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uling approaches are based on heuristics and not optimal. A recent
trial proposed to use reinforcement learning for automatically learn-
ing end-to-end scheduling policies. However, such trial was not
capable of considering the database-specific characteristics (e.g., op-
erator types, pipelining), and hence becomes not efficient for analyt-
ical database systems. In this paper, we try to fill this gap and intro-
duce LSched (Learned Scheduler), a fully learned workload-aware
query scheduler for in-memory analytical database systems. LSched
provides an efficient inter-query and intra-query scheduling for dy-
namic analytical workloads (i.e., different queries can arrive/depart
at any time). We integrated LSched with an efficient in-memory
analytical database system, and evaluated it with TPCH, SSB, and
JOB benchmarks. Our evaluation shows that LSched improves over
the performance of existing state-of-the-art query schedulers and
heuristic-based ones by at least 35% and 50% in both streaming and
batching query workloads.
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1 INTRODUCTION

Scheduling of tasks in an analytical query processing system can
have a profound impact on the query latency and query through-
put [34, 43, 44, 58]. In modern database systems, a query is typ-
ically composed of one or more sub-tasks, i.e., operators, and a
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Figure 1: Example on the scheduling quality of different three
query schedulers: Critical path, Decima and LSched.

query scheduler is responsible of finding an execution order for
all tasks from all currently running queries in order to optimize
some goal (e.g., minimizing latency [57] or minimizing the schedule
makespan [53]). The optimization goal then determines how re-
sources (e.g., CPU, memory, threads) are shared among concurrent
queries and how various parts of the system function together.

However, for the most common optimization goals (e.g., overall
latency), it is impossible or computationally impractical to derive
an optimal algorithm. For example, scheduling N queries on M
cores such that the makespan of the schedule is minimum, is NP-
complete [53]. As a result, commonly used scheduling algorithms
rely on specific heuristics including FIFO, fair scheduling [8, 13],
short job first (SJF), highest priority first (HPF), packing [10], and
approximation algorithms [47].

Although these standard techniques are easy-to-implement and
transparent (i.e., decisions are taken based on guidelines and hence
are understandable), they obviously miss major performance op-
timization opportunities when scheduling analytical workloads.
Heuristics tend to make simplifying assumptions and it is noto-
riously hard to extend them to consider more complex system
behavior. For example, it would be extremely hard to develop a
good scheduling heuristic, which considers not only the hardware
configuration, but also the current state of the system (e.g., what
data is cached), the query plan structure, the type of operations
(e.g., performance of hash vs index-joins), pipelining opportunities,
as well as, the unpredictability because of data dependent factors
(e.g., the selectivity of a predicate).

To overcome the complexity challenge of building a workload-
specific scheduling policy, a recent attempt, namely Decima [34],
proposed to use reinforcement learning (RL) to automatically build a
specific end-to-end scheduling policy for the input workload. While
the work laid the foundation to learn scheduling policies, it turned
out that the neural network design and RL solutions of Decima
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are not capable of considering the database-specific characteristics,
such as the query structure, different operators (e.g., aggregation
vs join), and the pipelining opportunities. For example, Decima
assumes that any query is a DAG of tasks, where each task is a
black box and can not be scheduled unless all its parent tasks are
completed (i.e., no support for pipelining). However, in the case
of relational queries, it is crucial to consider each task as a white
box and optimize the scheduling policy according to its details and
relationships with other tasks. Figure 1 shows an example on how
using the proper degree of pipelining could affect the scheduling
quality. In this example, a query Q1, which consists of 5 select
and 1 join operators (i.e., tasks), is scheduled using three different
schedulers over 5 threads. These schedulers are (1) typical critical
path pipelining [19] (a heuristic that runs the pipeline containing
more aggregate work first), (2) Decima, and (3) our proposed learned
scheduler. Q; has two sets of operators that can be pipelined. The
first set has o1, 02, and 03, while the second one has o4, 05 and
06. The figure shows the scheduling decisions (yellow rectangle)
for the three schedulers. As seen, the critical path results in two
scheduling decisions, where each decision performs one aggressive
pipelining (highlighted in bold). Decima has a lack of pipelining
support, yet, it still learns a good scheduling policy that packs tasks
efficiently over threads. In contrast to both critical path (aggressive
pipelining) and Decima (non-pipelining), our proposed scheduler
provides the best scheduling (the total time is 20 compared to 23
and 27 for other schedules) as it learns proper pipelining (02 and
03 in Sg, and 05 and og in So) as well as efficient tasks packing.

Besides Decima, the database literature has some trials to lever-
age machine learning (ML) for scheduling queries in analytical
workloads. However, such trials tend to use ML to predict the query
or task latency to make better decisions, rather than trying to learn
an entire scheduling policy. For example, Quickstep [43] uses linear
regression to predict the execution times of the future work orders
for a given query based on its execution history. Such prediction
is used to control the resource allocation decisions coming from
the running heuristic scheduling policy (e.g., HPF). More recently,
SelfTune [58] employs a constrained optimization technique to
tune the hyper-parameters of its fixed scheduling policy for the
input workload. In both works, the scheduling policy is still based
on heuristics, and is not specifically built from scratch for the input
workload. Another work [64] uses RL to automatically learn the
order of executing different queries that maximizes the utilization
of buffer pool items (i.e., improving the hits ratio). However, opti-
mizing the schedule according to the buffer pool hits only, without
considering other scheduling factors (e.g., parallelism degree for
each query) and the current state of execution environment, does
not necessarily lead to a better multi-query execution plan.

In this paper, we introduce LSched (Learned Scheduler), a fully
RL-based learned workload-aware query scheduler for in-memory
analytical database systems. LSched provides an efficient inter-query
and intra-query scheduling for dynamic analytical workloads (i.e.,
different queries can arrive and depart at any time). Given a set of
executed query plans from the past (e.g., workload logs), LSched
automatically learns how to make the following decisions at each
scheduling event: (1) which subset of queries to execute, (2) which
subset of operators from these queries to execute, and (3) how much
resources (e.g., threads) to be assigned to these operators. LSched

optimizes these scheduling decisions for the specific input workload
and according to a user-defined high-level policy objective (e.g.,
minimizing the user-perceived latency).

LSched works as follows: it takes a query to be scheduled as
an input (queries can arrive in batches or streaming fashion) and
generates a query plan (i.e., DAG of operators) for it using a typical
analytical DBMS (e.g., Quickstep [43]). Then, this query plan is
fed to the LSched’s scheduling agent, which consists of a query
encoder and a scheduling predictor, to predict a sequence of sched-
uling decisions for executing this query along with other queries
that already exist in the system at the moment. Each scheduling
decision is triggered by a scheduling event (e.g., arrival of a new
query, or finishing the execution of an operator), and is designed to
minimize the expected latency of all existing queries after running
the whole sequence of scheduling decisions (i.e., long-term execu-
tion plan). As LSched discovers better scheduling decisions over
time, LSched’s scheduling predictor improves and results in better
execution plans. This improvement procedure continues until the
predictor converges.

In summary, LSched has the following contributions that over-
come the limitations of Decima and outline how an end-to-end
query scheduling is learned in the database context:

(1) Employing efficient physical plan features. The accuracy
of RL-based query scheduling mainly depends on extracting rep-
resentative features that capture the relational query execution
environment well. Therefore, unlike Decima [34] which only ex-
tracts black-box features (e.g., number of tasks), LSched extracts a
representative set of white-box features from the physical plans of
the running queries (e.g., fine-grained level work orders) as well
as their interaction with the execution environment (e.g., status of
running execution threads).

(2) Efficient and accurate query encoding. Query encoding is a
crucial part in the learned scheduler as it has to digest large amount
of information, coming from the extracted features, accurately and
in an efficient manner. Therefore, unlike Decima [34] which uses
graph convolution networks (GCN) [23], LSched proposes a novel
Query Encoder that combines a customized tree convolution [38]
technique with importance weighting mechanisms from graph
attention networks (GAT) [56] to learn an efficient and accurate
query encoding that suits the nature of our scheduling problem.
(3) Flexible scheduling decisions. LSched proposes a Scheduling
Predictor, which is a deep neural network that efficiently leverages
the Query Encoder output, to decide which relational operators from
running queries to be scheduled next and how much resources (e.g.,
threads) are needed for them. In addition, the Scheduling Predictor
can explicitly determine the effective degree of operators pipelining
that should be used at each execution step (i.e., neither aggressively
pipeline nor completely execute in a sequential mode). As far as
we know, automatically controlling the operators pipelining was
never introduced before by previous schedulers including Decima.
(4) Balance between average and tail latency. Unlike Decima
which focuses only on minimizing average query time, LSched
proposes a novel rewarding function that optimizes the scheduling
policy to minimize both average and tail latency at the same time.
(5) Effective training time. LSched performs its training in an
efficient manner. Moreover, unlike Decima which learns any new



scheduling policy completely from scratch, LSched adapts an effi-
cient transfer learning technique [2] to reduce the expensive train-
ing cost and avoid the need to start from scratch.

LSched can be integrated with any in-memory block-based data-
base systems (e.g., [18, 20, 43]). In this paper, as a prototype imple-
mentation, we integrated LSched with Quickstep [43] and evaluated
it with TPCH, SSB and JOB benchmarks. Our evaluation shows that
LSched outperforms both existing state-of-the-art query schedulers
and heuristic-based ones. In particular, LSched can improve average
query duration over Decima [34] by 35% and 50% in both streaming
and batching query workloads, respectively, and improves over
Quickstep and Self Tune [58] by at least 60% and 55% for the same
types of workloads.

2 PRELIMINARIES: QUICKSTEP

In this section, we give an overview of Quickstep [43], an efficient
in-memory analytical database system, which we integrate our
learned query scheduler with.

Block-based Storage. Quickstep manages its table storage as
a set of blocks. Each block is considered as a mini self-contained
database, where it consists of 1) sub-blocks of data, for both raw
and indexed tuples, and 2) a metadata header to describe the block’s
contents. Blocks can be of different sizes, and support different data
layouts, such as row and column store formats.

Work Order-based Operators. Quickstep represents each re-
lational operator in the query plan (i.e.,, DAG) as a set of work
orders (similar to morsels in HyPer [29]), which are generated at
the block level. Specifically, each work order is defined over one
block, and contains a set of information about the operator’s inputs,
parameters and pipelining status (i.e., whether the execution of
this operator is blocked on its parent operator or not). For example,
when applying a select operator on an input relation, Quickstep gen-
erates as many work orders as there are blocks in the input relation,
and encodes in each work order, 1) a reference to its input relation,
2) a filtering predicate, 3) a projection list of attributes (or expres-
sions), and 4) a reference to a particular input block. Quickstep
supports work order implementations for 29 operators, including
variations of complex operators such as aggregate and union.

Work Order-based Scheduling and Execution. For each
query, the Quickstep scheduler selects operators that are ready
to be scheduled (a.k.a active nodes) using a DAG traversal-based
algorithm, then fetches their work orders and executes them in
parallel on available threads. Operators, such as aggregate and Probe-
Hash, are not activated till all their blocking dependencies complete
execution. When work orders are completed, the execution threads
send completion messages to the scheduler, which include execution
statistics that can be used to analyze the query execution behavior.
Quickstep employs heuristics-based scheduling policies (e.g., fair
scheduling) to select among the active nodes of different queries.
Note that Quickstep supports both streaming and batched queries
execution, yet, it neither supports multi-query optimization (i.e.,
co-optimizing the plans of multiple queries together) nor work
sharing (e.g., operators sharing).

Why Selecting Quickstep? There are three main reasons that
motivated us to integrate LSched with Quickstep in our prototype
implementation. First, Quickstep provides an access to a rich set
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Figure 2: LSched system overview.

of fine-grained information (i.e., at the work order level) about the
query execution plans. Such information allows LSched to be trained
with more accurate and specific query execution features, rather
than the high-level ones coming from typical query optimizers.
Second, the Quickstep scheduler design separates the choice of poli-
cies from the execution mechanisms, which significantly facilitates
the integration with LSched. Third, Quickstep is an open-source
project [46], and is easy to modify its core engine.

3 SCHEDULER OVERVIEW

In this section, we give an overview of LSched and its workflow.
Figure 2 shows the different components of LSched (highlighted in
blue) and how a typical database system interacts with them.

LSched in Action. Scheduling Agent is the main component of
LSched and is responsible for predicting the scheduling decisions.
It has two main modules, namely Query Encoder and Scheduling
Predictor. When a user query arrives, the DBMS first generates a
DAG plan of physical operators to execute this query. Then, this
plan along with other queries’ plans and the status of execution
environment (e.g., available threads) are submitted to the Query
Encoder to obtain an efficient embedding representation (i.e., encod-
ing) that will be used in the scheduling prediction later. The Query
Encoder employs a novel, yet scalable, approach that combines both
tree convolution [38] and graph attention networks (GAT) [56]
to embed the huge information related to the current queries and
execution environment (Section 4). Once the encoding is done, the
embeddings are passed to the Scheduling Predictor, which is a deep
neural network, to predict the final scheduling decisions (Section 5).
Specifically, it should predict (1) which operators (and whether
their pipelining, if any, is preserved or not) from which queries
to be scheduled, and 2) how many threads should be assigned to
each running query. Typically, executing one or more concurrent
queries requires multiple iterations of scheduling decisions. These
iterations occur on certain scheduling events, such as the arrival
of a new query or completing the execution of one or more of the
currently schedule operators (i.e., some execution threads are free).
In each iteration, the DBMS query execution engine invokes the
Scheduling Predictor to schedule new operators and assign resources
(e.g., threads) to them. Then, the predictor answers with its sched-
uling decision that will be translated into a set of work orders to
be executed by the query execution engine, which is Quickstep in
our case. Whenever a scheduling decision is completely executed,
its effect is rewarded and sent back to the agent to improve its
performance accordingly.
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Figure 3: Example on the generated features in LSched.

LSched Training. LSched uses RL to train its Scheduling Pre-
dictor through sample Training Queries that can be gathered from
the workload logs. In each training episode, LSched attempts to
schedule a query workload (coming in both streaming and batching
modes) using the Scheduling Predictor, observes the overall exe-
cution latency, and provides the predictor with a reward on its
decisions (Section 6). The reward reflects how much the predic-
tor, with its current parameters, achieves the high-level scheduling
policy objective (e.g., minimizing the user-perceived latency). The
RL algorithm gradually improves the efficiency of the Scheduling
Predictor using these rewards. In the online mode, the completely
executed scheduling decisions are also rewarded and used for self-
correcting the predictor either on a query-by-query basis or at
checkpoints (controlled by the user). All these reward experiences,
from both training and online modes, are stored and managed by
the Experience Manager.

Since LSched customizes the scheduling policies for each work-
load, it requires retraining its Scheduling Predictor from one work-
load to another. However, training the predictor from scratch is
extremely expensive and unaffordable for DBMSs because each
training episode requires executing a batch or a stream of queries
and it is still cumbersome for users to execute thousands of training
iterations before using the scheduler for a new workload. Moreover,
some workloads may not have enough logs (i.e., training queries)
at the beginning to bootstrap the scheduler. To alleviate this issue,
we adapt an efficient transfer learning technique [2] to reduce the
training cost and avoid the need to start from scratch (Section 6).

4 QUERY ENCODER

Query encoding in LSched is done on two steps. First, a set of
features are collected from the physical plan of each query and
its interaction with the execution environment (Section 4.1). Then,
these features are used to generate efficient encoding within the
query itself (Section 4.2) and across the whole queries (Section 4.3).

4.1 Physical Plan Features Extraction

The main objective of LSched is to capture the query execution envi-
ronment while scheduling concurrent queries. To properly achieve
that, LSched extracts a set of useful features (discussed in the rest
of this subsection) from the physical plans of the running queries

as well as their interaction with the dynamic execution environment.
In our prototype of LSched, we use the query execution engine of
Quickstep to extract these features. However, such features can
be extracted while using any modern block-based database sys-
tem (e.g., Quickstep[43], MonetDB [18], Hyrise [12], RocksDB [6],
Umbra [40], HyPer [20]), that adapts work order/morsel-based im-
plementation of its physical operators [40, 43].

There are three types of features in LSched: Operator Features
(OPF), Edge Features (EDF), and Query Features (QF).
Operator Features (OPF). LSched generates the following eight
features at each operator in the physical query plan.

Operator Type (O-TY): A vector that encodes the operator type

(e.g., select, join), stored in a "1-Hot" representation.
Operator Connectivity (O-CON): An adjacency list showing the

operator connectivity with other operators in the query plan.

Input Relations (O-IN): A vector that encodes the input relations
of the operator (both base and intermediate relations), stored in a
"1-Hot" representation.

Columns (O-COLS): A vector that encodes the used columns (i.e.,
attributes) in the operator from the input relations, stored in a "1-
Hot" representation (e.g., in case of the select operator, the column
used in the filtering predicate).

Blocks (O-BLCKS): A vector that encodes the data blocks, which
are planned to be processed in the work orders of the operator.
Such information about blocks for each operator are available
from the query optimizer in block-based database systems (e.g.,
Quickstep[43], MonetDB [18], Hyrise[12], RocksDB [6]). Therefore,
no need to reference the blocks during scheduling. Typically, the
number of blocks can be very high and different from one relation
to another, and representing the blocks using a bitmap of 1-Hot
representation is extremely inefficient. Therefore, inspired by [64],
LSched uses a simple moving average over the number of blocks to
reduce the O-BLCKS feature size. Given d as the new feature array
(i.e., downsized array) and b as the original array, an entry d; at
index j in the new array d can be calculated as:

]

UH)XE
|d|
dj=m Z by 1)
k:jx%

For example, assume that an original blocks bitmap b = {1,1,0,1,1,0}
will be reduced to a feature array d of size 3. The value of d[0] will
be %(1 +1+0) = 1, and analogously d[1] and d[2] will be 1 and 0.5.

Remaining Work Orders (O-WO): A single value that encodes the
remaining amount of work orders on the operator when the sched-
uler is invoked at time ¢. This number of remaining work orders is
calculated by subtracting the completed work orders so far from the
original number of work orders determined by the query optimizer
(note that this number will be an estimate if the operator input is
generated in a non-pipeline breaking mode).

Estimated Duration (O-DUR): A single value that encodes the
total estimate of duration (i.e., expected running time) of the re-
maining work orders on the operator when the scheduler is invoked
at time ¢. This total estimate of duration is calculated on two steps.
First, LSched estimates the duration of a single next work order
using a linear regression over the execution times of previously




completed work orders on this operator!. Then, this duration esti-
mate is multiplied by the number of remaining work orders.

Estimated Memory (O-MEM): A single value that encodes the
total estimate of memory usage of the remaining work orders on
the operator when the scheduler is invoked at time . It is calculated
similar to O-DUR, where the linear regression is applied on memory
usages instead of execution times.

Edge Features (EDF). LSched generates the following two features
at each edge in the physical query plan.

Non-pipeline Breaking Status (E-NPB): A single value, either 0
or 1, for each edge that encodes whether the two operators con-
nected through this edge support pipelining execution or not (i.e.,
value is 1 if non-pipeline breaking). For example, if the edge con-
nects two select operators, then it is non-pipeline breaking because
the child select operator can start execution before the parent select
finishes. In contrast, if the edge is between BuildHash and Probe-
Hash operators, then it is pipeline breaking because ProbeHash will
be blocked till BuildHash completes execution.

Pipeline Direction (E-DIR): A single value, either 0 or 1, for each
edge that encodes the direction of pipelining execution (i.e., which
operator is the source).

Query Features (QF). When the scheduler is invoked, LSched
generates the following three features for each individual query.

Assigned Threads (Q-ATH): A single value that encodes the num-
ber of assigned execution threads to the query at the moment.

Free Threads (Q-FTH): A single value that encodes the number of
available threads which can be assigned to the query at the moment.

Threads Locality (Q-LOC): A vector that encodes the locality sta-
tus of each available thread for this query, stored in a "1-Hot" rep-
resentation (i.e., whether this thread executed previous operators
from this query or not).

4.1.1 Features Generation. The previously discussed features can
be categorized into two main categories: static and dynamic. Static
features include O-TY, O-CON, O-IN, O-COLS, O-BLCKS, E-NPB,
and E-DIR. In this category, features are populated once at the begin-
ning of the query execution (i.e., when the physical plan obtained)
and remain unchanging till the query completes its execution. They
are calculated based on the information in the headers of work
orders in each physical plan operator. Dynamic features include
O-WO, O-DUR, O-MEM, Q-ATH, Q-FTH, and Q-LOC. In this cat-
egory, features are (re)calculated whenever there is a scheduling
event, and based on the execution statistics that are reported by
the execution monitor? (e.g., Quickstep’s resources estimator [43],
and RocksDB’s statistics collector [6]). Such statistics are updated
whenever the scheduled work orders complete their execution.
Note that LSched currently has no support for generating ex-
plicit features over multiple running queries. This is mainly because
existing block-based database systems, which LSched is designed
for, generate the physical plan for each query individually (i.e., no
support for multi-query optimization nor shared execution yet).
Therefore, LSched is forced to rely on such individual plans when

IWe chose linear regression as it is computationally-efficient and provides accurate
predictions. For efficiency, to predict duration D,,, of work order w; at time #, we
fit a linear regression model only on durations of work orders within the last time
window k (i.e., Div, 1> Dy gy 5 Dy ).

2 All OPF, EDF and QF features are "not" specific to Quickstep and can be implemented
in any block-based database system.
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Figure 4: Example on detecting patterns in queries using
(1) GCN with sequential message passing and (2) TCN.

generating features. That being said, although there are no specific
features defined over multiple concurrent queries, the aforemen-
tioned dynamic features ensure that LSched captures the status
of multi-query execution environment, because these features are
estimated while other concurrent queries are running.

Example. Figure 3 depicts an example on some of the generated
features for a query Qj, that has four different operators. It presents
the OPF for one operator o4, EDF for one edge es4, and the QF for
the whole query. The changed dynamic features O-WO, O-DUR,
O-MEM, Q-ATH, Q-FTH, and Q-LOC are shown for two different
scheduling times #; and t,.

4.2 Single Query Encoding

At each scheduling step, the learned scheduler should leverage a
large amount of features (Section 4.1) coming from hundreds of
concurrent queries and a dynamic execution environment.

As shown in Decima [34], one straightforward solution to effi-
ciently encode such large information is to use a modified variation
of graph convolutional network (GCN) [1, 23] that supports convo-
lution over directed acyclic graphs (DAGs). In traditional GCN, the
information from the neighbours of each node in the graph is prop-
agated simultaneously through message passing [23]. However,
this is not suitable for capturing efficient patterns in scheduling
and executing DAGs. In DAGs, the execution of nodes (which are
operators in our case) has a hierarchical nature, and there are many
local parent-children relations among nodes (for example, in our
case, a BuildHash operator is typically followed by a ProbeHash one
or a MergeJoin operator is applied on a sorted input). Therefore,
Decima proposed to perform message passing in each convolu-
tion iteration through a set of sequential steps, where the message
passing in each step s is restricted to be only from the children
nodes in the previous step s — 1 to their parents in the current
step s. Although this solution can preserve the DAG structure, it
still has two main limitations. The first limitation is that sequential
message passing, within the same convolution iteration, results in
over-smoothing problem [60]. In typical GCN, the message pass-
ing within one convolution iteration calculates the embedding at
each node by fusing the information from its direct neighbours
only, while the information from indirect neighbours (i.e., larger
neighbourhoods) is fused over the multiple convolution iterations.
Fusing indirect information helps in detecting complex relation-
ships among nodes, yet, the exaggeration of doing that leads to
high error propagation and values over-smoothing [60]. Sequential



message passing, as in Decima, fuses information from indirect
neighbours across multiple iterations and within the same iteration
as well, which leads to higher over-smoothing. For example, within
the same iteration of sequential message passing, the embedding of
operator o at step s is fused in its parent o541 at step s + 1, and in
turn og41 is fused in its parent og42 (ie., 0s’s grand parent) at step
s+2. This means that o is already fused in 0542 indirectly within the
same iteration. The second limitation is that GCN propagates infor-
mation among nodes with same importance. However, this might
be inefficient in some query execution cases, where operators can
have different impacts on each other [28].

To avoid the limitations of GCN, LSched proposes to perform

query encoding through a combination of tree convolution [38]
with graph attention networks (GAT) [56]. The success of using
tree convolution in a recent work for learning query optimiza-
tion [37] inspired us to customize a variation of tree convolution
filters for capturing hierarchical scheduling and execution patterns
(Section 4.2.1). To further tune the tree convolution output, we
use GAT to allow each operator to aggregate information from its
child operators and connected edges while assigning them different
importance (Section 4.2.2).
4.2.1 Customized Tree Convolution. Effective convolution meth-
ods should have a strong inductive bias [35]: the convolution kernel
should be designed according to a specific intuition or understand-
ing. For example, convolutional neural networks (CNN) [32] detects
visual features from an image by sliding a kernel over the different
image regions, which is very similar to what happens in the visual
cortex system of humans. This makes CNN has a strong spatial local-
ity inductive bias. Similarly, tree convolution [38] has been shown
to have a strong inductive bias in extracting local parent-children
patterns over tree structures (e.g., query plans) [37].

Typical tree convolution assumes a binary tree structure of fea-

tures that need to be convoluted, where each node in the tree has
a flat vector of features. Then, the tree convolution slides a set of
shared filters (i.e., kernels) over each local parent-children triangle
in the tree to apply the convolution operation and generate embed-
ding vectors (i.e., new feature representations) for all nodes. This is
similar to the convolution in CNN, but with triangle-like filters not
square ones, and applied on trees not grids. Usually, multiple tree
convolution layers are “stacked” to capture a wide range of local
parent-children patterns.
TCN vs GCN Example. Figure 4 shows an example on how the
convolution in TCN can detect interesting patterns over queries
more efficiently than in sequential message passing GCN. In this
example, we assume a simple query with two index-nested-loop
join (INL]) operators (03, 04) and two index-scan operators (01, 02),
defined over two base relations A and B. In this query, each node
has a simple OPF feature vector (check Section 4.1) that only has
O-TY with two values for encoding whether the node is either INLJ,
index-scan or not. We target to detect a pattern of having INLJ
operation on top of one (or two) index-scan operation(s).

GCN Computation. The top portion of Figure 4 depicts how the
first convolution layer of sequential message passing works over
DAGs, where the embeddings of nodes are calculated sequentially
on different steps. As a concrete example, the embedding of o5 is cal-
culated at step 2, after the embeddings of 01 and o0z being calculated
at step 1. The embedding of 03 = ([1,-1]©[1, 0])+[0, —1]+[0, -1] =

[1,-2], where © is the Hadamard product (i.e., element-wise prod-
uct), [1, —1] is the node’s weight vector, [1,0] is the current node’s
embedding (since this is the first convolution layer, the node’s fea-
ture vector becomes the current node’s embedding), and [0, —1]
is the previously calculated embeddings for 01 and o2. Note that
node’s weight vector [1, —1] rewards (penalizes) the node if it is an
INLJ (index-scan) operation.

TCN Computation. The bottom portion of Figure 4 shows how
the first convolution layer of TCN works. In this example, a tree
convolution filter consists of three weight vectors with [1, —1] at the
parent (similar to GCN node weights for fair comparison), and two
weight vectors with [—1, 1] at each child (to capture whether any
of the child nodes is an index-scan or not). Given a parent node n,
and its children n; and n,, the embedding at n,, is calculated by first
applying the Hadamard product between the embedding of each one
of the np, n and n, nodes, coming from the previous convolution
layer (since this is the first convolution layer, we use the node’s
feature vector as a previous embedding), and its corresponding
weight vector from the filter. Then, the output products are added
together to form the final embedding at ny. As a concrete example,
the embedding of 03 = ([1,—1]®[1, 0])+([-1, 1]®[0, 1])+([-1,1]O
[0,1]) = [1,2]. Note that the embedding at any node n, using TCN
does not depend on the children embeddings that are calculated in
the same convolution layer, and hence, unlike GCN, the embeddings
at different nodes within the same layer can be parallelized and do
not suffer from over-smoothing [60].

Quality Comparison. In this example, both the GCN node’s weight
and the TCN tree filter were designed to only reward the nodes that
achieve the INL] pattern, and punish others. Therefore, the higher
non-negative embedding values at nodes that match the required
pattern, the better convolution it is. By comparing the output em-
beddings obtained from GCN and TCN at all nodes in this example,
we can see that TCN detects the pattern better. In particular, the
TCN embeddings of 03 and o4 (the two nodes that achieve the INL]
pattern) are non-negative, where their counterparts in GCN have
negative values. This is mainly because 1) the TCN filter employs
different weight vectors that accurately capture the different parent-
child relationships within the pattern, and 2) In sequential message
passing, there is an over-smoothing happening at the nodes that
achieve the pattern, which reduces their embedding values (e.g.,
the indirect fusion of 01 in 04 reduces the embedding values at o04).
Edges Support. The existing triangle filters in typical tree convo-
lution [37, 38] are designed to only process the nodes in the local
parent-children triangle (e.g., Figure 4), and ignore the edge infor-
mation (i.e., support features on nodes only). Therefore, it is not
suitable to use these filters "as is" with LSched’ features (Section 4.1),
which include both node and edge features. To solve this issue, we
provided a variation of tree convolution filter that takes into ac-
count the edge features as well. Given a tree convolution layer [,
the modified tree convolution filter is defined, for any parent node
p and its right m and left n child nodes, as follows:

' _ 1 1 l 1 1 1 1
Xp = 0(W,0x,+Wp 1 O 1+ W, OXpy +W),

1 ! 1
pm©€pm Qe, ,+w,0x,) (2)

p.n

N

where xé, and x;,l are the current and updated embeddings of

parent node p, x%, and e;,’m are the embedding vectors for the
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Figure 5: Example on the effect of using GAT scores in TCN.

right child node and its edge to the parent, x} and e}I,’n are the
embedding vectors for the left child node and its edge to the parent.
Il l l

Here, the filter consists of five weight vectors wy, wy,, Wp,m» Wn

and wil,,n corresponding to each of the embedding vectors, where
a Hadamard product O (i.e., element-wise product) is applied on
each embedding-weight pair of vectors. o is non-linear activation
function (e.g., ReLU [9]).

The triangle filter in Equation 2 is defined over a parent and two
child nodes only. We choose this as it is compatible with the physi-
cal query plans in our prototype implementation with Quickstep.
However, it can be easily adapted for a higher number of children
and edges by adding more weighted terms (in this case it will not be
a triangle filter). In practice, a set of triangle filters (e.g., hundreds)
are defined on different tree convolution layers. This significantly
helps capture various hierarchical patterns with different charac-
teristics. The weights of all filters are learned during the training
of the scheduling neural networks (sections 5 and 6).

4.2.2  Graph Attention Networks (GAT). When stacking multiple
tree convolution layers (i.e., the output of layer [ is fed to layer
I + 1), the amount of information seen by any filter (a.k.a filter’s
receptive field [33]) increases as it leverages what is already learned
so far by all layers. This is necessary to generate embeddings that
encode complex and deeper scheduling decisions (e.g., schedule the
execution of three consecutive push-down selects in the physical
query plan as one pipeline on the same thread). However, another
interesting observation comes up: the execution behaviour of one
node could be affected by the behaviour of its grand children from
one child node more than the other one. For example, let us revisit
the query defined in Figure 4. Assume that the relation A is 10 times
larger than B. This makes the latency of the join operator o4 more
dependable on the latency of 03 than on 02, because 03 will probably
become an execution bottleneck (assuming that the output of 03
is proportional to the size of the largest relation, i.e., A). However,
there is no explicit way to increase and decrease the importance
of 03 and oz, respectively, for o4 during the embedding calculation.
This is a known issue, in both GCN and tree convolution, where the
convolution executes an isotropic aggregation [14, 38], in which each
neighbor node contributes equally to update the representation (i.e.,
embeddings) of the central node.

To remedy this issue, we apply graph attention networks (GAT)
[56] to assign different importance to each node and edge contribut-
ing to the tree convolution output. The main idea is to compute a

"learnable" pair-wise attention score between the parent node p and
each node or edge used in calculating the tree convolution value
xg at the parent p in Equation 2. Since the previous embedding
values of p (i.e., x;,) is used in calculating x'l, we consider adding
an attention score for p itself as well. This means that the triangle
filter at any convolution layer [ has five attention scores in total.
Each attention score is used to weigh the corresponding embedding
when calculating the final value of x;,l.

Since all attention scores are calculated in the same way, we will
show, as an example, the details of computing one attention score,
which is zin (i.e., the attention score between the parent node p
and its right child). Let us assume xf,{ to be the current embedding
of right child weighted by its corresponding weight vector wfn
in the tree convolution filter (i.e., x};, g w£n ©) x£n, where O is the
Hadamard product). First, a pair-wise un-normalized attention score

,ln between the parent node p and its right child is calculated as:

yh, = a(d' © (xh|1x}h) 3)

where || donates the concatenation of the x. and x,*,f embeddings.
Basically, a Hadamard product is applied between the concatenated
embeddings and a learnable weight vector a. The vector a! repre-
sents a shared single-layer neural network which is learned during
the training phase of the scheduling neural networks (Section 5). o
is a non-linear transformation function (e.g., LeakyReLU [56]). The
score yin indicates the importance of the information coming from
the right child during applying the tree convolution process. How-
ever, to have comparable attention scores across different nodes,
each un-normalized score should be normalized using softmax func-
tion as follows:

g exp () )
exp(ypm) +exp(yh) +exp(yp ) +exp(yp,) +exp(yp)

Here, z.,, is final normalized score for y/,, and is calculated using
the other un-normalized scores. Once the final five normalized
attention scores are calculated, the tree convolution value x;f at
parent node p can be calculated as follows:

'l 1 * 1 1 1 1 1 1 *
Xp = 0(2p *Xpy +Zp % €+ Zpy * Xy +Zpy e;n+zn*xn) (5)

where xpl ;lm, pln, and x;;! are calculated similar to x/. Equa-
tion 5 is very similar to Equation 2, yet, the weighted embeddings
are now scaled by the attention scores, reflecting their importance.
Example. Figure 5 shows the effect of using GAT scores on the
embedding outputs of 2-layers TCN. In this example, we revisit
the same query in Figure 4, while assuming that the relation A
is significantly larger than B as discussed earlier (i.e., 03 is more
important than oy for 04). We also included the edge features EDF
(check Section 4.1) and their corresponding edge weights to the tree
convolution filter. As we can see, using the learned GAT scores, that
reflect the correct impact of operators on each other, results in better
embedding at o4 in layer 2 (i.e., less negative and higher positive
values). Note that embeddings are calculated using Equation 5,
while using the GAT scores in Figure 5 and ¢ = 1 for simplicity.
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Figure 6: Neural networks architecture of Query Encoder.

4.3 High-level Encoding

In addition to encoding the different operators in a single query,
LSched requires a higher-level representation that captures the
whole query as one unit (e.g., one embedding vector that summa-
rizes the total work orders in the query), and similarly, another
global representation that captures whole running queries at the
moment (e.g., capturing the system resources utilization). In general,
the idea of generating high-level encodings is not new, and has been
studied before in Decima [34]. Figure 6 shows the neural networks
architecture of Query Encoder in LSched, with its two components:
Single Query Encoder (check Section 4.2) and High-Level Encoder,
which generates two types of summarized embeddings: Per-Query
Embedding (PQE) and All-Queries Embedding (AQE).

The PQE Embedding is created for each query through a summa-
rization neural network that connects false directed edges (with no
features) from the query nodes and edges to a dummy summary
node. As a result, all the nodes and edges become children to this
summary node. Figure 6 depicts the details of PQE embedding for
a simple join query Qj. Once the node (NE) and edge (EE) embed-
dings of Q1 are generated by the single query encoder as shown in
Section 4.2, these embeddings are concatenated with the OPF (i.e.,
node) and EDF (i.e., edge) features (check Section 4.1) as shown in
the figure. Then, the concatenation output is passed to the PQE
summarization network to generate the PQE embedding of this
query at the summary node (1-dimension vector).

The AQE Embedding is created for all running queries at the
moment through another summarization neural network that con-
nects all PQE summaries of these queries to a single global summary
node (i.e., the PQE summaries become children of this global node)
to obtain a global embedding. Figure 6 shows the details of AQE
embedding for multiple queries Q1, Q2, ..., Qn. Once the PQE embed-
dings for all queries are generated, each embedding is concatenated
with the QF (i.e., query) features (check Section 4.1) of its corre-
sponding query. Then, the concatenation output for all queries is
passed to the AQE summarization network to generate the final
AQE embedding (1-dimension vector).

Both PQE and AQE summarization networks are implemented
using a typical message passing-based [23] neural network.

5 SCHEDULING PREDICTOR

In this section, we describe the details of the core component of
LSched’s scheduling agent, namely Scheduling Predictor, which is
a deep neural network that leverages the information provided
by the Query Encoder (Section 4). We first describe the execution
model assumptions that LSched works within (Section 5.1). Then,
we describe when the Scheduling Predictor should be triggered (Sec-
tion 5.2). Finally, we present the details of of scheduling decisions
that should be taken at each scheduling event along with the neural
networks architecture to perform these decisions (Section 5.3).

5.1 Execution Model Assumptions

The query scheduler should take decisions that are consistent with
the execution model of the underlying query execution engine.
Since different database systems could have different implemen-
tation details and optimizations for their execution engines, we
choose to build LSched for a model, that is widely-used among mod-
ern database systems nowadays. In this model, the execution engine
consists of a single scheduler thread and a pool of worker threads.
The scheduler thread uses the query physical plans to generate
and schedule work for the worker threads. Each worker thread is
pinned to a CPU core (could be a virtual core), and is responsible
for executing the work orders coming from a certain scheduled
operator. By default, worker threads are created when the database
system is instantiated and kept alive across query executions to
minimize the initialization costs. However, the worker threads pool
can shrink or grow dynamically during execution. Note that Quick-
step follows this execution model to a great extent, and hence can
make a full use of LSched’s scheduling decisions. For convenience,
we refer to the worker threads as execution threads or just threads
during the rest of this section.

5.2 Scheduling Triggers

An important design aspect of LSched is deciding when it should be
invoked. Using RL to formulate the query scheduling problem gives
us a large action space to select from. For example, one straight-
forward option is to let LSched schedule all available operators
from all existing queries in one scheduling decision. However, such
decision is extremely inefficient for two reasons. First, the sched-
uler becomes less interactive as it schedules everything once, and
will wait for a while till the next scheduling event happens. The
repercussions of this could be severe specially in large analytical
queries that might take seconds to complete their execution. This is
long enough for the execution environment to significantly change
and hence the taken decision becomes outdated. Second, it requires
encoding an extremely large action space since there is a large
set of possible scheduling combinations defined over operators
and threads. Another possible option is to invoke the scheduler
whenever a single work order completes. This option considers the
execution environment changes in a better way, however, it is still
an inefficient decision as aggressively invoking the scheduler will
incur a substantial scheduling overhead that could outweigh the
scheduling benefit (Section 7 has reported overhead numbers).

To balance between the scheduling overhead and benefits, we
design LSched such that its Scheduling Predictor is triggered only
on the major events happening to threads and/or queries (we refer
to them as scheduling events). These events include: (1) adding or
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Figure 7: Neural networks architecture of Scheduling Predictor.

removing a thread to the pool, (2) a thread finished the execution of
all its assigned work orders from one or more scheduled operators,
(3) a new query arrives to the system, and (4) a scheduled operator
has been completely executed. Note that the scheduler will not
make any decisions if all threads are assigned work orders from
scheduled operators, or there are no more operators to schedule.

5.3 Scheduling Decisions

The main objective of LSched is to optimize both inter-query and
intra-query scheduling. To support that, the Scheduling Predictor
is designed to learn and perform the following three scheduling
decisions at any scheduling event: (1) which operators to start
execution from (we refer to them as execution roots) and from which
queries (Section 5.3.1), (2) the proper degree of pipelining that starts
from each execution root (Section 5.3.2), and (3) the proper degree
of parallelism for each running query (Section 5.3.3).

Figure 7 shows the neural networks architecture of the Sched-
uling Predictor. Once the generated embeddings from the Query
Encoder (shown in Figure 6) become ready, the three scheduling
decisions can be calculated. Basically, each decision is the output of
a fully-connected layers network with a softmax operation for nor-
malization. However, each decision network differs from the others
in its objective and input. Once these scheduling decisions are made,
they are sent to the query executor to prepare all work orders from
the scheduled operators and execute them on the specified threads.

5.3.1 Execution Roots Predictor. In this scheduling decision, we
calculate the probability of each operator (in each query) to be
selected for scheduling. An operator is schedulable if all its blocking
parents are completely executed. For each operator selected to be
scheduled, LSched considers it as a root (i.e., source) of a potential
pipeline, and then this root is passed to the Pipeline Degree Predictor
to figure out the proper degree of this pipeline (i.e., how many
subsequent pipelined operators to run along with this root).

As seen in Figure 7, the concatenated input of this decision neural
network for each operator (e.g., 01) consists of (1) the node (i.e.,
operator) and edge embeddings (NE and EE) of this operator and
(2) the per-query embeddings (PQE) of this operator’s query.

5.3.2  Pipeline Degree Predictor. In this scheduling decision, we
calculate, for each execution root (i.e., operator selected by the
Execution Roots Predictor), the probability of selecting a degree d
between 1 and the length of the longest pipelining path starting

from this operator (i.e., scheduling a pipeline of d operators starting
from the execution root). In case there is a pipeline breaking mode
or no more operators exist in the path starting from the root, this
number is set to 0 and the execution root will be scheduled only.

Predicting the pipeline degree is a major difference from Dec-
ima [34], which can not schedule two or more pipelined operators
from one query at the same time, to be running on the same thread.
Pipelining is very crucial for database systems because it increases
caching utilization as well as the query throughput. However, being
greedy in simultaneously running all operators in long pipelines
(e.g., along sequence of select operators) consumes memory buffers
at a high rate and causes thrashing, that will hurt the overall per-
formance at the end. Therefore, it is required to learn the effective
degree of pipelining that can be used based on the input workload,
which is exactly supported in LSched.

As seen in Figure 7, the concatenated input of this decision neural
network, for each root operator (e.g., 01), is exactly the same as in
the Execution Roots Predictor in addition to the edge features (EDF)
of all edges connected to this root operator to obtain the pipeline.

5.3.3 Parallelism Degree Predictor. In this scheduling decision, we
calculate for each query the probability of selecting a number of
threads between 1 and maximum number of available threads to
be used with this query. If this query currently uses less number of
threads than the predicted maximum, LSched assigns threads for the
scheduled operators, if any, up to this maximum. The main intuition
behind that is if the query, that the scheduled operators belong to,
had previous operators that were running on some threads, then
reusing these threads with the newly scheduled operators will
improve the locality.

As seen in Figure 7, the concatenated input of this decision
neural network for each query (e.g., Q1) consists of (1) the all-
queries embedding (AQE), (2) the per-query embeddings (PQE) of
this query, and (3) the query features (QF) as in Section 4.1.

6 SCHEDULER TRAINING

Reducing Average and Tail Latency. We perform the training
of LSched in episodes, where each episode represents a sample
workload of queries with different arrival patterns. Within each
episode, the scheduler takes many scheduling decisions, where at
each decision d, the scheduling agent collects a record of state sq,
action ag, and reward ry and adds it to a list of reward experiences.
Although any RL algorithm can be used to train the neural network
parameters of LSched, we chose the REINFORCE policy gradient
algorithm [62] for two main reasons. First, it updates its policy using
Monte-Carlo sampling [15], which balances between accuracy and
runtime efficiency. Second, it reduces the variance in the parameters
estimation process by using reward baselines (e.g., [61]).

A key factor to perform an efficient training using REINFORCE
or any policy gradient algorithm is the design of the reward ry
because the gradient algorithm performs a gradient descent on
the neural network parameters using the whole observed rewards
during each training episode. In LSched, we design the reward ry
with an objective of minimizing both average and tail latency of
running queries. Let t; and t;_; be the times of taking the sched-
uling decisions d and d — 1 within a training episode, and Q; be
the number of existing queries in the system in the time interval



between t;_; and t;. We use the quantity Hy = (t7 — t7_1)Qq4 as
an approximation for the latency of the Q4 queries since these
queries are still running and do not have actual completion times.
We generate a list H of all latency approximations corresponding
to all scheduling decisions in the same training episode. At the end
of the episode, we calculate the 90th percentile, referred to as P, of
all the latency approximation values in H and use it as an indicator
for the tail latency of all queries that ran in the episode. Using the
calculated Hy and P values, LSched defines two rewards: rcli = —Hy,
and rs = —(Hy — P), which target minimizing the average and tail
latency, respectively. The final reward r; is a weighted average
wirk+wor
W +Wy
hyper-parameters set by users to control the rewarding criteria.

Transfer Learning. Inspired by the recent advances of transfer
learning in deep learning [2], we can train neural network models
(e.g., weights of hidden layers) for the Query Encoder and Sched-
uling Predictor on one query workload, and then apply them on
a new workload with some customization. In this way, we can
avoid building the models from scratch and shorten the training
cycle (i.e., reduce the number of needed training episodes). The
main intuition behind that is, in many neural networks, the first
layers (i.e., layers close to the input) refer to general embeddings,
while last layers (i.e., layers close to the output) refer to specific
embeddings that are problem dependent. This is valid in our sched-
uling problem: for example, the first layers of the tree convolution
process could recommend aggressive scheduling for all select oper-
ators (workload-independent guideline), while the last layers could
specifically recommend scheduling select operators over relation A
before the ones over relation B (workload-dependent guideline).

LSched exploits this observation and allows reusing its previously-
learnt neural network layers, while re-training some layers and
freezing others. Specifically, the neural networks, used in both the
query encoder and scheduling predictor, can apply transfer learn-
ing by freezing all their convolution and hidden layers, except the
layers connected to the input and output of each network, which
should be retrained according to the new workload (i.e., retraining
the layers’ weights). Note that reusing the frozen layers is permis-
sible in LSched as the dimensions of these layers remain the same
among different workloads.

7 EXPERIMENTAL EVALUATION

We evaluated the performance of LSched using different bench-
marks to answer the following questions: (1) how does the perfor-
mance of LSched compare with both state-of-the-art query sched-
ulers and carefully-tuned heuristics based schedulers (Section 7.2)?
(2) how do the different environment and query scenarios impact
the overall performance (Section 7.3)? (3) what is the scheduling
overhead (Section 7.4)? (4) how does the training affect the overall
performance (Section 7.5)? (5) How does each of the proposed ideas
contribute to LSched’s performance (Section 7.6)?

of rcll and rfi, where ry = . The weights wi and wy are

7.1 Experimental Setup

Competitors. We compare LSched against five baselines: (1) Dec-
ima: an open-source [3] learned task scheduler for cluster comput-
ing environments [34]. (2) SelfTune: a recent query scheduler [58]
for in-memory analytical workloads (we got its executable from the

authors). (3) Quickstep: an open-source [46] analytical database sys-
tem [43], which has a built-in query scheduler. (4) Fair scheduling:
a carefully-tuned weighted fair scheduling provided by Quickstep.
(5) FIFO scheduling: a naive scheduler which runs queries in the
same order they arrive, implemented in Quickstep.

Hardware and Settings. All experiments are conducted on an
Arch Linux machine with 256 GB of RAM and an Intel(R) Xeon(R)
Gold 6230 CPU @ 2.10GHz with Skylake micro architecture (SKX).
Benchmarks. We use three benchmarks: (1) TPCH: the default
TPCH [52], with scale factors 2, 5, 10, 50 and 100. (1) SSB: the Star
Schema Benchmark [41], with scale factors 2, 5, 10 and 50. (3) JOB:
the default Join Order Benchmark [30], with IMDB dataset of 7.2GB.
Workloads Generation. To build a workload, either for training
or testing, we do the following process: let us build a TPCH training
workload, for example. For each scale factor, we randomly select,
without replacement, 50% of the benchmark queries (11 queries in
the TPCH case) to be used for training, and leave the remaining
queries for testing (we make sure that testing queries were never
seen during training). This means that there is a total of 55 queries,
from all scale factors, we can use for generating workloads. A work-
load of size x is generated by randomly selecting x times, with
replacement, from these 55 queries. To generate workloads with dif-
ferent arrival times, we follow the process of generating continuous
arrival queries in [58], where the spacing between queries arrival is
sampled from an exponential distribution with expected value 1/A.
Using this, we can control the expected arrival rate of A queries per
second. We follow the same process for generating training/testing
workloads for TPCH/SSB/JOB. In case of JOB, we directly generate
any workload of size x using the randomly sampled queries from
the original benchmark (114 queries), whether training or testing,
(i.e., no scale factor to enlarge the number of queries).

LSched Implementation. LSched training is implemented using
TensorFlow [51]. The physical plan features generation is imple-
mented inside Quickstep in C++. During testing, the communication
between Quickstep and LSched is done through an RPC interface.

Default Settings. The parameters of all competitors are configured
according to the guidelines in their original papers. Pipelining is
always enabled in all competitors. Unless otherwise stated, the
maximum number of execution threads is set to 60. We used LSched
to build a default scheduling model for TPCH workloads using 5000
training episodes, where each episode has a number of streaming
queries that vary between 20 to 100, and arrive with rates (1) that
vary between 10 to 400. For each of SSB and JOB, we built another
scheduling model using 3000 training episodes, where each episode
has a number of streaming queries that vary between 10 to 200, and
arrive with rates (1) that vary between 10 to 400. The weights for
average and tail latency optimization (Section 6) are 0.5. We use the
cumulative distribution function (CDF) of average query duration
in the system as the default evaluation metric.

7.2 Comparison with Other Competitors

We first study the performance of LSched against all scheduling
competitors with three different benchmarks (TPCH, SSB and JOB),
and with two different arrival patterns (streaming and batching).
In batching, all queries arrive the system at the same time. This is
a typical batch processing scenario that happens frequently with
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Figure 8: Comparing LSched with other scheduling baselines
under streaming and batched (TPCH) queries.
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Figure 9: Comparing LSched with other scheduling baselines
under streaming and batched (SSB) queries.
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Figure 10: Comparing LSched with other scheduling baselines
under streaming and batched (JOB) queries.

analytic workloads (e.g., the user provides a script with all queries
that need to run in advance). In this mode, the database system be-
comes under high pressure, and all its resources are highly utilized
for a considerable amount of time. On the other hand, in streaming,
queries arrive at different time instants, and the system could be
highly utilized at certain periods, and under utilized in others.

Figure 8 shows the CDF of average query duration in the system
for two testing TPCH workloads that both have 80 queries, but
arriving in a different way. Clearly, FIFO scheduling has the worst
performance by far as it runs queries in the same order they arrive
in and grants as many threads to each query as available, which
stalls the execution of other queries and significantly increases their
average query duration. Since FIFO is always the worst baseline,
we removed it from all the remaining experiments.

(a) Varying Workers (b) Varying Query Arrival Rate
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Figure 11: Studying the performance while varying (a) num-
ber of worker threads in the query execution engine and
(b) inter-query arrival time.

As shown in Figure 8, LSched outperforms all baseline algo-
rithms and improves the average query duration over Decima by
at least 35% and 50% in both streaming and batching cases, respec-
tively. This is because LSched prioritizes queries better, leverages
the relational query structure better using efficient encoding tech-
niques (e.g., tree convolution), and wisely controls the pipelining.
As you can see, LSched has a much larger impact in batching than
in streaming. This is because, in batching, the system faces severe
high-load periods, which when good scheduling decisions have the
most impact in reducing the workload peaks.

Figures 9 and 10 confirm the superiority of LSched over all base-
lines, but now under the SSB and JOB benchmarks, respectively.
An interesting observation for the SSB benchmark is that the per-
formance gap between LSched and the competitors decreases a bit
compared to the TPCH benchmark. This is because, as we men-
tioned in the experimental setup, the highest scale factor used with
the SSB benchmark is 50, which makes the worst query runtime in
SSB is almost half of its counterpart in the TPCH workload (i.e., SSB
has lighter queries), and in turn the system becomes more relieved.
This confirms our previous conclusion about LSched being most
effective when the system is extremely busy. For the JOB bench-
mark, we observe that LSched has a bit better performance gain over
all other baselines (at least 38% and 59% average query duration
improvement in both streaming and batching cases, respectively),
compared to the TPCH and SSB benchmarks. This is because JOB
benchmark has more challenging queries (some queries have more
than 10 join operations) that require careful scheduling, and hence
the superiority of LSched appears. In addition, it is clear that the
variance of average duration times for LSched, in all figures, is much
less than all other baselines. This is because of LSched’s support to
reduce both average and tail latency (Section 6).

7.3 Environment and Query Scenarios

Figure 11(a) shows the performance of all schedulers while scal-
ing up the number of execution threads from 20 to 100. In this
experiment, we use the testing TPCH workload that contains 80
streaming queries and report the average query duration.

Overall, all algorithms scale well when increasing the number
of threads, although only fair scheduling achieves better scalability
than others at very high number of threads. The main explanation
for this good performance is that with this high number of threads
(e.g., 100), which is even larger than the number of existing queries,
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Figure 13: Analyzing the scheduling overhead in terms of
(a) average latency per query, and (b) number of scheduling
actions taken by the learned agent.

smart scheduling decisions have less effect, and fair sharing of
resources still ends up with enough resources for each task to
make a progress. Figure 11(b) shows the average query duration of
all schedulers, under the testing TPCH workload of 80 streaming
queries, but now, while varying the inter-query arrival rate from 10
to 400. As expected, and similar to the conclusion in Figure 11(a), the
performance gap between LSched and others significantly decreases
when the system almost runs a single query at a time. In this case,
many schedulers tend to have the same scheduling decisions.

Figure 12 shows the sensitivity of all algorithms while varying
the number of streaming and batching queries in the test TPCH
workload. Here, we use the default number of threads which is 60.
As shown, when the number of queries is very small, most sched-
ulers become similar or slightly worse than each other. In contrast,
when the number of queries becomes higher than execution threads,
the performance of schedulers starts to degrade peacefully (except
fair scheduling), with a clear advantage for LSched.

7.4 Scheduling Overhead

In this experiment, we measure the scheduling overhead of LSched
compared to the other baselines. Figure 13(a) depicts the average
scheduling latency per query for all schedulers while changing
the number of queries in the test TPCH streaming workload from
20 to 100. We observe two things here. First, the scheduling over-
head of learned approaches, both LSched and Decima, is significant.
This is due to the expensive processing of convolution and neural
network operations that happens per each scheduling decision in
these learned approaches. In contrast, the remaining schedulers just
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Figure 14: Effect of changing (a) number of training episodes
and (b) using transfer learning on the LSched efficiency.

perform few function calls or run a simple heuristic algorithm on
each scheduling event. However, it is clear that this overhead is paid
off by saving hundreds of seconds in the execution time due to the
effectiveness of the taken scheduling decisions (time saving is still
100x greater than this overhead on average). Second, the scheduling
latency for the learned approaches increases a bit when increas-
ing the number of queries in the system. This is also expected as
the number of needed scheduling decisions increases. Figure 13(b)
shows how the number of scheduling decisions increases for the
same experiment in Figure 13(a).

7.5 Effect of Training

Figure 14(a) shows how increasing the number of training episodes
boosts the accuracy of the scheduling decisions and hence decreases
the average query duration. The figure compares both LSched and
Decima while varying the number of episodes from 1000 to 5000.
As we can see, LSched saturates much faster than Decima. LSched
takes only 2000 episodes while Decima takes 5000. This is mainly
because of the efficiency of the LSched’s neural network design and
its underlying convolution techniques.

Figure 14(b) shows the effectiveness of using transfer learning
to speed up the training process. In this experiment, we used the
already-built scheduling model for the TPCH workloads to train
a scheduling model for an SSB workload, and then compared that
with building a new scheduling model from scratch for the same
workload. The figure shows the number of training episodes com-
pleted on x-axis and the achieved average reward corresponding
to these episodes on the y-axis. We can see that using transfer
learning the number of episodes needed to reach to an effective
average reward is reduced by 50%. Note that the reward is shown in
a negative value because it represents latency penalties (Section 6).

7.6 Different Variations of LSched

Figure 15 shows that removing any one component from LSched re-
sults in worse average query duration. Here, the complete variation
of LSched is trained with transfer learning (blue curve). As you can
see, using tree convolution (TCN) and graph attention mechanism
(GAT) (i.e., not weighing the importance of child operators and
attached edges) has the greatest impact on LSched’s performance.
Without TCN and GAT, the average query duration becomes at
least 2X and 1.5X worse, respectively. Another interesting observa-
tion is the effect of transfer learning on the accuracy performance.
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Transfer learning mainly aims to expedite the training phase as
shown in Figure 14(b), and hence one expects that it has no ef-
fect on the accuracy. However, our results show that removing
the transfer learning makes the average query duration 10% worse.
This is because, using transfer learning, the neural network starts
training from some meaningful embeddings (i.e., less random) and
hence consumes more iterations in optimizing them, which in turn
improves the scheduling performance. Lastly, as expected, ignoring
the pipelining prediction during scheduling has its significant effect
which increases the average query duration time with 25%.

8 RELATED WORK

Scheduling is a classical problem that has been studied for decades
in different domains including databases (e.g., [16]), networking
(e.g., [48]) and operating systems (e.g., [27, 59]). However, we fo-
cus here on the literature of query scheduling for database and
distributed systems only.

Scheduling in Analytical Database Systems. We start with
query scheduling for analytical workloads, which is the main focus
of this paper. Introducing an explicit query scheduler for analytical
workloads has been studied in few systems, such as Umbra [40],
SAP HANA [44], HyPer [20] and Quickstep [43]. For example, in
Umbra, a recent query scheduler, namely Self Tune [58], was pro-
posed to self-tune the hyper-parameters of its fixed priority-based
scheduling policy for each input workload. In Quickstep, an effi-
cient query scheduler was proposed with tuned implementations
for many heuristic policies (e.g., fair, highest priority first, and
proportional priority) that can work on a very fine-grained level
of tasks. However, the query schedulers in these systems are still
heuristics-based, and are not optimal for the input workload (i.e.,
policies are not built from scratch to take the workload characteris-
tics into account). Unlike these systems, LSched provides the ability
to have fully-learned workload-aware scheduling policies.
Scheduling in Computing Clusters. There has been an extensive
research effort to provide efficient task scheduling in large clus-
ters. For example, Google developed Borg [57], that can schedule
hundreds of thousands of jobs, from many thousands of different ap-
plications, across thousands of machines. Yarn [55] and Mesos [17]
are other examples on efficient open-source resource managers for
sharing clusters of commodity hardware, such as Hadoop, in a fine-
grained manner. In general, these resource managers try to achieve

instantaneous fairness among different jobs. In contrast, [11] stud-
ied how jobs can yield fractions of their current allocated resources
to guarantee long-term fairness. Decima [34], which uses RL to
fully-learn a jobs scheduler on large clusters, is the closest to LSched
in the approach, but different in the scheduling objective. Decima
aims to schedule tasks among large cluster nodes, while LSched
focuses on scheduling queries among threads on a single node
database system. This means that the neural networks design and
features needed for both systems are quite different.

ML for Databases. During the last few years, machine learning
started to have a profound impact on automating the core database
functionality and design decisions [24]. For example, a corpus of
works studied the idea of replacing traditional indexes with learned
models that predict the location of a key in a dataset including
single-dimension (e.g., [7, 22, 25]), multi-dimensional (e.g., [4, 39]),
updatable (e.g., [5]), and spatial (e.g., [31, 42, 45]) indexes. Query
optimization is also another area that has several works on using
machine learning to either entirely build an optimizer from scratch
(e.g., [37]), or provide an advisor that improves the performance of
existing optimizers (e.g., [36, 50, 54]). Moreover, there exists sev-
eral optimizations, enabled by machine learning, in other database
operations e.g., cardinality estimation [21], data partitioning [63],
sorting [26], and multi-query execution [49]. However, to the best
of our knowledge, there is no existing work on using the machine
learning to revisit the query scheduling for analytical database
systems. Our proposed work in this paper fills this gap.

9 CONCLUSION

In this paper, we introduce LSched, a fully learned workload-aware
query scheduler for in-memory analytical database systems. LSched
provides an efficient inter-query and intra-query scheduling for
dynamic analytical workloads. LSched supports efficient and ac-
curate query encoding, flexible scheduling decisions, balancing
between average and tail latency, and effective training time. We
integrated LSched with an efficient in-memory analytical database
system, namely Quickstep, and evaluated it with TPCH, SSB and
JOB benchmarks. Our evaluation shows that LSched improves over
the performance of existing state-of-the-art query schedulers and
heuristic-based ones by at least 35% and 50% in both streaming and
batching query workloads.
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