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1 INTRODUCTION
There is a plethora of spatial data being generated at the moment.
For example, space telescopes generate up to 150 gigabytes weekly
spatial data, medical devices produce spatial images (X-rays) at a
rate of 50 petabytes per year, and a NASA archive of satellite earth
images hasmore than 500 terabytes. This raises the need for efficient
spatial analysis solutions to extract insights and useful patterns
from such data. Spatial probabilistic graphical modeling (SPGM)
represents an essential class of spatial analysis techniques, which
exploits probability distributions and graphical representations (e.g.,
spatial hidden Markov models [5]) to describe spatial phenomena
and make predictions about them [12]. SPGM has revolutionized
many scientific and engineering fields in the past two decades
including health care, risk analysis, and environmental science
(e.g., [1, 5]). However, existing SPGM techniques have a scalability
issue. In particular, they were originally designed for running on
a single machine and hence suffer from the limited computation
resources (e.g., see [3, 6, 14]). Such techniques can not scale beyond
implementing prototypes over small spatial datasets.

Meanwhile, Markov Logic Networks (MLN) [9] was introduced
to efficiently build complex learning and inference models over big
data in a declarative manner. Basically, MLN combines first-order
logic rules with probabilistic graphical models to represent statis-
tical learning and inference problems with few logical rules (e.g.,
rules with imply and bit-wise AND predicates) instead of thousands
of lines of code. With MLN, data scientists and developers can focus
their efforts only on developing the rules that represent their appli-
cations (e.g., knowledge base construction, data cleaning, genetic
analysis). Although the recent advances in MLN frameworks [8]
helped to scale up the performance of typical spatial analysis appli-
cations (e.g., spatial regression [10], and spatial-aware knowledge
base construction [11]), MLN was never exploited to scale up the
performance of SPGM techniques.

In this paper, we propose Flash; a framework for scalable spatial
probabilistic graphical modeling (SPGM) using Markov Logic Net-
works (MLN). Flash has the following threemain features: (1)Declar-
ativity: Flash expresses any SPGM application with logical seman-
tics, and allows developers to implement it using a set of logical
rules. (2) Efficiency: Flash translates the equivalent MLN rules of any
SPGM application into SQL queries using an efficient grounding
technique [13], and then executes these queries inside scalable data-
base engines. In addition, Flash provides spatial variations of the
RDBMS-based learning and inference algorithms of MLN [8] to per-
form scalable SPGM predictions (e.g., predictions over models with
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Figure 1: Flash System Architecture.

millions of nodes). (3) Abstraction: Flash allows developers to build
a myriad of spatial analysis applications as a set of user-defined
functions (UDF) without the need to worry about the underlying
SPGM computation. As a case study, we equipped Flashwith the im-
plementation of three fundamental SPGMs; spatial Markov random
fields (SMRF) [2], spatial hidden Markov models (SHMM) [5], and
spatial Bayesian networks (SBN) [3]. The following sections explain
the architecture of Flash, the implementation details of these three
supported SPGMs, and the preliminary evaluation results.

2 FRAMEWORK OVERVIEW
Flash adopts a modular system architecture as shown in Figure 1.
It consists of four main modules, described briefly as follows:
Rules Representation. This module is responsible for generating
an equivalent representation of logical MLN rules to any user-
defined SPGM input. These rules have two main properties: (1) they
contain first-order logical predicates (e.g., bitwise-AND, and imply)
that capture the SPGM semantics; (2) they are associated with
weights that represent the original SPGM parameters (Examples
are in Section 3). The generated rules follow the syntax of a DBMS-
friendly Datalog-like language, called DDlog [13], which can be
efficiently processed with any relational DBMS (e.g., PostgreSQL)
during the factor graph construction module.
Factor Graph Construction. This module takes the gerenated
rules as input and uses them to build a factor graph [15] in a scalable
way. The factor graph is the main data structure used to represent
any MLN model, where the weights of the graph nodes correspond
to the weights of rules (i.e., SPGM model parameters). To efficiently
populate this factor graph, Flash adapts a scalable grounding tech-
nique from [13] that translates the generated rules into SQL queries,
and then applies such queries on the input application data to obtain
the final factor graph that is equivalent to the SPGM input.
Parameters Learning. This module learns the unknown weights
of the constructed factor graph (i.e., weights of rules), which in
turn specify the final SPGM parameters (e.g., spatial hidden Markov
model [5] parameters). Flash proposes a pseudo-likelihood learning
algorithm that adapts an efficient variation of a sampling-based
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Figure 2: SMRF, SHMM, and SBN Representations in Flash.

gradient descent optimization technique to compute the gradient
of the SPGM pseudo-likelihood and then determine the weights.
Prediction Queries Processing. This module is responsible for
answering prediction queries over the SPGM model (e.g., what is
the probability of a specific event to happen?). Basically, it takes
the prediction query along with the factor graph and its learned
weights as inputs, and produces a prediction output associated with
its confidence probability. Prediction queries can be answered using
traditional Gibbs sampling-based inference algorithms over factor
graphs [8]. However, such algorithms perform sequential sampling
over the factor graph nodes which results in slow convergence to
the inference answer in case these nodes have spatial dependencies
as in SPGM applications [7]. Instead, Flash employs a variation of
Gibbs Sampling that exploits a concliques-based traversal pattern [7]
to efficiently sample spatially-dependent nodes in parallel while
guaranteeing the rapid convergence.

3 CASE STUDIES IN FLASH
Flash supports the implementation of three common spatial graph-
ical models; spatial Markov random fields (SMRF) [2], spatial
hidden Markov models (SHMM) [5], and spatial Bayesian net-
works (SBN) [3], as case studies. Figure 2 gives toy examples on the
logical representation of these three models in Flash, where each
model is defined over 4-cells grid, and the neighborhood of any cell
l is assumed to be the cells that share edges with l only.
SMRF. Figure 2(a) shows a small SMRF model with a prediction Pl
and feature Fl at each cell l . Each prediction Pl has undirected edges
with feature Fl at this cell and each neighboring prediction variable.
For example, P2 is connected with feature F2 and neighbors P1 and
P4. Flash provides an equivalent weighted bitwise-AND predicate for
each pair of connected variables, where these weights correspond
to the SMRF parameters.
SHMM. Figure 2(b) shows a small SHMM model with a hidden
state Pl and observation Ol variables at each cell l . Each obser-
vation Ol has a directed edge to state Pl at this cell. In addition,
SHMM imposes an ordered spatial dependence among neighboring
locations, where it uses z-curve ordering technique to build a se-
quence that preserves the spatial dependence between prediction
variables (e.g., P1 has a directed edge to P2, and P2 has another one
to P3, etc). Flash provides an equivalent weighted imply predicate
for any state/state or observation/state pair, where these weights
correspond to the SHMM parameters.
SBN. Figure 2(c) shows a small SBN model with a prediction vari-
able Pl at each cell l which is affected directly by a status variable
Cl and indirectly by a feature variable Fl (i.e., Fl has a direct edge to
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Figure 3: Initial Experiments of Flash.

Cl ). In addition, each prediction Pl is affected by the status variables
at the neighboring cells. Flash provides an equivalent weighted com-
bination of bitwise-OR and negation predicates for each causality
relation (i.e., directed edge). The weights of these predicates are
calculated from the input prior probabilities of SBN.

4 PRELIMINARY RESULTS
We conducted initial experiments to evaluate the performance of
Flash’s SMRF by building an autologistic regression model for a real
dataset of the daily distribution of bird species [4], and compared its
scalability and accuracy to the SMRF built by a base method, namely
ngspatial [6]. Figure 3 shows the running time and accuracy for
both systemswhile building the SMRF-based autologistic regression
over grid sizes ranging from 250 to 84k cells. Flash has at least two
orders of magnitude reduction in the running time over ngspatial,
while preserving the same accuracy. Note that the ngspatial curve
is incomplete after a grid size of 3.5k cells because of the extremely
long running times that cause killing the running processes.
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