contains roughly the same number of sam-
ple points. The number of partitions n is equal to the number of HDFS blocks
in the input table. By default, Sphinx applies the STR-based partitioning al-
gorithm [25] which runs in two passes. In the first pass it sorts all points by x

and divides the space into ⌈√n⌉ vertical strips each containing roughly the same
number of points. In the second pass, it sorts each strip by y and divides it into
⌈√n⌉ horizontal strips with roughly equal number of points. Previous work has
shown that this step can be customized to support a wide range of partitioning
techniques, e.g., Quad-tree-based and Hilbert-curve-based [22]. This step returns
a set of rectangles that represent the boundaries of the partitions.

(3) Partition: In the partition step, the records of the input table are assigned
to the index partitions based on their locations. First, the partition boundaries
computed in the divide step are broadcast to all cluster nodes. Then, the input
table is scanned in parallel and each record is either assigned to one partition
or replicated to all overlapping partitioning, depending on the partitioning tech-
nique being used. For example, STR-based partitioning assigns a record to ex-
actly one partition while Quad-tree-based partitioning might replicate a record
that overlaps multiple partitions. The records from all the machines are then
shuffled based on their partition IDs so that all records in each partition are
physically colocated in the same machine.

(4) Local Index: In this last step, each partition is locally indexed and then
written to HDFS. Each machine processes the partitions, one-by-one, and for
each partition is bulk loads the records in main memory and writes the index to
the output as a single file. Since each partition fits in one HDFS block, typically
128 MB, it is feasible to construct and write the index using any traditional
technique. After all partitions from all machines are written to HDFS, the catalog
serve in Impala is updated with the index information which includes the MBR
of each partition and the corresponding file name.

5.2 Importing SpatialHadoop Indexes

For a better user experience, Sphinx can import the spatial indexes constructed
by SpatialHadoop [22]. This allows it to seamlessly work with various indexes
based on Quad-tree, K-d tree and others. In this case, the user issues a CREATE

EXTERNAL TABLE command, and provides the path to the index in HDFS. In
addition to creating the table that maps to these files, Sphinx loads the global
index into the catalog server.

6 Query Planner

The query planner in Sphinx is responsible of generating the query plan for a
user query, which is later executed by the query executor. Sphinx introduces new
query plans for both the range query and spatial join operations. Since Impala



does not support any indexes, Sphinx is the first system that shows how to
integrate indexes into the query planner of Impala. This can open new research
directions of integrating indexes into more complex queries in Impala.

In general, the query planner in Impala runs in two phases, namely, sin-
gle node planning and plan parallelization and fragmentation. The single node
planning phase generates a non-executable logical plan where each operator is
expressed as a node in the plan tree. In the plan parallelization and fragmenta-
tion, the logical plan is translated into a physical distributed plan, which can be
executed by the cluster nodes. This entire process takes a fraction of a second
and runs on a single machine. To conform with this design, Sphinx only utilizes
the global index in the query planning phase.

6.1 Range Query Plans

In range query, users want to retrieve all the records that overlap a given query
range. Sphinx applies to query plans, a full table scan if the input table is not
indexes, and an R-tree search if it is indexed.
Full table scan. In this plan, Sphinx simply scans the entire input table and
tests each record according to the query range. This plan is the only one sup-
ported by traditional Impala as it does not require indexes and Sphinx applies it
if the table is not indexed on the query column. This plan is a direct translation
of the following simple SQL query:

SELECT * FROM Points AS P

WHERE Overlap(A, P.x);

R-tree search. If the query table is spatially indexed, Sphinx produces this
efficient plan that utilizes the index. This plan improves over the full table by
employing three new features: (1) Early pruning, in which Sphinx utilizes the
global index to prune partitions that are completely outside the query range.
(2) The R-tree scanner replaces the regular scanner in Impala and utilizes the
local R-tree indexes to avoid reading records that are outside the query range.
(3) The push down feature pushes the predicate down to the scanner so that it
can utilize the local index. We had to introduce this feature as Impala isolates
the query predicate from the scanners. The details of the execution of the R-tree
scanner are described in Section 7.1.

6.2 Spatial Join Plans

The spatial join query finds all overlapping pairs of records in two input tables,
R and S. The only supported plan in Impala is a cross (Cartesian) product
followed by a filter which is extremely inefficient for big tables. Instead, Sphinx
supports three efficient plans depending on the whether the two input tables
have two, one, or zero spatial indexes.
(1) Two Indexes (Overlap Join): If the two input tables are indexed on the
join columns, Sphinx provides the overlap join algorithm as shown in Fig. 4(b).
Without loss of generality, we assume that R is the smaller table. The plan
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consists of two fragments assigned to tables R and S. Each machine in fragment 1
reads one partition of the R index while each machine in fragment 2 reads one
partition in the S index. Then, each machine in fragment 1 replicates the entire
partition to all machines in fragment 2 with an overlapping partition. These
links between partitions in the two fragments are based on the partition MBRs
extracted from the two global indexes. After that, each machine in fragment 2
performs a spatial join between each partition received from fragment 1 and
the assigned partition from S. Sphinx assigns the larger table to fragment 2 to
increase the level of parallelism in the join phase as the larger table contains
more partition. In order to implement the above plan, Sphinx introduces two
new components, the spatial multicast communication pattern, and the spatial
join operator, described below.

Spatial multicast: Communication patterns in Impala control the flow of
records from one fragment to another. Sphinx introduces the new spatial mul-
ticast pattern which can be also helpful to various spatial operations including
spatial join. This component first extracts the global indexes for the two tables
from the catalog server and uses it to assign an MBR to each partition in the
two fragments. Then, it creates a communication link from each partition in
fragment 1 to all overlapping partitions in fragment 2.

Spatial join: The spatial join operator in Sphinx takes the contents of two
partitions and performs a spatial join between the two partitions and generates
the answer. The details how the spatial join operator is implemented will be
described in Section 7.

(2) One Index (Partition Join): Figure 4(c) shows the partition join plan
which is used when only one table is indexed. This plan resembles the bulk-



index-join algorithm [26] and its MapReduce implementation [7]. Without loss
of generality, we assume that S is the indexed table. The plan consists of two
fragments. Each machine in fragment 1 extracts the global index of S and scans
the assigned partition in R. It compares each record r ∈ R against the partitions
of S and outputs the pair 〈pID, r〉 for each partition pID it overlaps. Then, we
use the hash communication pattern to send each record r to all overlapping
partitions based on the computed attribute pID. Each machine in fragment 2
receives a set of records from R and is assigned a partition in S. It locally
computes the spatial join between these two sets of records and output the final
answer.
(3) No Indexes (Co-partition Join): If none of the input files is indexed,
Sphinx employs the co-partition join which is an Impala port of the traditional
partition-based spatial-merge (PBSM) join algorithm [27], and its MapReduce
version [28]. This plan consists of three fragments. In the query planning phase,
Sphinx defines a uniform grid based on the MBR of the two files and the number
of machines. The two fragments 1&2 scan record in R and S, respectively, and
compares each record to the grid. An output record 〈cID, r〉 or 〈cID, s is written
for each overlap between a record and a grid cell. These hash communication
pattern is used to group these records by cID and sent to machines in fragment 3.
Each machine in fragment 3 is assigned a grid cell and it locally joins all received
records from the two tables. It also applies the reference point technique [29] to
detect and remove duplicate answers caused by replication.

7 Query Executor

The query executor is the component that executes the physical query plan, cre-
ated by the query planner. Sphinx introduces two new components in the query
executor, R-tree scanner for range queries, and spatial join operator. These com-
ponents are written in C++ for higher performance and less memory overhead.

7.1 R-tree Scanner

The R-tree scanner takes as input one table partition P , typically 128 MB, and a
rectangular query range A, and returns all records in the partition that overlaps
A. The R-tree scanner is implemented as an input scanner which gives it direct
access to the disk. To make this possible in Sphinx, we introduced the predicate
push down feature which pushes the predicate down to the input scanner. This
allows the scanner to skip chunks of disk that do not match the query as shown
below. A post processing duplicate avoidance step might be needed if the input
table is indexed with a replicated index, e.g., R+-tree.

The R-tree scanner has three modes of execution depending on the estimated
selectivity of the range query. The estimated selectivity is computed as σ =
Area(A∩P )
Area(P ) , where P and A are the MBRs of the partition and the query range,

respectively. Depending on the value of σ the three modes of executions are
described below. Notice that unlike traditional databases where σ is computed



for the entire table, Sphinx computes the value of σ for each partition allowing
mixed modes of executions for the same query.

1. Match All (σ = 1.0): This case applies when the MBR of the partition is
completely contained in the query range. In this case, all records in the partition
match the query predicate and all of them can be returned without even testing
the query predicate.

2. R-tree Search (P is R-tree indexed and σ < δ): This case applies under
two conditions: (1) the partition P is locally indexed with an R-tree and (2) the
estimated selectivity σ is below a threshold δ. In this case, we apply an on-disk
R-tree search which can skip big chunks of disk and quickly get the result. Based
on our empirical results, we set δ to a default value of 6%.

3. Full Scan (P is not indexed or δ ≤ σ < 1.0): This case applies if the
partition P is not R-tree indexes or the selectivity σ is above the threshold δ. In
this case, even if the partition P is indexed, it would be too much overhead to
use the R-tree search algorithm as compared to the little saving of disk IO.

Post Processing - Duplicate Avoidance: If the input table is indexed with a
replicated index, e.g., R+-tree, this duplicate avoidance step applies the reference
point technique to ensure the answer does not contain any duplicates [29].

7.2 Spatial Join Operator

The spatial join operator joins two partitions P1 and P2 retrieved from the two
input files and returns every pair of overlapping records in the two partitions.
Similar to the R-tree scanner, this operator runs in two steps, selection and
duplicate avoidance. The selection step selects pairs of overlapping records in
the two partitions. It has three modes of execution depending on the types of
local indexes on the two partitions. Unlike the range query, all partitions in one
spatial join query follow the same mode of execution as all partitions in one table
have the same type of index.

1. R-tree Join: If both partitions are locally indexed with R-trees, i.e., in the
overlap join algorithm, this operator applies the synchronized traversal algo-
rithm [30] which concurrently traverses both trees while pruning disjoint tree
nodes.

2. Bulk Index Join: If only one partition is indexed, i.e., in the partition
join algorithm, this operator applies the bulk index join algorithm [26] which
partitions the non-indexed partition according to the R-tree of the indexed one
and then joins each partition with the corresponding R-tree node.

3. Plane-sweep Join: If none of the partitions are indexed, i.e., in the copar-
tition join algorithm, we apply the traditional planesweep join algorithm [31].

Post Processing - Duplicate Avoidance: If both partitions are indexed
with a replicated index, we apply the reference point [29] duplicate avoidance
technique to ensure the answer has not duplicates.
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Fig. 5. Index construction and range query performance

8 Experiments

This section provides an extensive experimental study of the initial prototype
of Sphinx. The goal is to show the performance gain of Sphinx geared with the
spatial indexes and query execution. We run the experiments on four different
systems: (1) our proposed prototype of Sphinx, (2) plain-vanilla Impala without
any spatial indexes or spatial operators, (3) SpatialHadoop [7] with its spatial
indexes and operators, and (4) PostGIS a popular open-source spatial DBMS.
Sphinx is built in the code-base of Impala 2.2.0 and is compared to Impala 2.2.0,
SpatialHadoop 2.3, and PostGIS 9.3.0. All cluster experiments are conducted on
an Amazon EC2 cluster of up-to 20 nodes of type ‘m3.xlarge’ with quad-core
processor and 15GB of RAM. PostGIS is run on a single machine with 64GB of
RAM. We use three real datasets extracted from OpenStreetMap and available
at [http://spatialhadoop.cs.umn.edu/datasets.html#osm2]. (1) Nodes is a set of
2.7 Billion points with a total size of 100GB. (2) Squares is derived from the
nodes dataset by generating 100m2 squares centered at each point. (3) Cities
is a set of 170K polygons extracted from OpenStreetMap with a total size of
500MB. In our experiments, we use the end-to-end query processing time to
measure the overall performance.

8.1 Index Construction

Figures 5(a) and (b) show the indexing time in PostGIS, SpatialHadoop, and
Sphinx. In general, Sphinx is two orders of magnitude faster than PostGIS and
three times faster than SpatialHadoop. We also found that Sphinx running on
Parquet is much faster than text files. This finding will urge researchers to con-
sider Parquet format which is not yet the default option in Impala.

Figure 5(a), compares the overall indexing time as the input size increases
from 25 to 100 GB. PostGIS is out of the competition with almost two orders
of magnitude slowdown as compared to Sphinx on Parquet. SpatialHadoop is
on-par with Sphinx on text files due to the similarity of their indexing plans.
However, Sphinx on Parquet is three times faster than SpatialHadoop due to
the optimizations which are accessible to Sphinx as it is built inside Impala.

Figure 5(b) shows the indexing time for the 100GB dataset as the cluster
size is increased from 5 to 20 machines. By taking PostGIS out and using a
regular (non-log) scale, we can see that Sphinx on text files is slightly faster
than SpatialHadoop due to the more efficient core of Sphinx on Impala.



8.2 Range Query

Figures 5(c) and (d) give the performance of the range query on the nodes
dataset on Sphinx, Impala, SpatialHadoop, and PostGIS. For each query, we
select a random point p from the input and create a query range A as a square
centered around p with an area of σArea(R), where Area(R) is the overall area
of the input domain. In these experiments, we use COUNT(*) to return the total
number of results rather than the individual records as this is a typical use-case
for querying big spatial data. We rely on the query optimizer of PostGIS to
decide whether or not to use the spatial index depending on the selectivity. In
general, we found that Sphinx is significantly faster than all other techniques
with both text files and Parquet with the latter being the fastest.

In Figure 5(c), we increase the selectivity ratio σ from 0.001% to 25% and
measure the query response time. As shown, Sphinx is consistently faster than
all other techniques due to the spatial index coupled with the efficient query
processing. The R-tree index in PostGIS is only good when the selectivity is low
and its performance degrades as the query range increases. The performance of
Impala is not affected by the selectivity as it always scans the whole file due to
the lack of indexes. While SpatialHadoop uses the same index of Sphinx, the
latter is significantly faster even with text files due to the more efficient C++
execution layer in Sphinx.

Figure 5(d) shows the performance of the range query with σ = 0.001% as
the input size increases from 10 to 100 GB. While all the techniques scale well
with the input size, Sphinx is much faster and the performance gap increases
with larger input sizes. It is interesting that the performance of Sphinx and
SpatialHadoop remains almost constant as the input size increases as they both
utilize the global index to limit the number of processed partitions.

8.3 Spatial Join

Figure 6 gives the performance of the spatial join operation, where we compare
the nested loop join in Impala with the overlap join approaches. In Figure 6(a),
we compare the performance of the nested loop join in Impala and the spatial
join in PostGIS to the overlap join approach in SpatialHadoop and Sphinx. Both
Impala and Sphinx run on Parquet files to give their best performance. In this
experiment, the two inputs are equally sized and obtained using sampling from
the squares dataset. This experiment clearly shows the superiority of Sphinx over
Impala and PostGIS in the spatial join query where it achieves up-to an order
of magnitude speedup. As with other experiments, Sphinx is also significantly
faster than SpatialHadoop.

In the remaining experiments, we rule out both traditional Impala and Post-
GIS as they do not support the various spatial join algorithms. In addition, we
use two larger datasets as input, cities is always used as the first datasets, and
samples of the squares dataset of different sizes are used. We compare the per-
formance of the three spatial join algorithms in Sphinx, running on both HDFS
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files and Parquet, to the performance of the same algorithm running in Spatial-
Hadoop [7, 28]. Figures 6(b), (c), and (d) show the performance of the overlap
join, partition join and co-partition join, respectively, as described in Section 6.2.
Sphinx consistently outperforms SpatialHadoop when they both run the same
algorithm. Using Parquet in Sphinx gives an additional boost as compared to
using text files in HDFS. Overall, Sphinx is up-to 302% and 171% faster than
SpatialHadoop when it runs on text files and Parquet, respectively.

Figure 7(a) gives the scalability experiments of the three join algorithms in
Sphinx as the cluster size is increased from 5 to 20 machines. The results indicate
that all of the three algorithms scale out nicely on the cluster as they parallelize
the work over all of the available processing cores in the cluster. Notice that
this experiment is not intended to compare the relative performance of the three
algorithms as each one runs in a difference input configuration, i.e., two indexes,
one index, or no indexes, as described in Section 6.2.

Figure 7(b) shows how the storage type affects the performance of the overlap
join algorithm in Sphinx. In this experiment, we build two indexes on the squares
and cities datasets and then run the overlap join algorithm on them. First, this
figure shows the advantage of building Sphinx, which supports a wide range
of storage types, as opposed to other systems, e.g., SpatialHadoop, which only
supports text files. Second, it shows that a raw text storage gives the worst
performance, even though it is the default option in Impala. On the other hand,
Parquet provides the best performance and it is the recommended storage by
Cloudera. While other workloads might produce a different behavior, a detailed
comparison of these storage types is out of the scope of this paper.



9 Related Work

MapReduce [32] and Hadoop were released as powerful alternatives to tradi-
tional DBMS to support Big Data. Hadoop was followed by a series of systems
that either build on top of it (e.g., Hive [18] and Pig [33]) or use a renovated
system design suitable for other application domains, such as Spark [34] for
iterative processing and Impala [15] for running interactive SQL queries. Mean-
while, there has been an ongoing research in supporting spatial queries on these
systems to process Big Spatial Data. Such research can be classified into three
categories. (1) The on-top approach uses an existing system as a black box
and provides spatial support through user-defined functions. Techniques in this
category are easy to implement but they provide a sub-par performance due
to the limitation of the underlying system. Yet, the on-top approach was used
to express a wide range of spatial queries including, R-tree construction [35],
range query [36, 37], k-nearest neighbor (kNN) [36, 38], and spatial join [28, 39].
(2) The from-scratch approach which is the other extreme where a system is
constructed from scratch to support spatial data. While these systems achieve
higher performance, they are very complex to build and maintain. Systems in
this category include SciDB [40], an array database for scientific applications,
and BRACE [41], an in-memory MapReduce engine for behavioral simulations.
(3) The built-in approach in which an existing system is extended to support
spatial data by injecting spatial data types, primitive spatial functions, spatial
indexes, and spatial operations in the core of an existing system to transform
it from a spatial-agnostic to a spatial-aware system. Techniques in this category
reach a balance between complexity and performance. Systems in this category
include HadoopGIS [6]; an extended version of Hive [18] for spatial data, Spa-
tialHadoop [7]; a MapReduce framework for spatial data, MD-HBase [8]; an
extension to HBase for supporting spatial data, Parallel Secondo [42]; a paral-
lel spatial DBMS, GeoMesa [10]; a key-value store for spatio-temporal datasets
built on Accumulo, ESRI Tools for Hadoop [13], which integrates Hadoop with
ArcGIS, GeoSpark [11] a Spark-based system for spatial data, and Simba [12]
an in-memory spatial analytics framework built in Spark.

Sphinx belongs to the category of built-in approach as it extends the core
of Impala with spatial data types, functions, indexes, and operations. Sphinx
distinguishes itself from other built-in systems as: (1) It adopts a standard SQL
interface which makes it easy for existing DBMS users to adopt. (2) It is the
only system that constructs spatial indexes inside Impala, which provides up to
an order of magnitude speedup compared to other SQL-based systems. (3) It
is the only system that uses the runtime code generation feature in Impala to
produce an optimized machine code running natively on worker nodes. (4) It
executes queries in real-time, where the answer is returned within seconds, by
avoiding the huge overhead of the Hadoop runtime environment.



10 Conclusion

In this paper, we introduced Sphinx, the first and only system that extends
the core of Impala to provide real-time SQL query processing on big spatial
data. Sphinx reuses the spatial HDFS indexing introduced by earlier systems like
SpatialHadoop. However, it introduces a completely renovated query processing
engine based on the efficient design of Impala. Sphinx introduces primitive spatial
data types and functions in the query parser. In the storage/indexing layer, it
either links to SpatialHadoop indexes or construct its own spatial indexes. In the
query planner layer, Sphinx introduces two new query plans for range query and
three new query plans for spatial join. In the query executor layer, Sphinx adds
two new components for range query and spatial join which are written in C++.
Finally, the comprehensive experimental evaluation showed that Sphinx is much
faster than plain-vanilla Impala, SpatialHadoop, and PostGIS in all queries.
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