
Optimizing Spatial Queries in MapReduce

Ibrahim Sabek
PhD Student, University of Minnesota, USA

sabek@cs.umn.edu

1. PROBLEM AND MOTIVATION
Spatial query processing has become a fundamental part of many

important applications, e.g. human brains modeling [31], medical
images processing [44], and urban planning [17,42]. Due to its im-
portance, there have been numerous research efforts in the last three
decades to support many spatial operations (e.g., range query [34],
spatial join [24], kNN joins [45] and computational geometry [8]).
Most recently, and coupled with the recent explosion of big spatial
data [13], recent research efforts are dedicated to take advantage of
the widely-used MapReduce platform [9] to enable spatial query
processing for big spatial data (e.g. [11, 28, 36, 46–48]).

Unlike the case of traditional algorithms of spatial operations
where there are extensive studies on benchmarking and query op-
timization issues (e.g., see [2, 14, 16, 18, 22, 24, 35, 39–41]), there
are no similar efforts in MapReduce-based algorithms. This work
shows our efforts in optimizing the spatial join operator as a
first step towards building a full-fledged MapReduce-based spatial
query optimizer. Spatial join is an expensive and crucial opera-
tion that joins two spatial datasets based on a spatial predicate, e.g.,
overlap, cover, touch. Our objective in optimizing the spatial join
operation is not to compare between existing MapReduce-based
spatial join techniques, and find which is best at what settings. In-
stead, we come up with a very thorough taxonomy that includes the
spectrum of all possible ways of executing a spatial join in MapRe-
duce. All existing algorithms for MapReduce-based spatial join
(e.g., [1,12,19,38,43,47–49]) and non-explored yet techniques can
be mapped to our taxonomy as special cases. In addition, our spa-
tial join optimizer is equipped with a cost model that estimates the
costs of different spatial join options in this taxonomy while tak-
ing its decisions. Unlike traditional cost models that focus on the
cost of I/O accesses and processing times, the cost model in our
optimizer estimates the costs of MapReduce phases.

2. BACKGROUND AND RELATED WORK
Traditional spatial join algorithms. There have been numer-
ous efforts to spatially join two input relations, e.g., see [24] for
a comprehensive survey. In general, these algorithms are cate-
gorized into three categories based on whether the two input re-
lations are indexed or not, as follows: (a) None of the input re-
lations is indexed [23, 29, 36, 37, 50], (b) Only one of the in-
put relations is indexed [3, 10, 20, 27, 30], and (c) Both input
relations are indexed [5–7, 21, 25]. With such numerous algo-
rithms, many benchmarking studies were performed to show the
strengths and weaknesses of each algorithm using many query
workloads [18, 22, 35, 39, 40].
MapReduce-based spatial join algorithms. Research efforts in
MapReduce-based spatial join algorithms come in two flavors, ei-
ther as stand alone algorithms (e.g., [19,38,43,48,49]), or as part of
big spatial data engine (e.g., HadoopGIS [1], SpatialHadoop [12]).
In either case, the proposed algorithms are usually tailored towards
one specific scenario, e.g., spatial join in SpatialHadoop assumes

One-to-Many Join

Case 1:

No Spatial

Partitioning

One-to-Many JoinOne-to-One Join

P
a
rt

it
in

in
g

Jo
in

in
g

Decision Point 2

R , S

Optio
n 1 Option 2 Option 4

M
a
p
-R

e
d
u
c
e
 S

p
a
ti

a
l
Jo

in

Case 2:

One Spatial

Partition

Case 3:

Two Spatial

Partitions

Decision Point 3

Decision Point 1

(Re)partition

R(S) Dataset

(Re)partition

 Non-indexed

Dataset

(Re)partition

Two Datasets
- Grid

- QuadTree

- KDTree

- R-tree

R S

Option 2(3)

Option 1

Figure 1: Taxonomy of Spatial Joins in MapReduce.

that both input data sets are spatially partitioned, while most of the
algorithms assume that none of the two input data sets is spatially
partitioned [1, 19, 38, 43, 48, 49].

3. SPATIAL JOIN TAXONOMY
Figure 1 gives our taxonomy that covers the spectrum of almost

all possible ways of executing a spatial join in MapReduce. In
general, we abstract any spatial join algorithm in MapReduce into
two phases, namely, partitioning and joining, which are executed in
the map, and reduce functions, respectively. We study the possible
decisions that cover the three possible cases of input R and S:
Case 1: No Spatial Partitioning. Both R and S are partitioned
using the default Hadoop File System (HDFS) partitioning, i.e., no
spatial partitioning. In this case, we have only one option which is
partitioning both R and S based on a common spatial partitioning
scheme in a way that each partition in R will be joined with only
one corresponding partition in S. As our query optimizer is built
inside SpatialHadoop [12], we have five partitioning choices to se-
lect from; STR [26], STR+ [26], QuadTree [15], KDTree [4] and
Grid [32], which is depicted as Decision Point 1 in Figure 1.
Case 2: One File is Spatially Partitioned. Only one input dataset,
say S, has the default HDFS partitioning, while the other data set
R is spatially partitioned. In this case, we have one of two options:
(1) Ignore the partitioning of R, and repartition both input files with
one of the five partitioning schemes as in Case 1, or (2) Only repar-
tition S using the exact partitioning scheme of R. In both cases, R
and S will be partitioned using the same scheme, and hence each
partition from R will be joined with exactly one partition from S.
Using these two options, we have six choices in total to select from,
which is depicted as Decision Point 2 in Figure 1. In the first option,

we will pay the cost of partitioning R and S, while in the second
option, we will pay the cost of partitioning only S.
Case 3: Two Files are Spatially Partitioned. Both input data sets
R and S are already spatially partitioned on two different schemes.
In this case, we have one of four options: (1) Ignore the partition-
ing of R and S, and completely repartition them with one of the
five partitioning schemes as in Case 1, (2) Ignore the partitioning
of one of the two input files, say S, and repartition it using R par-
titioning scheme as in Case 2, (3) Similar to Option 2, ignore the
partitioning of R and repartition it using S partitioning scheme as
in Case 2, or (4) Keep R and S partitioning intact, and go directly
to Joining phase where each partition in R could be joined with
many partitions from S that overlap with it. Using these four op-
tions, we have eight choices to select from, which is depicted as
Decision Point 3 in Figure 1. In the fourth option, there is no par-
titioning overhead, yet, it encounters more overhead in the joining
phase as more partition pairs need to be joined (one-to-many join).

4. SPATIAL JOIN COST ESTIMATION
In general, the spatial join cost comes from; estimating the par-

titioning boundaries, actual data partitioning, transferring the over-
lapping partitions to the computing machines, and actual joining of
overlapping partitions. Based on these cost factors, we define a cost
model to estimate the performance of different options in the three
input cases discussed earlier (derivations are omitted).
Case 1: No Spatial Partitioning. Assume that R and S have NR

and NS input partitions, respectively. The spatial join cost, Ctot1 ,
of any of the five alternatives in Case 1 can be estimated as:

Ctot1 = Cest + [NR +NS]Cp +M [Cshuf + Cj] (1)

where Cest is the cost of estimating partitioning boundaries, Cp

is the cost of partitioning one partition in any dataset, M is the
number of generated partitions from the partitioning phase, Cshuf

is the cost of moving a pair of partitions to the same comput-
ing machine, and Cj is the cost of in-memory joining this pair
of partitions. In Equation 1, the estimation Cest and partitioning
[NR +NS]Cp costs are almost constant across the different parti-
tioning techniques because they are based on the same input data
R and S. In contrast, the costs of moving MCshuf and joining
overlapping partitions MCj depend on the value of M .
Case 2: One File is Spatially Partitioned. Let us assume that R
is spatially partitioned, while S is not. The spatial join cost, Ctot1 ,
of any of the five alternatives of the first option in Case 2 can be
estimated as in Equation 1. In addition, the spatial join cost, Ctot2 ,
of the second option can be estimated as follows:

Ctot2 = NSCp +NR[Cshuf + Cj] (2)

As shown in Equation 2, the second option saves the boundaries es-
timation cost Cest because the partitioning boundaries are already
specified. In addition, the second option significantly reduces the
partitioning cost by partitioning one dataset, i.e. S dataset, instead
of two datasets. Therefore, the partitioning cost will be NSCp in-
stead of [NR +NS]Cp as in the first option. On the other hand, the
partitioning boundaries of the NR partitions are not estimated to
partition both R and S together. By contrasting Equations 1 and 2,
we find that the second option will be preferred over the first option
only if the saving of the partitioning phase [Cest + NRCp] in the
second option is larger than the saving of the joining phase in the
first option, [NR −M][Cshuf + Cj].
Case 3: Two Files are Spatially Partitioned. Similar to Case 2,
the spatial join cost, Ctot1 , of any of the five alternatives of the first
option in Case 3 can be estimated as in Equation 1. Analogously,
the spatial join costs of the second, Ctot2 , and third Ctot3 options
can be estimated as in Equation 2. In addition, the spatial join cost

5

10

30

0.1 0.5 1 3 60

T
im

e
 i
n

 m
in

.
(L

o
g

)

Dataset Size in GB (Log)

Quadtree
Grid
KDTree
STR
Optimizer

(a) Uniform Datasets

10

20

30

40

0.1 0.5 1 3 60

T
im

e
 i
n

 m
in

.
(L

o
g

)

Dataset Size in GB (Log)

Quadtree
Grid
KDTree
STR
Optimizer

(b) Skewed Datasets

Figure 2: Case 1 - Effect of data size and skewness.

of the fourth option, Ctot4 can be estimated as follows:

Ctot4 = [

NR∑
i=1

NS∑
j=1

I(i, j)][Cshuf + Cjoin] (3)

where I(i, j) is a function that returns 1 if partition i from R over-
laps with partition j from S, and 0 otherwise. As shown in Equa-
tion 3, the cost of partitioning phase, including the cost of bound-
aries estimation Cest and actual partitioning Cpart, is eliminated,
because there is no partitioning overhead. However, the number of
overlapping partitions still affects the total cost.

5. SPATIAL JOIN OPTIMIZER LOGIC
Having R and S in Case 1, we apply Equation 1 on the only op-

tion in Case 1, but, with the five partitioning techniques supported
in SpatialHadoop [12], and then choose the partitioning technique
that has the minimum of Ctot1 . Experimentally, we find that it
is always best to use a data partitioning technique (e.g. STR [26])
when inputs are large or skewed. Having R and S in Case 2, we ap-
ply Equation 1 on the first option with five partitioning techniques
(similar to Case 1), apply Equation 2 on the second option, and
then choose the option that has the minimum of Ctot1 and Ctot2 .
Experimentally, we find that if R is already partitioned with a data
partitioning technique or if both inputs are small, then, it is better
to use the second option. Having R and S in Case 3, we follow
the route of Case 2 in all options, except in the fourth option (direct
joining) where we apply Equation 3. Experimentally, we find that
the fourth option is chosen only if both R and S are small.

6. RESULTS AND CONTRIBUTIONS
We show the results of our query optimizer in Case 1. We use the

Lakes and Parks datasets from OpenStreetMap [33] as inputs. The
experiment runs on a Hadoop cluster of 30 machines, each of 32
cores, 64GB RAM, and 4TB disk. In Figure 2(a), the size of Parks
is varied from 0.1GB to 60GB, while the size of Lakes is fixed
at 3GB. The two datasets are completely uniform. We omit the
STR+ results as they are similar to the STR ones. In this case, our
optimizer selects the Grid option at small datasets, and the STR op-
tion at large datasets which are the best options at these data sizes.
Figure 2(b) shows the performance of our optimizer with skewed
datasets. Our optimizer is still able to predict the best performance
in case of skewed datasets by consistently selecting the STR option
that usually generates the minimum number of balanced partitions
M . The high accuracy in our experiments makes our optimizer a
very appealing solution for big spatial data engines.

7. REFERENCES
[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.

Hadoop GIS: A High Performance Spatial Data Warehousing System
over Mapreduce. VLDB, 6(11), Aug. 2013.

[2] N. An, Z.-Y. Yang, and A. Sivasubramaniam. Selectivity Estimation
for Spatial Joins. In ICDE, 2001.

[3] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. Vahrenhold, and
J. S. Vitter. A Unified Approach for Indexed and Non-indexed Spatial
Joins. In EDBT, 2000.

[4] J. L. Bentley. Multidimensional Binary Search Trees Used for
Associative Searching. CACM, 1975.

[5] T. Brinkhoff, H.-P. Kriegel, R. Schneider, and B. Seeger. Multi-step
Processing of Spatial Joins. SIGMOD Record, 23(2):197–208, may
1994.

[6] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient Processing of
Spatial Joins Using R-trees. In SIGMOD, 1993.

[7] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Parallel Processing of
Spatial Joins using R-trees. In ICDE, pages 258–265, 1996.

[8] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications. Springer,
2008.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. CACM, 51(1):107–113, jan. 2008.

[10] J. V. den Bercken, B. Seeger, and P. Widmayer. The Bulk Index Join:
A Generic Approach to Processing Non-Equijoins. In ICDE, 1999.

[11] A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan. CGHadoop:
Computational Geometry in MapReduce. In SIGSPATIAL, 2013.

[12] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce
Framework for Spatial Data. In ICDE, pages 1352–1363, Seoul,
Korea, apr. 2015.

[13] A. Eldawy and M. F. Mokbel. The Era of Big Spatial Data (Tutorial).
In ICDE, 2016.

[14] C. Faloutsos, B. Seeger, A. Traina, and C. T. Jr. Spatial Join
Selectivity Using Power Laws. In SIGMOD, 2000.

[15] R. Finkel and J. Bentley. Quad Trees a Data Structure for Retrieval
on Composite Keys. Acta Informatica, 1974.

[16] M. R. Fornari, J. L. D. Comba, and C. Iochpe. Query Optimizer for
Spatial Join Operations. In GIS, 2006.

[17] H. Gao, H. Zhang, D. Hu, R. Tian, and D. Guo. Multi-scale Features
of Urban Planning Spatial Data. In Geoinformatics, 2010.

[18] O. Gunther, V. Oria, P. Picouet, J.-M. Saglio, and M. Scholl.
Benchmarking Spatial Joins A La Carte. In SSDM, 1998.

[19] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V. Subramaniam,
and M. Mohania. Processing Multi-way Spatial Joins on Map-reduce.
In EDBT, 2013.

[20] C. Gurret and P. Rigaux. The Sort/Sweep Algorithm: A New Method
for R-tree based Spatial Joins. In SSDM, 2000.

[21] L. Harada, M. Nakano, M. Kitsuregawa, and M. Takagi. Query
Processing for Multi-Attribute Clustered Records. VLDB, pages
59–70, 1990.

[22] E. G. Hoel and H. Samet. Benchmarking Spatial Join Operations
with Spatial Output. In VLDB, pages 606–618, 1995.

[23] E. H. Jacox and H. Samet. Iterative Spatial Join. TODS,
28(3):230–256, sep. 2003.

[24] E. H. Jacox and H. Samet. Spatial Join Techniques. TODS, 32(1),
mar. 2007.

[25] J.-D. Kim and B.-H. Hong. Parallel Spatial Join Algorithms using
Grid Files. In DANTE, pages 226–234, 1999.

[26] S. T. Leutenegger, M. A. Lopez, and J. Edgington. STR: A Simple
and Efficient Algorithm for R-tree Packing. In ICDE, pages 497–506,
1997.

[27] M.-L. Lo and C. V. Ravishankar. Spatial Joins Using Seeded Trees.
In SIGMOD, 1994.

[28] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient Processing of K
Nearest Neighbor Joins Using MapReduce. PVLDB, 5(10), jun. 2012.

[29] G. Luo, J. F. Naughton, and C. J. Ellmann. A Non-blocking Parallel
Spatial Join Algorithm. In ICDE, pages 697–705, 2002.

[30] N. Mamoulis, P. Kalnis, S. Bakiras, and X. Li. Optimization of
Spatial Joins on Mobile Devices. In SSTD, 2003.

[31] H. Markram, K. Meier, T. Lippert, S. Grillner, R. Frackowiak,
S. Dehaene, A. Knoll, H. Sompolinsky, K. Verstreken, J. DeFelipe,
S. Grant, J.-P. Changeux, and A. Saria. Introducing the human brain
project. Procedia Computer Science, 2011.

[32] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid File: An
Adaptable, Symmetric Multikey File Structure. TODS, 9(1):38–71,
mar. 1984.

[33] OpenStreetMap. https://www.openstreetmap.org/.
[34] A. Papadopoulos and Y. Manolopoulos. Multiple Range Query

Optimization in Spatial Databases. In ADBIS, 1998.
[35] A. Papadopoulos, P. Rigaux, and M. Scholl. A Performance

Evaluation of Spatial Join Processing Strategies. Advances in Spatial
Databases, 1999.

[36] J. M. Patel and D. J. DeWitt. Partition Based Spatial-merge Join. In
SIGMOD, 1996.

[37] J. M. Patel and D. J. DeWitt. Clone Join and Shadow Join: Two
Parallel Spatial Join Algorithms. In GIS, pages 54–61, 2000.

[38] S. Puri, D. Agarwal, X. He, and S. K. Prasad. MapReduce
Algorithms for GIS Polygonal Overlay Processing. In IPDPSW,
2013.

[39] D. Sidlauskas and C. S. Jensen. Spatial Joins in Main Memory:
Implementation Matters! PVLDB, 8(1):97–100, sep. 2014.

[40] B. Sowell, M. V. Salles, T. Cao, A. Demers, and J. Gehrke. An
Experimental Analysis of Iterated Spatial Joins in Main Memory.
VLDB, 6(14), sep. 2013.

[41] C. Sun, D. Agrawal, and A. E. Abbadi. Selectivity Estimation for
Spatial Joins with Geometric Selections. In EDBT, 2002.

[42] M. Ubell. The Montage Extensible DataBlade Architecture. In
SIGMOD, 1994.

[43] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, and X. Song. Accelerating
Spatial Data Processing with MapReduce. In ICPADS, 2010.

[44] K. Wang, Y. Huai, R. Lee, F. Wang, X. Zhang, and J. H. Saltz.
Accelerating Pathology Image Data Cross-comparison on CPU-GPU
Hybrid Systems. PVLDB, 2012.

[45] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An Efficient Method for
KNN Join Processing. In VLDB, 2004.

[46] C. Zhang, F. Li, and J. Jestes. Efficient Parallel kNN Joins for Large
Data in MapReduce. In EDBT, 2012.

[47] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial Queries
Evaluation with MapReduce. In GCC, pages 287–292, Aug. 2009.

[48] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJMR: Parallelizing
spatial join with MapReduce on clusters. In CLUSTER, pages 1–8,
Aug. 2009.

[49] Y. Zhong, J. Han, T. Zhang, Z. Li, J. Fang, and G. Chen. Towards
Parallel Spatial Query Processing for Big Spatial Data. In IPDPSW,
2012.

[50] X. Zhou, D. J. Abel, and D. Truffet. Data Partitioning for Parallel
Spatial Join Processing. Geoinformatica, 1998.

