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Abstract—The proliferation in amounts of generated data has
propelled the rise of scalable machine learning solutions to
efficiently analyze and extract useful insights from such data.
Meanwhile, spatial data has become ubiquitous, e.g., GPS data,
with increasingly sheer sizes in recent years. The applications
of big spatial data span a wide spectrum of interests including
tracking infectious disease, climate change simulation, drug
addiction, among others. Consequently, major research efforts
are exerted to support efficient analysis and intelligence inside
these applications by either providing spatial extensions to ex-
isting machine learning solutions or building new solutions from
scratch. In this 90-minutes tutorial, we comprehensively review
the state-of-the-art work in the intersection of machine learning
and big spatial data. We cover existing research efforts and
challenges in three major areas of machine learning, namely, data
analysis, deep learning and statistical inference. We also discuss
the existing end-to-end systems, and highlight open problems and
challenges for future research in this area.

I. INTRODUCTION

There has been a recent wide deployment of machine
learning (ML) solutions, with their different areas (e.g., data
analysis, deep learning), in various big data applications,
including public health [20], information extraction [51], data
cleaning [40], among others. Meanwhile, spatial applications
have witnessed unprecedented explosion in the amounts of
generated and collected data. For example, space telescopes
generate up to 150 GB weekly spatial data, medical devices
produce spatial images (X-rays) at a rate of 50 PB per year,
while a NASA archive of satellite earth images has more
than 500 TB. To efficiently process such tremendous amounts
of spatial data, researchers and developers worldwide have
proposed either spatial extensions to existing machine learning
systems (e.g., Azure Geo AI [2]) or new end-to-end solutions
(e.g., ESRI ArcGIS [11]). Such extensions and new solutions
have motivated a wide variety of applications in biology [55],
environmental science [56], climatology [14], among others.

In this tutorial, we aim to provide a comprehensive re-
view of existing machine learning systems and approaches
that efficiently support big spatial data. Figure 1 depicts the
landscape of the intersection between machine learning and
big spatial data worlds that will be covered in this tutorial. The
horizontal axis in Figure 1 represents the type of each machine
learning solution, whether it takes the distinguishing spatial
data properties into account or not, while the vertical axis
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Fig. 1. Landscape of Machine Learning for Big Spatial Data.

represents the type of application employing such machine
learning solution, whether the application is spatial or not.
We mainly focus on the three quarters Q1, Q2, and Q3 in
Figure 1 because they cover the spatial dimension in the
machine learning solutions and/or the big data applications.
We skip the quarter Q0 as it is already covered by previous
SIGMOD tutorials about the techniques and challenges in
machine learning for big data in general [6], [28]. Also note
that another previous VLDB tutorial focused on big spatial
data management [10]. Unlike this tutorial, our tutorial aims to
combine the two worlds of scalable machine learning and big
spatial data together, which is beyond just applying techniques
from one area to another.

In each of the three quarters Q1, Q2, and Q3, we explain the
main ideas, architectures, strengths and weaknesses of existing
machine learning solutions. We also highlight the strong bond
between spatial data management and spatial machine learning
workflows, discuss the related technical challenges, and outline
the open research opportunities.

II. TUTORIAL OUTLINE

Figure 2 gives the 90-minutes tutorial outline, composed
of five parts. The first part motivates the need for machine
learning systems to support big spatial data, and provides the
basic background on these two worlds (Section II-A). The
second, third, and fourth parts delve into the ongoing machine



• Part 1: Spatial Data and ML Synergy (10 mins)
– Importance of ML with big spatial data
– Quick review of spatial ML landscape

• Part 2: Spatial ML Solutions for Non-spatial Apps (20 mins)
– Spatial-aware deep learning solutions
– Spatial-aware statistical ML models

• Part 3: Non-spatial ML Solutions for Spatial Apps (25 mins)
– Deep learning and data analysis for routing apps
– Deep and reinforcement learning for traffic prediction apps
– Deep learning for localization and spatial object detection

• Part 4: Spatial ML Solutions for Spatial Apps (20 mins)
– Scalable spatial data mining techniques
– Scalable spatial statistical inference techniques
– Scalable spatial sampling techniques

• Part 5: End-to-end Spatial Data Analysis Systems (15 mins)
– Spatial support in existing big data analysis systems
– Full-fledged big spatial data analysis systems

Fig. 2. Tutorial Outline (90 minutes)

learning efforts and challenges in the quarters Q1, Q2, and Q3

from Figure 1, respectively (Sections II-B to II-D). The fifth
part reviews the existing end-to-end systems for big spatial
data analysis (Section II-E).

A. Part 1: Spatial Data and ML Synergy

This part advocates for the need to develop machine learning
systems and techniques for big spatial data that go beyond
simple extensions of existing work for general data. We start
by describing some motivating applications, introducing the
world of big spatial data, and discussing its machine learning
related concepts. We then quickly review the landscape of
spatial machine learning systems, algorithms, applications, and
needs, which will be heavily discussed in the next parts.

B. Part 2: Spatial ML Solutions for Non-spatial Apps

This part covers the role of injecting the spatial awareness
inside the underlying machine learning algorithms used in non-
spatial applications (e.g., knowledge base construction [43],
recommendation systems [32], computer vision [23]) to im-
prove the performance of these applications. We start by high-
lighting how the spatial data management techniques improve
the performance of various deep learning tasks when applying
on big spatial data. For example, Quad-tree partitioning [15]
is used for: (a) balancing the convolution computation in
Convolutional Neural Networks (CNN) for object detection
applications [23] and (b) efficient automatic features extrac-
tion and matrix factorization operations inside deep learning
models [62]. Meanwhile, k-nearest neighbor operations are
used to efficiently build specific neural network architectures
from big spatial datasets [5], [37]. Then, we discuss the im-
proved spatial variations of other statistical machine learning
techniques (i.e., not deep learning) used inside knowledge
base construction [43], [45] and recommendation [32] models,
while assuring their impact in obtaining more accurate outputs.

C. Part 3: Non-spatial ML Solutions for Spatial Apps

This part covers the usage of existing machine learning
techniques, without spatial variations, as ”black boxes” in
improving the performance of spatial applications. We start by
discussing the recent machine learning techniques used inside
two specific core applications; routing and traffic prediction.
For routing, we show the deep learning [21] and regression
analysis [53] techniques used to prepare the routing meta-
data (e.g., finding weights of routes). We also present the
incremental learning [3] and clustering [18] approaches that
are used to make routing maps and perform the routing itself,
respectively. For traffic prediction, we discuss its existing
deep learning (e.g., convolution-based residual networks [64],
diffusion convolutional recurrent neural networks [30], graph
convolutional neural networks [33]), as well as reinforcement
learning [59] approaches in details. Finally, we give a brief
about the machine learning approaches used in other spatial
applications including outdoors localization [52], forecasting
queries [31], and geospatial object detection [61].

D. Part 4: Spatial ML Solutions for Spatial Apps

This part covers the research efforts for scaling up the per-
formance of three main categories of spatial machine learning
and analysis techniques: (1) Spatial data mining: common op-
erations in this category include spatial outlier detection [50],
[66], spatial classification [7], [16], [24], [25], [49], spatial
regression [44], spatial clustering [13], [36], [58], [65], hotspot
detection [4], and trajectory analysis [8]. (2) Spatial statistical
inference: existing spatial inference approaches are categorized
into: (a) in-memory solutions, where the input dataset of the
inference model is first spatially partitioned into a grid. Then,
each partition is analyzed using a Bayesian spatial process
model (e.g., [17]). Finally, an approximate posterior inference
for the entire dataset is obtained by optimally combining the
individual posterior distributions from each partition [17], [47],
[54]. (b) RDBMS-based solutions, where the assumption of
fitting the whole model data in memory is no longer valid.
Hence, RDBMSs are exploited to support scalable spatial
inference computation (e.g., TurboReg [44] and Flash [42],
[46]). (3) Spatial sampling: due to the massive amounts of
spatial data that are available for training any spatial machine
learning algorithm, spatial sampling becomes a critical task
to efficiently select a set of representative data objects while
taking the spatial distribution into account. Existing sampling
techniques over big spatial data can be either incremental (i.e.,
samples are refined over many iterations) [9], [57] or satisfying
certain locality constraints (e.g., zooming level) [19], [48].

E. Part 5: End-to-end Spatial Data Analysis Systems

This part covers the big spatial data analysis systems from
two aspects: (1) The research efforts of adding spatial support
in existing big data analysis systems, which are either: (a) in
the form of add-ons libraries and tools that enable process-
ing spatial data with classical operations (e.g., clustering,
classification). Examples include spatial extensions to Spark



core (e.g., Simba [60], Magellan [34], GeoSpark [63], Ge-
oMesa [22], UlTraMan [8]) to enable using Spark MLib [35]
with spatial data, ESRI spatial data analysis extensions for
Hive [12], and PostGIS [38] that can be used along with
MADLib [20] to support spatial analytics for PostgreSQL [39],
or (b) in the form of built-in native support of spatial anal-
ysis operations (e.g., hot spot detection, spatial co-location)
inside existing data analysis engines. (2) The research efforts
of providing full-fledged big spatial data analysis systems
and tools. In such systems, all execution steps in any data
analysis operation are optimized for efficient and scalable
processing of spatial data. We will classify existing work
based on the underlying architecture, which could be either
(a) in-memory systems (e.g., CrimeStat [29], GeoDa [1],
PySAL [41]), (b) RDBMS-based systems (e.g., ESRI Ar-
cGIS [11], Flash [46]), or (c) cloud-based services (e.g., IBM
PAIRS [26]). For all these systems and services, we will give
motivational case studies, and a brief on their supported spatial
analysis operations and running time efficiency.

III. TARGET AUDIENCE

This tutorial targets researchers, developers, and practition-
ers, who are interested in large-scale machine learning and
big spatial data. No prior knowledge is required to understand
the systems and approaches in the tutorial. The tutorial will
also be very beneficial for graduate students as it will help
in identifying various topics and challenges for PhD topics.
Practitioners will get to know the state-of-the-art systems
for enriching their machine learning systems and tools with
spatial data support. This tutorial will act as an invitation
to the database community to join arms for satisfying the
emerging needs of big spatial data analysis and machine
learning applications.

IV. RELEVANCE TO ICDE

Research in the areas of spatial data and scalable machine
learning has been always active in the database community
in general, and in the ICDE community in particular. With
the proliferation of proposed systems and approaches in
these areas, it becomes inevitable to present a tutorial that
surveys the current state-of-the-art techniques and suggests
future research directions for the community. Many of the
research efforts covered in this tutorial were recently published
in major database conferences including ICDE, VLDB, and
SIGMOD [4], [8], [18]–[21], [27], [36], [42], [43], [45], [46],
[48], [51], [57], [58], [60], [65].

V. PRIOR OFFERINGS

Mohamed Mokbel and Ibrahim Sabek have recently pre-
sented a 90-minutes tutorial about the same topic in the Very
Large Data Bases (VLDB) conference 20192, which focused
more on the individual machine learning algorithms that are
used to extract useful insights and patterns from big spatial
data. In contrast, this tutorial probes the whole landscape of the
machine learning and big spatial data while equally focusing

2http://www.cs.umn.edu/∼sabek/vldb-2019-tutorial/

on both algorithmic and application sides. In addition, the
tutorial delves into the internals of the existing end-to-end
systems of big spatial data analysis.
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[37] T. Plötz and S. Roth. Neural Nearest Neighbors Networks. In NIPS,
pages 1087–1098, 2018.

[38] PostGIS. http://postgis.net/.
[39] PostgreSQL. https://www.postgresql.org/, 2019.
[40] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. HoloClean: Holistic Data
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