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ABSTRACT

Causal analysis is an essential lens for understanding complex sys-
tem dynamics in domains as varied as medicine, economics and
law. Computer systems are often similarly complex, but much of
the information about them is only available in long, messy, semi-
structured log files. This demo presents Sawmill, an open-source sys-
tem [3] that makes it possible to extract causal conclusions from log
files. Sawmill employs methods drawn from the areas of data trans-
formation, cleaning, and extraction in order to transform logs into
a representation amenable to causal analysis. It gives log-derived
variables human-understandable names and distills the informa-
tion present in a log file around a user’s chosen causal units (e.g.
users or machines), generating appropriate aggregated variables for
each causal unit. It then leverages original algorithms to efficiently
use this representation for the novel process of Exploration-based
Causal Discovery - the task of constructing a sufficient causal model
of the system from available data. Users can engage with this pro-
cess via an interactive interface, ultimately making causal inference
possible using off-the-shelf tools. SIGMOD’24 participants will be
able to use Sawmill to efficiently answer causal questions about
logs. We will guide attendees through the process of quantifying
the impact of parameter tuning on query latency using real-world
PostgreSQL server logs, before letting them test Sawmill on ad-
ditional logs with known causal effects but varying difficulty. A
companion video for this submission is available online [4].

CCS CONCEPTS

• Software and its engineering → System administration; •
Computing methodologies → Causal reasoning and diagnos-

tics; Natural language generation.
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1 INTRODUCTION

Failures are frequent in today’s large, complex computer systems,
and diagnosing them in production can be challenging [8]: there
is usually not enough time (or often even the access permissions)
for debugging techniques like testing [6], formal verification [7]
and simulation [11]. Instead, operators have to work backward
from failures using observational data collected from the system.
Informally, we have heard of operations teams spending tens of
hours with tools like Datadog [1], trying to diagnose a problem.

However, operations teams want to go beyond a diagnosis - they
want to repair the system by alerting the appropriate engineering
team. Moreover, whenever there are multiple ways to fix a problem,
they would like to identify themost efficient way to utilize engineer-
ing effort. This points to the growing field of causal reasoning [13],
which has provided scientists with a common language to express
and evaluate hypotheses across diverse domains.

We aim for a general-purpose causal diagnosis system that can
address a wide range of software systems problems by helping
engineers pose and correctly answer Average Treatment Effect (ATE)
queries [13]. Intuitively, the ATE formalizes a “dose-response”model
under Pearl’s theory of causality [13] (which we adopt in this work):
for example, per “dose” of paralellism (e.g., one more worker), by
how much will query latency decrease? Crucially, calculating ATEs
correctly from observational data involves adjusting for confounders
- common causes of both variables involved in an ATE calculation
that could bias the observed effect [13]. For example, the available
memory could impact both the chosen degree of parallelization
and the query latency directly. Calculating ATEs quantifies the
trade-offs involved when several interventions could have some
impact, helping engineers pick the most efficient one.

Unfortunately, directly calculating ATEs based on the raw data
available to large systems operators is impossible. The raw data
usually take the form of collections of logs: semi-structured chrono-
logical accounts in text form. Figure 1a presents a snippet of a
real-world log from the PostgreSQL dataset that we will use in
our demonstration. Past work on log management has led to sig-
nificant infrastructure, including tools offering extensive coverage
of software and hardware components [10]. However, causal infer-
ence toolkits require a different representation of the underlying
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2023-11-06 16:34:40.810 EST [65495bf0.179a 3/2461] postgres@tpcds1
LOG: connection authenticated: method=scram-sha-256
2023-11-06 16:34:40.811 EST [65495bf0.179a 3/2462] postgres@tpcds1
LOG: statement: SET work_mem = 128;
2023-11-06 16:34:40.811 EST [65495bf0.179a 3/2462] postgres@tpcds1
LOG: duration: 0.065 ms

(a) An example log snippet from PostgreSQL.

sessionID auth_method work_mem ... mean latency

65495bf0.179a scram-sha-256 128 ... 13483.59
... ... ... ... ...

(b) Causal inference requires tabular data instead.

work_mem

seq_page_cost

random_page_cost

query
latency maintenance_work_mem

max_parallel_workers

effective_cache_size

(c) It also requires a causal graph to adjust for confounding.

Figure 1: Log data is unsuitable for causal inference.

data [17], like that of Figure 1b – a table with one row per data
point, including only few, relevant variables and without missing
data. They also require a causal model [13], something non-trivial
to recover from a log. A causal model captures domain knowledge
about the relationships among variables and is often represented
as a directed acyclic graph (DAG) [13], like that of Figure 1c: each
node represents a variable and each directed edge encodes a direct
influence of the source variable on the destination variable.

In summary, we aim to combine log management with the best
theoretical machinery causality can offer, but face three challenges:
Challenge A: Deriving the Schema. Text logs are a far cry from
the tabular dataset in Figure 1b. Log parsing algorithms can convert
log data into some tabular representation, but can yield hundreds
of variables without a human-friendly way to navigate them, like
the interpretable column names in Figure 1b.
Challenge B: Distilling the Data. Causal inference requires the
same data per causal unit - e.g., per session. Simply parsing the log
falls short of this goal. First, there will be a lot of missing values
because each log message only reports some variables. Second, logs
record information at a very fine granularity. This information must
be summarized, while preserving “causal usefulness”.
Challenge C: Obtaining the Causal Model. For every possible
pair of variables, an expert could easily decide the plausibility and
direction of the causal relationship between them. However, fully
specifying a model over all the log variables by hand is daunting
given the problem size. Another option could be to derive the model
from the data, a process called causal discovery [13]. However,
existing algorithms would fall short due to the problem size and
the functional dependencies among variables, while large language
models would be tripped up by the context-specific variables.

We propose a framework to address these challenges and trans-
form logs into high-grade causal resources to enable rapid diagnosis
of system failures. We implemented this framework in Sawmill, a
system that helps engineers managing complex systems formulate

Figure 2: Our framework, indicating the three challenges.

a data-driven hypothesis about the cause of an observed failure and
retrieve the correctly adjusted associated Average Treatment Effect
(ATE). To address Challenge A, we derive human-understandable
variable tags by leveraging Large Language Models; for Challenge
B, we distill log information around causal units and generate new
variables for every causal unit to maximize “usefulness”; while
in the face of Challenge C, we propose interfaces to recover a
relevant, partial causal model of the system from log-derived data.

SIGMOD ’24 participants will act as analysts using Sawmill to
investigate the causes of system failures starting from system logs.
This includes inspecting the raw log files, examining the gener-
ated dataset, and finding the primary causes of unexpected behav-
ior. We will walk participants through an analysis of real-world
PostgreSQL logs collected under different configurations, where
max_parallel_workers and work_mem confound each other’s im-
pact on downstream latency on TPC-DS [15] (green edge in Fig-
ure 1c). We will then give them the chance to independently use
Sawmill to analyze failures in more log datasets of varying difficulty.

2 SAWMILL ARCHITECTURE

Figure 2 summarizes our framework, which transforms logs into
a table like Figure 1b and derives a causal graph like Figure 1c,
enabling ATE calculations. It starts by Parsing logs and Tagging

each variable with a human-understandable tag. The parsed infor-
mation is then reorganized to satisfy the requirements for causal
inference, by Defining Causal Units and Computing Suitable

Variables, making Obtaining a Causal Graph and Answering

ATE Queries possible. We will now dive deeper into each step.

2.1 From the Log to the Parsed Table

2.1.1 Log Parsing. Logs are first parsed into the parsed table, with
one row per log message and one column per log-derived parsed
variable. This is performed by calling the function Parse. Users can
optionally pass into Parse regular expressions for variables like
timestamps. Sawmill then uses Drain [9], an off-the-shelf algorithm,
to identify the rest of the parsed variables. To drop uninteresting
variables like unique identifiers, we discard any categorical parsed
variable with over 0.15𝑉 distinct values across 𝑉 total occurrences,
similar to past work [19]. If Drain hasmapped semantically different
variables to the same parsed variable, the user can identify it in the
parsed table and correct it using Sawmill’s Separate function.
2.1.2 Variable Tagging. For variables parsed using a regular ex-
pression, the user provides a tag together with the regular ex-
pression. Sawmill then automatically assigns a unique human-
understandable tag to each of the remaining parsed variables. Sawmill

consults three sources in sequence to generate a tag: the tokens
2024-01-31 05:45. Page 2 of 1–4.
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preceding the variable in the corresponding log template; GPT-3.5-
Turbo [2], given an example message including the variable and
example values for the variable from other log messages; and GPT-
4 [12], given the same information. If no source produces a tag, or if
the produced tag is already assigned to a different variable, Sawmill

assigns a unique string of symbols instead.

2.2 From the Parsed Table to the Prepared Table

2.2.1 Defining Causal Units. The parsed table includes one row per
log message, but useful ATE queries for troubleshooting are usually
about larger units, like sessions or machines. This requires grouping
several log messages together as a causal unit, with each group
being “one data point” for the ATE query at hand. To define causal
units in Sawmill, a user calls SetCausalUnit on the appropriate
parsed variable - e.g. sessionID. Not every choice of causal unit is
permissible, because of the Stable Unit Treatment Value Assumption
(SUTVA) [16]: the outcome of each unit should not depend on the
treatments of other units. For example, users may be unsuitable
causal units if they share hardware: user 𝐴’s work could impact
user 𝐵’s latency. We defer to the user’s knowledge of the particular
system at hand to ensure that this condition is satisfied.
2.2.2 Computing Suitable Variables. There can be a varying num-
ber of values for each parsed variable in each causal unit. For exam-
ple, each may have a different number of query latency readings. To
make units comparable, Sawmill replaces such varying-size collec-
tions of values with the same aggregate(s) of the values per causal
unit. This transformation, triggered using Prepare, yields the pre-
pared table, with one row per causal unit and one column for each
prepared variable. Each prepared variable is derived from some
parsed variable (its base variable) by using some function (e.g. the
mean) to reconcile the values within each causal unit. A number
of prepared variables are generated for each parsed variable using
different functions. Among prepared variables sharing a base vari-
able, Sawmill then only keeps the one that maximizes empirical
entropy, to limit the prepared table size and processing cost. We
also let the user optionally impute missing values with a default
based on domain knowledge, by passing the value to Prepare.

2.3 From the Prepared Table to ATEs

2.3.1 Obtaining a Causal Graph. To obtain a causal graph, Sawmill

combines the data-driven and expert-driven approaches: it helps
users incrementally build the relevant part of the causal graph,
by making data-driven suggestions that the user evaluates using
expert knowledge. We call this approach Exploration-based Causal
Discovery. The user begins with an “outcome” variable 𝑌 (e.g mean
query latency) and builds the causal graph around it in two phases:

• Phase I - Finding a “root cause”: Sawmill helps identify
a treatment prepared variable 𝑇 , which causally affects 𝑌
and is also “actionable”. It does so by providing the func-
tion ExploreCandidateCauses(𝑈 ), which suggests likely
causes for a prepared variable𝑈 . By iteratively leveraging it,
the user can arrive at 𝑇 , concluding Phase I. To efficiently
leverage the user’s attention, Sawmill only presents a pruned
list of candidate causes, obtained using LASSO [18]. Because

each variable is linearly related to its parents and the set of
parents is often expected to be small [5], variables that get
assigned a zero coefficient can be safely ignored. The user
can inspect each candidate cause𝑈 ′, ranked by increasing
p-value, and decide whether to include𝑈 ′ → 𝑈 in the causal
graph (Accept(𝑈 ′,𝑈 )) or not (Reject(𝑈 ′,𝑈 )).

• Phase II - Finding confounders: The user continues con-
structing the causal graph to identify a sufficient set of
confounders that affect 𝐴𝑇𝐸 (𝑇,𝑌 ). We measure the user’s
progress in recovering the regions of the causal graph that
could include confounders by calculating an exploration score:
the fraction of accepted/rejected edges among edges that
touch at least one node in the current graph. Phase II ends
when the exploration score reaches 1. We provide Suggest-
NextExploration, which returns a prepared variable 𝑈𝑠

such that calling ExploreCandidateCauses(𝑈𝑠 ) will yield
asmany edges relevant to the exploration score calculation as
possible, maximizing the user’s decision-making efficiency.

2.3.2 Answering ATE Queries. Having transformed the log data
into the prepared table and having obtained the part of the causal
graph relevant for their analysis, the user is now ready to calculate
the ATE of interest by calling the function GetATE(𝑇 , 𝑌 ).

3 PROTOTYPE AND DEMONSTRATION

3.1 Prototype System

Our prototype of Sawmill uses ∼2800 lines of Python and is avail-
able online [3]. For log parsing, we used Drain [9]. For LASSO, we
used scikit-learn [14]. We used “backdoor.linear_regression” from
DoWhy [17] to implement GetATE.

3.2 Guided Demonstration

In this part of our demo, SIGMOD attendees will act as operators
at a database company. Customers are using the company’s data-
base under different configurations, with some experiencing higher
mean latency for the same workload. Attendees are interested in
correctly determining the impact of the max_parallel_workers
parameter on mean latency, by following the four steps below. They
have access to the PostgreSQL dataset, which includes logs col-
lected on PostgreSQL 14, into which we loaded TPC-DS [15] for
scale factor 1 and sequentially issued the TPC-DS queries, excluding
the long-running queries 1, 4, 11 and 74. We ran this workload for
different settings of the six key parameters from Figure 1c.
Step 1: Obtaining the Parsed Table Users inspect the log and
invoke Parse, as shown in Figure 3a. Inspecting the parsed table
reveals a parsing miss: distinct variables have been mapped to
a single parsed variable. Users call Separate on the mis-parsed
variable to instruct Sawmill to correct the parsing mistake.
Step 2: Obtaining the Prepared Table Users specify that each
session is a causal unit using SetCausalUnit(sessionID). They
then call Prepare to get the prepared table.
Step 3: Calculating the ATE Users ask Sawmill for candidate
causes of mean query latency by invoking ExploreCandidate-
Causes(duration:mean), yielding 11 candidates as shown in Fig-
ure 3b. These candidates include 6 variables related to the modified
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(a) Users can edit the arguments to Parse, among other functions.

(b) An invocation of ExploreCandidateCauses.

(c) Users can build a causal graph and monitor their ATE query.

Figure 3: Indicative snapshots of using Sawmill.

PostrgeSQL parameters, any of which could impact query latency,
so the user includes the corresponding edges in the graph through
calls to Accept, as shown in Figure 3c. Users then invoke the func-
tionGetATE(max_parallel_workers:mean, duration:mean) based
on their current graph, but receive a perplexing result of 374.47 -
more parallelismmeans a longer duration! Something is amiss.
Step 4: Adjusting for Confounding Users follow the output of
Sawmill’s SuggestNextExploration and explore candidate causes
for max_parallel_workers:mean. They find that work_mem:mean
is the top candidate - the amount of working memory confounds
the effect of parallelism on latency! Customers only enable higher
degrees of parallelism when they have also restricted the work-
ing memory of each worker. Users invoke Accept(work_mem:mean,
max_parallel_workers:mean) to add the appropriate edge to the
graph, recreating the graph of Figure 1c in Figure 3c. As shown on
the left, this takes the ATE of interest to −156.47 - more paral-

lelism yields a lower query duration, as expected.

3.3 Independent Exploration

SIGMOD attendees will use Sawmill on two more dataset families
with known causal effects, under conditions of varying difficulty.
Proprietary: This dataset is based on a real log for an HTTP-based
application from a large company. It covers a collection of users, a
fraction 𝐹 of which is on a faulty OS version, failing HTTP requests
with probability 𝑝 𝑓 . SIGMOD attendees will examine Sawmill’s
ability to accurately recover the ATE of the faulty OS version on
HTTP failure responses. A lower 𝐹 and/or a lower 𝑝 𝑓 reduce the
“evidence of faultiness”, making the causal effect harder to discern.
XYZ: This dataset logs the values of 𝑉 different synthetic variables
for each of a collection of “machines”. While the values of most
variables are randomly chosen, those of 𝑥 , 𝑦 and 𝑧 are not. We
have that ATE(𝑥 ,𝑦)=2, but this is distorted by confounding by 𝑧.
Moreover, 𝑥 and 𝑦 include added Gaussian noise with 𝜎 = 𝑅 each
time they are logged. SIGMOD attendees will examine Sawmill’s
ability to reliably detect and adjust for the confounding introduced
by 𝑧. A higher 𝑉 and/or a higher 𝑅 increase the noisiness around
the target ATE, making the causal effect harder to discern.
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