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ABSTRACT
Video is becoming a major part of contemporary data collection.

It is increasingly important to process video selection queries —

selecting videos that contain target objects. Advances in neural

networks allow us to detect the objects in an image, and thereby

offer query systems to examine the content of the video. Unfortu-

nately, neural network-based approaches have long inference times.

Processing this type of query through a standard scan would be

time-consuming and would involve applying complex detectors

to numerous irrelevant videos. It is tempting to try to improve

query times by computing an index in advance. But unfortunately,

many frames will never be beneficial for any query. Time spent

processing them, whether at index time or at query time, is simply

wasted computation.

We propose a novel index mechanism to optimize video selection

queries with commonsense knowledge. Commonsense knowledge

consists of fundamental information about the world, such as the

fact that a tennis racket is a tool designed for hitting a tennis ball.

To save computation, a lossy index can be intentionally created,

but this may result in missed target objects and suboptimal query

time performance. Our mechanism addresses this issue by con-

structing probabilistic models from commonsense knowledge to

patch the lossy index and then prioritizing predicate-related videos

at query time. This method can achieve significant performance

improvements comparable to those of a full index while keeping

the construction costs of a lossy index. We describe our prototype

system, Paine, plus experiments on two video corpora. We show

our best optimization method can process up to 97.79% fewer videos

compared to baselines. Even the model constructed without any

video content can yield a 75.39% improvement over baselines.
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Figure 1: A comparison between naïve query system and our
query system based on commonsense knowledge
1 INTRODUCTION
With the increased availability and popularity of video databases [2,

31, 36], video selection queries have emerged as a growing area of

research interest [3, 11, 26, 27, 39]. These queries are utilized for

selecting desired videos that satisfy certain predicates, especially

containing target objects. This kind of query can help video search

in consumer-facing systems (e.g., social media platforms, albums in

personal smartphones), in systems for filtering purposes (e.g., video

censoring for privacy reasons), in the training set construction

systems for machine learning pipelines (as with self-driving cars),

etc. In principle, the object information in videos is unknown and

needs to be extracted by applying an object detector.

A naïve method to process this type of query is to scan the video

corpus. For each video, feed it to the frame-level object detector,

which is typically a neural network model with a deep architecture,

and add the video that satisfies the query’s predicate to the result

set. It is a common practice to include the LIMIT clause in video

selection queries [26, 28] in the above applications due to the large

size of existing video databases (e.g., over 500 hours of videos are

uploaded to YouTube, an online media platform, every minute [40]).

The LIMIT clause does not impose any ranking of results as long as

records satisfy the query predicates. The above process is repeated

until the result set meets the LIMIT size requirement. However,

processing videos in random order leads to lots of wasted effort —

the detection model would process a significant number of videos

that do not satisfy the predicate. [R3.D2] As a consequence of the

detector’s long inference time [59] and long preprocessing time

(e.g., decoding) [29], the query execution would be very slow.

Example 1. Sansa is a tennis lover and wants to search for 10 videos
with tennis balls from a video corpus comprising 100 various videos
so as to study the trajectory of tennis serves. In this corpus, 20 videos
can satisfy her requirement. She specifies the target object’s name and
the LIMIT number, yielding the following video selection query:

SELECT * FROM videoCorpus

WHERE DetectedObject = ''Tennis Ball''

LIMIT 10

She utilizes a naïve query system that simply scans the corpus as
shown in the upper part of Figure 1. In this way, only one out of five
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videos on average will satisfy her query. Therefore, the query processor
must run the detection model against roughly half of the corpus.

System Goals — Optimizing selection queries using an index is

common in traditional database management systems [10, 23]. One

simple way to build an index for videos is to process every frame

by the object detector and record all the detectable object infor-

mation in each video. When a query arrives, the query processor

can operate based on the index rather than invoking detectors so

as to save query time. However, it is not practical to merely shift

the burden of computational cost from query time to index time. In

contrast to traditional index building based on available attribute

values, this index for videos involves processing consecutive frames

with an expensive detector. Because the vast majority of frames are

not useful for queries, processing them is just a waste of valuable

time and computation resources. Unlike previous video processing

systems that rely on a traditional index, we intend to build a system

that can achieve efficient query processing for object-based video

retrieval as well as a low index cost.

Technical Challenge — Videos are processed by object detectors

on a per-frame basis. To reduce the index cost, a straightforward

option is to process fewer frames at index time. In this way, the index

will contain objects that frequently appear in the video. However,

objects that can only be detected in a small fraction of frames are

likely to be missed, yielding a lossy index. Depending on the query,

this may lead to worse query performance compared to a full index.

Solving the problem caused by the lossy index is a challenging

task. Improving the quality of the index itself (i.e., making it more

complete) while adhering to a limited index budget seems like an

option, but current techniques are inadequate: the difference de-

tector method [27] only works when the video is very static, and

the specialized neural network model method [3, 26, 27] would

reduce the results’ accuracy and require running a bunch of binary

classifiers for each potential queried object. Another option is to

maintain a lossy index and then intelligently utilize it to quickly

identify predicate-related videos at query time. Focus [20] clusters

video frames based on approximate object information at ingest

time and selects promising clusters at query time. However, the lim-

ited information obtained at index time remains insufficient. With

the development of large language models (LLM, e.g., GPT-4 [48]),

the task of selecting predicate-related videos from an incomplete

index might appear to be simplified. However, the scalability and

result quality of such models remain a limitation when applied

to large video corpora. LLMs are superficially appealing and of-

fer some advantages, but we found better results through other

mechanisms based on commonsense knowledge.

Our Approach — [R3.D1] In this paper, we propose a novel data

indexing mechanism: at index-time, save resources by inten-
tionally creating a lossy and sparse index; then at query-time,
effectively "patch" the index by exploiting “commonsense"
to estimate what information is missing. As a result, an inex-

pensive index can be used to obtain query-time performance that

is equivalent to using a much more expensive index.

What do we mean by commonsense knowledge? It refers to the

basic understanding of the world that can be used to explain video

content. Any human being watching a video can tell that objects in

videos are not randomly arranged but are semantically correlated.

For example, it is commonly known that people play tennis by

hitting a tennis ball with a tennis racket. A human being who sees a

tennis racket in a video frame can predict that this video is likely to

contain a tennis ball sometime soon. Therefore, whether a selection

predicate is satisfied by a video can often be inferred by observing

just a few frames and applying commonsense knowledge. Previous

works [27] have exploited the frame-level correlation to avoid pro-

cessing frames that are almost identical visually, but they can only

work in limited situations. Our approach leveraging semantic-level
correlation in videos is more often applicable.

Based on this observation, we propose a method that, at in-

dex time, only a few frames of each video in the corpus are pro-

cessed by object detection models to cheaply build a lossy index.

At query time, our mechanism predicts the probability that a query

object exists in each video from the lossy index and a commonsense

knowledge-integrated probabilistic model and prioritizes videos

with high probabilities, thereby avoiding unnecessary processing

of irrelevant videos, much like traditional index methods.

[R3.O2] The core technical difficulty is how to build a com-
monsense knowledge-integrated probabilistic model that is
accurate enough to infer the missing objects and remains
compact enough to ensure computational efficiency at query
time. Commonsense knowledge can be acquired through various

sources — general commonsense from knowledge graphs and text,

and queried video-specific commonsense from video content. Con-

sidering that videos which have the same object distribution as the

queried videos may not always be accessible, we build two prob-

abilistic models, one incorporating videos and the other without

videos. When such videos are not available, we estimate the object

existence probability through Bayes’ theorem [25] and Fréchet in-

equalities [16] based on the object similarity in knowledge graphs.

When such videos are available, we model it as a regression problem

and adapt the BERT model [12] pre-trained on text to our scenario.

We further fine-tune it with video-specific commonsense. These

models can be constructed offline and do not rely on any query

information from users.

Example 2. Sansa employs our commonsense query system to
decrease the runtime of the tennis ball selection query. At index time,
one out of thirty video frames is processed to build the sparse index.
At query time, videos that contain objects related to tennis balls in the
index (e.g., rackets, players, courts, etc.) are processed first, as shown
in the bottom half of Figure 1. Due to the fact that these videos are
more likely to contain a tennis ball, only 15 videos are processed before
selecting 10 desired videos, decreasing Sansa’s wait time.

Contributions — Our main contributions are as follows:

• We propose a novel index mechanism to optimize video

selection queries based on commonsense knowledge. (Sec-

tion 2)

• We design two commonsense knowledge probabilistic mod-

els, a conditional probability formula-based model without

videos, and a neural network-based model that incorporates

videos, to predict the probability of finding target objects

in the unobserved video frames for different commonsense

knowledge sources. (Section 3)

• We implement a prototype system, Paine, that embodies

our algorithms, and evaluate it on two video datasets. Our
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optimization method can save up to 97.79% query process-

ing time compared to baselines. Even the commonsense

model without any video content can yield up to a 75.39%

improvement over baselines. (Section 4 and 5)

2 PROBLEM FORMULATION
In this section, we define the video selection query optimization

problem in Section 2.1, introduce the query optimization strategy

with commonsense knowledge in Section 2.2, discuss our design

considerations in Section 2.3, and elaborate the domain assumptions

in Section 2.4. All of the notations are listed in Table 1.

Parameter Description Example
V = {𝑉𝑖 } Video Corpus YouTube videos

𝐷 Object detector YOLO9000

O = {𝑂1, ...,𝑂𝑟 } Target objects {tennis ball}

𝑘 LIMIT number 10 videos

𝑛 # processed videos in

query processing

20 videos processed by

𝐷 at query time

L𝑖 = [𝐿𝑖,1, ..., 𝐿𝑖,𝑚𝑖
] 𝑚𝑖 objects detected

from sampled frames

in𝑉𝑖

[tennis racket, person]

I = {L𝑖 → 𝑉𝑖 } Index (observed object

list → video)

{[tennis racket, person]

→𝑉1}

𝑃 (O |L𝑖 ) Conditional probabil-

ity that describes video

contents

Probability that a tennis

ball exists in a video con-

taining [tennis racket,

person]

𝑀 Commonsense knowl-

edge model that es-

timates 𝑃 (O |L𝑖 ) to

match true probabili-

ties’ rank ordering

An extension of a BERT

model

Table 1: Frequently used notation

2.1 Optimization Problem Definition
A video selection query is characterized by a tuple of 4 parameters

(V , 𝐷 , O, 𝑘). The video corpus V usually contains a large number

of videos. We focus on a general situation — the video corpus only

includes pure videos without any textual information (e.g., titles,

scripts, etc.). The object detector 𝐷 , e.g., a neural network such

as YOLO9000 [53], is applied to this corpus to identify videos of

interest where the target objects O exist, e.g., searching for videos

with a “tennis ball”. The LIMIT clause with the number 𝑘 restricts

videos that should be returned to the user. [R1.W2]We assume users

do not have error tolerance so all the returned videos should contain

target objects O. The result set can consist of any 𝑘 satisfying videos

instead of the top 𝑘 videos that are most related to the target objects.

Values of 𝑘 can vary depending on the user. 𝑘 might be small in

consumer search applications. 𝑘 can also be large when an engineer

or a machine collects videos for a downstream training task.

In general, it takes a long time to process video selection queries

through a simple scan; the number of processed videos 𝑛 is propor-

tional to the LIMIT number 𝑘 , and the object detector 𝐷 needs to

be invoked for all the frames of the processed videos after decoding.

Both model inference and video preprocessing are computationally

expensive. If fewer videos are processed, the query processing time

can be reduced. This leads to the following optimization problem:

Query Optimization Problem: [R1.W2] Given a video selection
query (V , 𝐷 , O, 𝑘), minimize the number of videos 𝑛 that will be
processed while guaranteeing all the 𝑘 videos in the result set satisfy
the predicate for a 100% accuracy.

2.2 Optimization Strategy
For query optimization, an index I consisting of the observed ob-

ject list L𝑖 (e.g., L𝑖 = [tennis racket, person]) for each video 𝑉𝑖
can help decrease 𝑛. Due to the limited index computation budget,

only a fraction of frames can be indexed. It would make L𝑖 an

incomplete list, either due to rare objects or the detection model’s

inaccuracy. At query time, our mechanism applies a commonsense

knowledge-integrated probabilistic model 𝑀 to predict the condi-

tional probability 𝑃 (O|L𝑖 ) from the imperfect index I, indicating
the probability of the event that videos containing L𝑖 will also con-

tain target objects O. The predicted values are supposed to match

the true ranking of these probabilities. Videos with higher values

will be processed first in the hopes of quickly locating videos that

can satisfy the predicates. Our algorithmic task is how to design
such a commonsense knowledge-integrated probabilistic model𝑀 to
solve the video selection query optimization problem.

2.3 Design Consideration
In our design, we consider choosing appropriate index content. We

extract the incomplete object list L𝑖 from a few frames of each

video and store (object list L𝑖 , video 𝑉𝑖 ) pairs as the index. We do

not include information about which videos are likely to contain

target objects in the index. It is because target objects cannot be

known in advance at index time and there are too many potential

target object combinations (i.e., 2
# of distinct objects

). This design also

allows us to update the commonsense knowledge model𝑀 without

changing the index. We defer the conditional probability prediction

and video selection process to the query time.

Besides the incomplete object lists, other types of textual informa-

tion from videos may also be utilized as the index to predict objects’

existence, such as descriptions generated by video captioning mod-

els [67] or video topics identified through video classification [61].

These two options are at two extreme ends of the spectrum when it

comes to information richness and computation cost — video topics

can be obtained from small-scale classification models but only

offer general domain information, while dense video captioning

comprises rich information (e.g., actions) but obtaining it from im-

age data requires a longer time. In contrast, object extraction is in

between them and is more flexible due to the adjustable frame rate.

[R2.W3, R2.D1] In addition, the extracted objects can be directly

used for video selection queries that search for frequent objects at

query time.

Visual features (e.g., embeddings from a visual model), which

are widely used for content-based search, can also serve as the

index [1, 30, 55]. Because these features are designed for reasonably

accurate outcomes, they have larger dimensions compared to short

object lists. When such features are used for video ranking, it would

incur much extra overhead, especially for a large video corpus.

Given these considerations, we choose object lists as the index.
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2.4 Domain Assumption
Our strategy would be useful for a broad range of video selection

queries with the following assumptions:

Video Type—Our techniques are designed for conventional videos

where frames are semantically correlated. For some exotic video

types, our methods can still “work” but we would not expect much

speedup. These videos might include: (1) videos in which frames

seem to be generated randomly and there is no normal logic among

frames, for example, science fiction movie clips depicting an imag-

inary world like Avatar; (2) videos in which common objects do

not exist, for example, typography videos with just text rather than

visuals
1
; (3) videos in which frames do not change much across

time, for example, surveillance video in an elevator at night. The

difference detector method [27] is already designed to handle this

static video type. Fortunately, the above video types constitute only

a small proportion of existing videos.

Performance of the Object Detector — The results from the

underlying detection model are viewed as the ground truth — we

do not aim to improve them and we always use these results to

evaluate our system’s quality. Therefore, whether the detection

models are accurate or relatively inaccurate does not actually impact

our system. However, our system would not be helpful when a

detection model is extremely inaccurate because there may not be

a correlation between the detection results.

Target Object—We expect our techniques to accelerate most video

selection queries except in two cases: (1) target objects that are se-

mantically vague (e.g., “thing”, “mechanism”, etc.). These high-level

objects are associated with a large number of other objects. It is

not clear that these queries are very useful for users. (2) target

objects that are hard to infer from single frames (e.g., “communi-

cator”, “leader”, etc.), but are best inferred from visual clues that

appear across sequential frames. In contrast, our current work fo-

cuses on frame-level detection. We might extend our approach to

multi-frame sequences in future work.

3 ALGORITHMS
Now, we introduce our video selection query optimization algo-

rithms. In Section 3.1, we introduce the overall procedure — our

system’s three-stage architecture. In Section 3.2, we focus on the

model preparation stage and elaborate on the construction of com-

monsense knowledge models. In Section 3.3, we further improve

the model based on the ground truth collected online.

3.1 Overall Procedure
We design a three-stage architecture in our system as shown in

Figure 2. In the indexing stage, an index is built for the whole

video corpus V . For each video 𝑉𝑖 , a few frames are processed

by a detector that can detect various kinds of objects to produce

an incomplete object list L𝑖 . These object lists mapped to videos

as key-value pairs compose the index I. [R3.D2] The indexing

frame rate is adjustable according to varying index time budgets

(e.g., sampling one out of thirty frames). We evenly distribute the

sampled frames within each video so as to process a wider variety

of frames, yielding more objects in the index. When a new video

1
Video example: https://www.youtube.com/watch?v=qZEPs3vmYB4

Algorithm 1: Query processing

Input: Video corpusV , object detector 𝐷 , target objects O,

LIMIT number 𝑘 , probabilistic model𝑀 , Index I
1 for 𝑉𝑖 inV do
2 if O ⊆ L𝑖 then
3 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 .append(𝑉𝑖 );

4 V .remove(𝑉𝑖 );

5 I.remove(L𝑖 → 𝑉𝑖 );

6 end
7 end
8 if |𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 | >= 𝑘 then
9 return 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡[:𝑘]

10 end
11 P =𝑀(I, O);

12 V =V[P.argsort()[::-1]];

13 repeat
14 𝑉𝑠𝑒𝑙𝑒𝑐𝑡 =V .getNext();

15 if O ⊆ 𝐷 (𝑉𝑠𝑒𝑙𝑒𝑐𝑡 ) then
16 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 .append(𝑉𝑠𝑒𝑙𝑒𝑐𝑡 );

17 end
18 until |𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 | == 𝑘 orV .hasNext() == False;

Output: 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡

selection query arrives, the system enters the query processing
stage — the query optimizer gives precedence to videos that are

likely to contain target objects and avoids processing irrelevant

videos. Algorithm 1 describes this procedure. In lines 1-7, videos

in which target objects O are observed at index time are added to

the result set directly. In lines 8-10, if there are already 𝑘 videos in

the result set, they are returned to the user. In line 11, the existence

probability of target objects O conditioned on I is predicted by the

prepared probabilistic model𝑀 . A high-quality model will assign

high probabilities to predicate-related videos. In line 12, the video

corpus is sorted in descending order of the probabilities in P. After

that, they are processed sequentially by the object detector 𝐷 to

determine whether they contain target objects. Desired videos are

added to the result set until the set’s size has reached the LIMIT

number 𝑘 or all the videos have been explored in lines 13-18.

In the model preparation stage, as an offline step, we develop

probabilistic models𝑀 integrating commonsense knowledge for the

above procedure. This model is designed to predict the probability

that any combination of objects exists in a video conditioned on the

fact that another combination of objects is observed in this video.

Model construction details will be introduced in Section 3.2.

3.2 Commonsense Knowledge Model
In this section, we describe the construction of the commonsense

knowledge probabilistic model𝑀 in the model preparation stage.

If the observed object list L𝑖 contains target objects O, this video
is handled in lines 1-7 in Algorithm 1 before applying the prob-

abilistic model. In the subsequent parts of this section, we will

only consider the index that does not contain target objects. In

Section 3.2.1, we introduce a conditional probability formula-based

model when there are only off-the-shelf knowledge graphs and text

4
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Figure 2: The architecture of the overall procedure. In the model preparation stage, an offline stage, commonsense knowledge
models that estimate objects’ conditional existence probability are constructed from knowledge graphs, text or videos. The
video corpus goes through the indexing stage; only a fraction of frames (black frames) are processed to create the incomplete
object lists as the index. In the query processing stage, videos are ranked based on the index and the probabilistic model.

as commonsense knowledge sources. In Section 3.2.2, we propose

a neural network-based model when videos are also available to

provide commonsense knowledge.

3.2.1 Model Built Without Videos.
A wealth of commonsense knowledge is embodied in various exist-

ing sources, such as text corpora [56], knowledge graphs [44], etc,

which are easy to obtain. In this section, we utilize these text-based

sources to construct probabilistic models that incorporate basic and

general commonsense knowledge.

Knowledge graphs (e.g., WordNet [44], ConceptNet [57], Wiki-

data [63], etc.) are networks of real-world entities, where each node

represents an entity (e.g., object), and edges connecting these nodes

represent the semantic relationships between them. For example, in

ConceptNet [57], a node corresponding to “tennis racket” and an-

other node corresponding to “ball” are connected by an edge labeled

as “RelatedTo”. The closeness between two nodes in a knowledge

graph, reflecting the semantic closeness, can often indicate the like-

lihood of their coexistence in a video. For instance, based on the

above knowledge graph triplet, we may deduce that “tennis racket”

and “ball” probably exist in the same video. In recent years, there

has been significant attention to knowledge graph embedding [64],

which maps knowledge graph components into continuous vector

spaces. The node embeddings, represented as numerical vectors,

preserve the inherent structure of knowledge graphs — nodes that

are closely connected in a knowledge graph tend to be mapped to

proximal vectors in the embedding space. Based on this trend and

the above finding, we estimate the conditional existence probability

from knowledge graph embeddings.

First, we estimate the pairwise conditional probability 𝑃 (O|L𝑖 )
in which both the target object list O and observed list L𝑖 have

only one object. The closeness between two node embeddings can

be measured by cosine similarity [15], capturing objects’ semantic

similarity. On the other hand, the Jaccard coefficient for probability

measures is a useful tool for gauging the similarity of two events. In

our scenario, each event represents an object’s existence in a video.

Due to the connection between two objects’ semantic similarity and

their coexistence possibility, we take the cosine similarity between

O and L𝑖 ’s word embeddings to estimate the following ratio:

𝑃 (O ∩ L𝑖 )
𝑃 (O ∪ L𝑖 )

B max ( 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (O) · 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (L𝑖 )
∥𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (O) ∥ · ∥𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (L𝑖 ) ∥

, 𝜖 ) . (1)

To avoid probabilities from quickly diminishing to zero, we set

a small threshold 𝜖 . In this estimation, we took into account two

factors: (1) the formulas on both sides are supposed to be symmetric

with respect to O and L𝑖 ; (2) the semantic similarity should not be

used for estimating intersection probability directly, as this involves

the influence of objects’ own popularity.

The existence probability of a single object in a video can be

influenced by its level of popularity, which can be reflected in

Wikipedia pageview statistics [7]. We estimate the probability by

the relative value of the average daily pageview:

𝑃 (O) B

√︄
Avg daily pageview of O

max{Avg daily pageview of detectable objects} . (2)

Probability 𝑃 (L𝑖 ) can also be estimated in this way. According to

the set’s and probability’s characteristics, conditional probability

can be derived by plugging in the above estimations:

𝑃 (O |L𝑖 ) =
(𝑃 (L𝑖 ) + 𝑃 (O) ) 𝑃 (O∩L𝑖 )

𝑃 (O∪L𝑖 )

(1 + 𝑃 (O∩L𝑖 )
𝑃 (O∪L𝑖 ) )𝑃 (L𝑖 )

. (3)

In most cases, multiple distinct objects would be observed from

videos at index time, and there may also be multiple target ob-

jects. We predict the conditional probability 𝑃 (O|L𝑖 ) for this com-

mon situation based on the above pairwise probability estimation.

Objects in the observed list L𝑖 are denoted as 𝐿𝑖,1, 𝐿𝑖,2, ..., 𝐿𝑖,𝑚𝑖
,

and target objects in O are denoted as 𝑂1,𝑂2, ...,𝑂𝑟 . Similar to

the “naïve" conditional independence assumptions in naïve Bayes

classifiers [54], we adopt the following assumption: the existence

of 𝐿𝑖,1, 𝐿𝑖,2, ..., 𝐿𝑖,𝑚𝑖
is mutually independent, conditioned on the

existence of O. According to Bayes’ theorem [25],

𝑃 (O |L𝑖 ) =
𝑃 (O)𝑃 (L𝑖 | O)

𝑃 (L𝑖 )
=

𝑃 (O)∏𝑚𝑖
𝑗=1

𝑃 (𝐿𝑖,𝑗 | O)
𝑃 (L𝑖 )

. (4)

In this formula, 𝑃 (𝐿𝑖, 𝑗 |O) is calculated by Equation (3) if 𝑟 = 1 or

calculated by Equation (4) if 𝑟 > 1.

Our next step involves estimating 𝑃 (L𝑖 ) and 𝑃 (O) in Equation

(4). According to Fréchet inequalities [16]:

max(
𝑚𝑖∑︁
𝑗=1

𝑃 (𝐿𝑖,𝑗 ) − (𝑚𝑖 − 1), 0) ≤ 𝑃 (L𝑖 ) ≤ min

𝑗
𝑃 (𝐿𝑖,𝑗 ) . (5)

Since we can compute the probability of two objects existing in

the same video by plugging in Equation (1) and (2), i.e., ∀𝑗, 𝑘 ∈
[1,𝑚𝑖 ], 𝑗, 𝑘 ∈ N,

𝑃 (𝐿𝑖,𝑗 ∩ 𝐿𝑖,𝑘 ) =
(𝑃 (𝐿𝑖,𝑗 ) + 𝑃 (𝐿𝑖,𝑘 ) )

𝑃 (𝐿𝑖,𝑗∩𝐿𝑖,𝑘 )
𝑃 (𝐿𝑖,𝑗∪𝐿𝑖,𝑘 )

1 + 𝑃 (𝐿𝑖,𝑗∩𝐿𝑖,𝑘 )
𝑃 (𝐿𝑖,𝑗∪𝐿𝑖,𝑘 )

, (6)
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a tighter lower bound and upper bound of 𝑃 (L𝑖 ) can be derived by

pairing objects in L𝑖 :

𝑃𝐿𝐵 (L𝑖 ) = max( 1

𝑚𝑖 − 1

∑︁
1≤ 𝑗<𝑘≤𝑚𝑖

𝑃 (𝐿𝑖,𝑗 ∩ 𝐿𝑖,𝑘 ) − (𝑚𝑖

2

− 1), 0), (7)

𝑃𝑈𝐵 (L𝑖 ) = min

1≤ 𝑗<𝑘≤𝑚𝑖

𝑃 (𝐿𝑖,𝑗 ∩ 𝐿𝑖,𝑘 ) . (8)

Note that there are𝑚𝑖 − 1 unique combinations of non-repeating

pairs, meaning that each pair occurs only once among the com-

binations (if𝑚𝑖 is not an even number, we add the universal set

to the intersection L𝑖 ). By summing the inequality (5) for all the

combinations, we can obtain Equation (7). 𝑃 (L𝑖 ) is estimated by

the mean value of 𝑃𝐿𝐵 (L𝑖 ) and 𝑃𝑈𝐵 (L𝑖 ) in our model, and 𝑃 (O)
will be derived similarly. As a result, 𝑃 (O|L𝑖 ) in Equation (4) can

be computed.

3.2.2 Model Built With Videos.
Although text-based commonsense knowledge sources are easy

to acquire, they are constructed from crowd-sourced knowledge

or online text collections, resulting in a generic knowledge base

that may not accurately reflect the object associations depicted in

queried videos. Previous studies show that commonsense knowl-

edge can also be obtained from videos [60]. The distribution of

objects portrayed in videos can provide video- and domain-specific

knowledge, that is likely more valuable for our system. For example,

"sun" and "tennis racket" are only loosely linked in conventional

commonsense, but may be highly correlated in videos since most

tennis matches occur outdoors on sunny days. It needs to be noted

that the object distribution in the videos as the source of common-

sense knowledge should be close to that in the queried video corpus.

For instance, if this data is only gathered from traffic surveillance

videos, it would not be very helpful for various videos on YouTube.

Since these videos are not always accessible, themodel built without

videos in Section 3.2.1 is designated as the default model.

In this section, we aim to estimate the probability 𝑃 (O|L𝑖 ) when
videos are also available as the source of commonsense knowledge.

To accomplish this, we collect a series of object lists, each containing

objects observed in the same video. Potential ways to obtain these

object statistics include accessing the ground-truth labels of an

external similar video corpus or retrieving video selection query

results from historical videos (a query’s non-empty result indicates

that the objects specified in the selection predicate indeed exist in

the same video).

It is easy to think of estimating the conditional probability us-

ing the conditional relative frequency of objects in videos, i.e.,

# of videos containing O
# of videos containing O and L𝑖

for any possible O and L𝑖 , but this

method has limitations. There could be several object combinations

that either do not exist or occur infrequently. Such combinations

can lead to inaccurate probability estimations. Moreover, there are

too many object combinations, requiring a significant amount of

storage space. Another way to estimate probability is by first es-

timating the pairwise coexistence probability and then applying

the derived probability formula as in Section 3.2.1. However, this

formula only integrates pairwise relationships and does not fully

explore the potential of videos. In contrast, the algorithm below

shows better performance.

Videos offer a unique opportunity to learn a commonsense

knowledge model rather than explicitly derive theoretical formulas.

Regression Layer

[CLS] …

Logit

Index and target objects as input

Embeddings

Transformer 
blocks

tennis rack person [SEP] ball …

E[CLS] Etennis Erack Eperson E[SEP] Eball
… …

h[CLS] htennis hrack hperson h[SEP] hball
… …

Conditional probability

“tennis racket person …”

Tokens ##et

E##et

h##et

“ball …”

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm…

…

Pretrained BERT …

…

Figure 3: [R2.W2] Structure of the model built with videos.
The input is a sequence of the indexed objects and target
objects; the output is conditional probability prediction.

With the development of deep learning, neural network models

have emerged as effective tools for learning extremely large and

complex probability distributions [37]. In line with this trend, we

develop a neural network model that takes the target objects and

observed object lists in the index as inputs and is trained on object

statistics to determine whether the target objects exist in the video.

Our neural network model is constructed based on the state-of-

the-art language model BERT (Bidirectional Encoder Representa-

tions from Transformers) [12], specifically the uncased BERT base

model. This model consists of 12 Transformer blocks and 110M

parameters and has been pre-trained with two tasks (masked lan-

guage modeling and next sentence prediction) on BookCorpus [71]

and EnglishWikipedia. There are three notable benefits to adopting

this model. First, the length of observed object lists in the index

may vary, but this model is capable of accepting input sequences of

different lengths. Second, BERT’s pre-training on large text corpora

means that it contains generic commonsense knowledge from text,

which would be helpful for our task through transfer learning [62].

Third, as a Transformer-based model, BERT can process the entire

sequence in parallel, making it faster than other models that process

the sequence sequentially, such as LSTM [19].

[R2.W2] We start with the case when there is only one target ob-

ject in a query’s predicate. Figure 3 shows the structure of our neural

network model. To construct the input, we organize the observed

object list in the index and the target object as two sentences for

each video. We concatenate the observed objects, 𝐿𝑖,1, 𝐿𝑖,2, ..., 𝐿𝑖,𝑚𝑖

to form a sentence. For example, if the observed object list is [ten-

nis racket, person], the sentence would be “tennis racket person”.

These observed objects are arranged in the order of their occur-

rence, which means 𝐿𝑖,𝑢 occurs before 𝐿𝑖,𝑣 or in the same frame

as 𝐿𝑖,𝑣 in video 𝑉𝑖 if 𝑢 < 𝑣 . We believe this time sequence can

provide useful semantic information. For instance, [cookie, flour,

butter, chocolate] in sequence could indicate a video on how to

make chocolate cookies, while [flour, chocolate, cookie, butter] in

sequence could indicate a video about grocery store products. The

observed object list is deduplicated, and we do not include the oc-

currence frequency of each object or additional separation tokens

between every two objects in the sentence, as including these does

not result in significant performance improvement. This reduces

the sequence length and saves computational costs.

[R2.W2] These two sentences are transformed into tokens through

the BERT tokenizer, and special tokens ([CLS] and [SEP]) are added
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to the beginning of them. For instance, two sentences “tennis racket

person” and “ball” are tokenized as [[CLS], tennis, rack, ##et, person,

[SEP], ball]. These tokens are then inputted into the pre-trained

BERT model. Since our goal is to accurately rank videos by pre-

dicting a higher probability for the videos where the target object

exists, we model it as a regression problem. The regression layer

is connected to the pre-trained model, with the output vector rep-

resenting [CLS] being fed into this layer. This layer comprises a

dropout layer and a fully connected layer, which is fine-tuned for

our task. We use MSE (mean squared error) as the loss function.

[R2.W2] During the model preparation stage, the target object

is not pre-defined, and the goal of the commonsense knowledge

model is to work for any possible target object. To achieve this,

we construct the training data in the following manner: for each

video object list in the collected object statistics, we select each

item in this list as the target object O in turn and consider the

remaining items as the observed objects, creating the training data

with ground truth 1. Additionally, we randomly sample an object

not included in the object list as the target object and use the entire

object list as the observed objects, creating the training data with

ground truth 0.

Besides random sampling, we also attempted to use knowledge

graphs to identify related objects that do not exist in the videos and

make them as the target objects to construct challenging examples

for the model to learn. However, the model’s performance suffered

as a result. We speculate that this may be due to the fact that

objects exist with a certain probability, and the way in which we

constructed the data emphasized their non-existence, causing the

model to learn in the opposite manner. More parameter settings

and training details will be discussed in Section 5.1.

[R2.W2] During the query processing stage, when the model is

applied to predict the conditional probability, we take into account

the probability range by constraining the outputs to be between 0

and 1. If the output falls outside this range, we set the probability

to either 0 or 1, depending on whether the output is less than 0 or

greater than 1, respectively.

[R2.W2] Now we consider the case when there are multiple

target objects in a query’s predicate. Since the BERT model can

accept sequences of varying lengths, it is straightforward to add

multiple target objects to the end of the input. We can concatenate

the target objects to construct the second sentence and then reuse

the model that was trained on a single target object. Because the

model was only trained on single target object cases, there are two

other competitive options. Option 1 is to derive the conditional

probability of multiple target objects from single target objects (e.g.,

𝑃 (𝑂1,𝑂2 |L𝑖 ) = 𝑃 (𝑂1 |𝑂2,L𝑖 ) ·𝑃 (𝑂2 |L𝑖 )). However, this option did

not bring performance improvement in experiments and required

longer inference time due to the computation of multiple probabili-

ties (equal to the number of target objects). Option 2 is to train new

models by generating training data with multiple target objects, but

this approach is not scalable because the model needs to be trained

for all potential numbers of target objects. Therefore, we choose

the first algorithm rather than these two alternatives because it is

the most practical and efficient solution.

[R1.W1, R1.D2] It needs to be noted that the input sentences that

we construct are word concatenation but not real natural language.

Even though BERT is pre-trained on natural language processing

tasks, it cannot perform well on our task before being fine-tuned by

videos, as demonstrated by experiments in Section 5.2.1. Therefore,

we do not use pre-trained BERT for the case when videos are not

available for providing commonsense knowledge in Section 3.2.1.

It also needs to be noted that our model strategies are not exclu-

sively developed for BERT. Therefore, even with the advent of more

advanced language models in the future, our techniques remain

suitable for integration into these newer models.

3.3 Online Learning
Based on the commonsense knowledge during the model prepara-

tion stage, we can generate primary models by applying the above

algorithms. Subsequently, we can gather additional object statis-

tics from videos during one or more rounds of query processing,

which enables us to enhance the model built with videos. This

information is especially beneficial because (1) compared with pre-

viously collected commonsense knowledge, the object distribution

in these videos is more up-to-date and closely resembles that of

videos specified by future queries; (2) since each frame of a video

needs to be processed for identifying satisfying videos (line 12 in

Algorithm 1), this object information may be more comprehensive

and precise. To facilitate this approach, we have devised an online

learning strategy whereby the BERT regression model is further

updated by incorporating visual information extracted from the

query processing stage.

4 SYSTEM PROTOTYPE
Our prototype system, Paine, implemented in Python, embodies

our two optimization methods based on different commonsense

knowledge sources for video selection queries. The system was de-

ployed on Amazon EC2 g3.4xlarge instance with 16 vCPUs, 122GB

memory, 1 NVIDIA Tesla M60 GPU, and 8GB GPU memory.

A major component of the system is the detection model. It is

utilized to extract object information from videos for commonsense

knowledge collection from videos, index construction, and predicate

processing. We used the pre-trained YOLO9000 [53] model based on

the neural network framework Darknet [52], implemented in C and

CUDA. Just like the per-item processing in traditional DBMSs, this

detection model was invoked for each frame, and batch processing

was not enabled.

In themodel preparation stage, we implemented the BERT regres-

sion model with Hugging Face Transformers [65] and PyTorch [49].

We loaded the pre-trained bert-base-uncased model from Hugging

Face for sequence regression and fine-tuned it on the collected ob-

ject statistics. After training, we stored the best checkpoint, which

included the model architecture and weights, on disk along with

knowledge graph embeddings for the model built without videos.

The whole video corpus for querying was processed by the de-

tection component at a certain frame rate, and the detected objects

were stored on disk as the index, mapping to each video. When

a query arrived, the stored index and the commonsense knowl-

edge (in the form of knowledge graph embeddings or the BERT

regression model) were sent to the query optimizer, which would

apply the model and prioritize videos with high predicted existence

probabilities of the target object set.
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5 EXPERIMENTS
We evaluated two core claims about Paine:

(1) The performance of Paine is better than state-of-the-art

baselines — Paine can process fewer video clips during

query processing time, yielding faster execution. Our model

built with videos achieves the best performance. (Section 5.2).

(2) The performance of Paine varies with different experi-

mental scenarios — different index time budgets, varying

amounts of object statistics for model construction, the use

of the online learning strategy, and different LIMIT values.

Paine is effective in a wide range of scenarios (Section 5.3).

5.1 Experimental Setting
Here, we describe our workloads, baselines, and evaluation metric.

Workloads — We evaluated our Paine on multiple workloads.

Each workload consists of the target object(s) in the predicate and a

commonsense knowledge probabilistic model, plus a video corpus.

Video corpus — We tested two datasets that consist of diverse

videos: YouTube-8M [2] andHowTo100M [43]. These YouTube-style

videos comprise important workloads for applications introduced in

Section 1. We cut videos into 60-second clips and selected clips that

contain at least five distinct objects in 60 uniformly sampled frames.

When using our system, this segmentation process applies univer-

sally to long videos. This step yields 19611 video clips from the

YouTube-8M dataset and 31971 video clips from the HowTo100M

dataset (note that original videos are not too long so that there

would not be too many clips from the same video). In each dataset,

80% of video clips were used for the model preparation stage, and

20% of video clips were used in the index and query processing

stages. Within the videos used for query processing, we used the

ground truth of half of them for online learning and used the other

half as the test data. When we split the dataset, we put clips from

the same original video in the same category.

Object detection model and target object — YOLO9000 [53] was ap-

plied for building indexes at the rate of one frame per second. It was

also used for obtaining the ground truth and collecting common-

sense knowledge. In our experiments, we selected target objects

that were in the training data and ConceptNet Numberbatch and

existed in at least 10 queried videos. We also removed those with

vague meanings, which are hyponyms of the synset “object.n.01”

with path lengths of at most 3 from “object.n.01” in WordNet. Over-

all, there are 445 objects and 430 objects used as target objects in

YouTube-8M and HowTo100M.

Commonsense knowledge probabilistic model — For the model

built without videos, we used the 19.08 English-only version of

ConceptNet Numberbatch [57], containing knowledge graph em-

beddings. We also used the daily pageview statistics of Wikipedia

in 2022 to estimate individual probabilities. The small threshold 𝜖 in

Section 3.2.1 is set to 0.01. [R2.W2, R3.D4] For the model built with

videos, we constructed the training dataset with binary ground

truth labels (1 for existence and 0 for non-existence) as explained

in Section 3.2.2. To balance the distribution of positive and negative

data, we randomly sampled the same number of objects that do not

exist in the videos as the number of objects that exist in the videos

for each video object list. This approach ensures that the quantity of

negative video-target object pairs matches that of positive pairs. In

the training process, the batch size is 128, the number of epochs is 4,

the optimizer is Adam algorithm with weight decay [32], the initial

learning rate is 2 × 10
−5

, the learning rate warmup ratio is 0.1, and

the model is evaluated every 500 steps. During the online learning,

we split the ground truth as 4 : 1 for training and validation, and we

set the batch size as 64. The epoch number is 2 on the YouTube-8M

and 4 on the HowTo100M dataset.

Baselines —We evaluated Paine against best-known baselines:

Scan with lossy index — Scan the video corpus with the same

inexpensive index that is built in our system. Videos with target

objects in the index are processed first. The remaining videos are

scanned in sequence which is adopted by most modern database

management systems, such as SparkSQL [4].

Difference Detector —This method is fromNoScope [27]. At index

time, we processed frames with large mean squared errors to obtain

the index. The query processing procedure is the same as Scan.

Adapted FOCUS — Because we focus on a substantial number of

distinct objects and videos from diverse streams, we adapt Focus to

our scenario while retaining its core idea of clustering. Videos are

clustered based on the observed object lists at index time. At query

time, the system prioritizes the clusters containing target objects.

When learning the commonsense knowledge from videos, tradi-

tional machine learning methods like association rule mining [34]

and Bayesian network [58] can also be employed. However, they are

less effective than our neural network model in our tests. [R2.W3,

R2.D1] We also tried the specialized neural network method from

BlazeIt [26] at index time in order to process more frames within

the budget, but the shallow model would yield poor results.

Evaluation metric — With the same index time budget for all

the compared methods, we computed the number of videos pro-

cessed by the detection model divided by the optimal number as

the evaluation metric. Here optimal means the result set’s size —

only the satisfying videos would be accessed by a perfect method.

This metric is directly affected by different optimization methods

and approximately reflects the slowdown ratio compared to the

perfect situation. This holds true because the extra overhead of our

optimization method is negligible, as explained in Section 5.2.

5.2 Overall Performance
This section shows the overall comparison results between Paine

and the baselines on single-target-object and multiple-target-object

workloads, as detailed in Section 5.2.1 and 5.2.2.

5.2.1 Single Target Object.
Summary — Paine can beat all the baselines when there is one

single target object in each query. When comparing the model built

with videos to baselines, we observed a significant improvement of

up to 97.79% over Scan with lossy index while ensuring the same

index cost (around 3% of the video collection). Even without videos,

our model can still achieve up to a 75.39% improvement.

Overview — To test the performance on target objects of differ-

ent frequency levels, we divided them into three groups: a low-

frequency group when 10 - 50 queried videos contained the target

object in the ground truth, a medium-frequency group when 50 -

100 queried videos contained it, and a high-frequency group when

at least 100 queried videos contained it. We tested a moderate and

8



0
50

100
150
200
250
300
350
400

# 
of

 p
ro

ce
ss

ed
 v

id
eo

s 
 d

iv
id

ed
 b

y 
op

tim
al

Low frequency

PAINE w/ video
PAINE w/o video

Adapted FOCUS
Difference Detector (thresh=1)

Difference Detector (thresh=10)
Scan w/ lossy index

0
10
20
30
40
50
60
70 Medium frequency

0
5

10
15
20
25
30 High frequency

(a) YouTube-8M

0
100
200
300
400
500
600
700

# 
of

 p
ro

ce
ss

ed
 v

id
eo

s 
 d

iv
id

ed
 b

y 
op

tim
al

Low frequency

0
20
40
60
80

100
120
140 Medium frequency

0
5

10
15
20
25
30
35
40 High frequency

(b) HowTo100M
Figure 4: Comparison of our system, Paine, with baselines
Adapted FOCUS, Difference Detector (the difference thresh-
old is set to 1 and 10), and Scan with lossy index.

0
100
200
300
400
500
600

Qu
er

y 
pr

oc
es

sin
g 

tim
e 

 (m
in

)

Low frequency

PAINE w/ video
PAINE w/o video

Adapted FOCUS
Difference Detector (thresh=1)

Difference Detector (thresh=10)
Scan w/ lossy index

0
20
40
60
80

100
120
140 Medium frequency

0

20

40

60

80

100 High frequency

Figure 5: [R3.D11] Compare the average query processing
time of Paine and baselines on YouTube-8M dataset.

representative LIMIT number, 20% of the total number of satisfying

video clips for each query. [R3.D8] We removed target objects that

have satisfying videos of the required size observed at index time,

resulting in 125 target objects for YouTube-8M and 89 target objects

for HowTo100M. For a fair comparison, all the baselines have the

same index budget as ours. For the Difference Detector method, we

set the difference threshold to 1 and 10.

To infer unseen objects from the lossy index, leveraging large

language models seems like a promising approach. Because the

quality of LLM depends on the prompt, if we just wrote the prompt

ourselves, the results might primarily reflect the prompt rather than

LLMs in general. [R3.D7] Therefore, we collected various prompts

from 10 students (these prompts are shown with the source code on

Github), spanning three solution types: direct object list ranking,

video index number ranking, and video scoring. We evaluated GPT

from OpenAI [6] with the highest maximum token capacity, gpt-

3.5-turbo-16k, which allows up to 16,384 tokens. For the first two

solution types, we truncated each object list in the index; for the

third solution type, we partitioned the entire video corpus into

multiple queries to ensure compatibility with the token limit.

Results — We show the performance of our system Paine with

two models, Adapted Focus (baseline), Difference Detector with

two difference thresholds (baseline), and Scan with lossy index

(baseline) for target objects with different levels of frequency in

Figure 4. [R3.D12] For each optimization method in the figure, the

box spans from the first quartile to the third quartile values of the

results, with a line marking the median and a triangle marking the

mean value, and the whiskers extend from 10% to 90% of the data.
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Figure 7: [R1.W1, R1.D2, R3.D5]Comparison of our common-
sense knowledgemodels against the pre-trained BERTmodel
and a large language model (GPT-3.5) using the optimal two
prompts from a selection of ten.

From left to right, the evaluation results of baselines decrease,

indicating easier queries with the increase of the target object’s

frequency. Same as the baselines, our system also delivers better per-

formance when the frequency becomes higher. In each frequency

group, Difference Detector methods (green boxes) show compara-

ble performance to Scan with lossy index (blue box) because they

do not bring many changes to index building — only around 0.7%

of frames and 1.5% of frames can be skipped in our index when the

difference threshold is 1 and 10 respectively. It indicates that there

are always obvious motions in these video clips and the one-second

interval is long enough to capture visual differences. Adapted Fo-

cus (dark cyan box) is better than other baselines as it can capture

similarities between video clips. Our system (yellow and orange

boxes), especially the model built with videos (yellow box), signifi-

cantly outperforms all the baselines. This is particularly evident in

the low- and medium-frequency groups, where Paine exhibits up

to a 97.79% improvement and shows a lower variance. Drawing a

comparison to Adapted Focus, it can be inferred that incorporating

external commonsense knowledge does bring notable benefits.

When comparing our two models, as expected, the model built

with videos achieves better results, yielding 83.48% - 97.79% im-

provement over baselines. Even though the other model only inte-

grates general commonsense knowledge and does not include any

video information, it still shows a strong performance — 33.82%

- 75.39% improvement over baselines. In addition, when the fre-

quency of target objects gets higher, the difference between these
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two models becomes less significant. This is reasonable because

the relations between frequently-occurring objects and other ob-

jects are more well-known and easier to be captured by knowledge

graphs or online text, making the video information less important.

The number of processed videos is a good proxy for query per-

formance because the detection model’s runtime dominates the

total time. Our commonsense knowledge models bring extra over-

head, but this overhead is minor. For example, it takes our BERT

regression model around 5.3 seconds to predict probabilities for

the YouTube-8M dataset. Considering the video clip length, frame

rate, and the inference time of the detector, the total detection

time significantly outweighs this extra overhead. Figure 5 shows

the average query processing time of Paine against baselines on

YouTube-8M dataset. The results are aligned with Figure 4a.

[R1.W2, R2.W3, R2.D1] Paine can process fewer videos because

it can successfully assign high ranks to satisfying videos, that is,

increasing the hit rate among the top videos. To validate this claim,

we compared the average precision between Paine and baselines in

three frequency groups on the YouTube-8M dataset in Figure 6. In

each subfigure, we varied the number of processed videos from 1

to the number at which our model with videos can reach the LIMIT

value. Our results show that the precision of Paine, especially the

model with videos, is consistently higher than that of the baselines.

As expected, precision tends to decrease as the number of processed

videos increases and the frequency of the target objects becomes

lower. This observation emphasizes the challenge of identifying

satisfying videos in such cases.

[R3.D5] Within our query optimization framework, we also ex-

plored other options of the commonsense knowledge model design

for the model preparation stage for an in-depth investigation of

the component design. We compared our commonsense knowledge

models with the LLM (GPT-3.5) and the pre-trained BERT model, as

depicted in Figure 7. For the LLM results, we evaluated ten diverse

prompts and showed the best two in this figure. [R3.D7] In the solu-

tion type of direct object list ranking, we find that it can return a few

“obvious” answers, i.e., videos containing objects that are closely

associated with target objects, but then stops generating object lists

or repeats the previous ones or groups of object lists. In the solution

type of video index number ranking, LLM will just output nonsen-

sical number sequences eventually. These results may be attributed

to two factors: firstly, the truncated index results in information

loss; additionally, as the response tends to rely on nearby text, LLM

outputs meaningless text at the end of the response. Furthermore,

in the solution type of video scoring, although there is no infor-

mation loss in the input and no concern about output repetition,

LLM struggles to provide accurate scoring. Overall, none of these

prompts can lead to satisfactory performance from LLM. [R1.W1,

R1.D2] We also tried applying the pre-trained BERT model directly

to compute the existence probability and sort videos. We can see

that its performance is even worse than the baseline scan with lossy

index. It demonstrates that when building a model without videos,

our method is more effective than pre-trained BERT, and when

building a model with videos, the fine-tuning process is beneficial.

5.2.2 Multiple Target Objects.
Summary — Paine works well for video selection workloads with

multiple target objects. In two-target-object scenarios, Paine can
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Figure 8: Compare Paine with baselines when there are two
target objects in each query.
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Figure 9: Compare Paine with baselines when there are three
target objects in each query.

achieve a 92.23% improvement compared with baselines; in three-

target-object scenarios, it can yield a 91.43% improvement.

Overview — We generated new queries that contain two or three

distinct target objects. The object combination in two-target-object

queries should satisfy the following requirements: (1) at least 10

arriving video clips contained it; (2) both objects in the combination

existed in the ConceptNet NumberBatch; (3) both objects were not

within a distance of length 3 with the entity ‘object.n.01’ in the

WordNet in order to remove vague words. When creating three-

target-object queries, due to the substantial amount of potential

combinations, we only tested those combinations that exist in 10-15

arriving videos. [R3.D10] Overall, we constructed 8051 and 10004

queries containing two target objects (e.g., “sofa” and “gas oven”)

and 13298 and 17541 queries containing three target objects (e.g.,

“bottle”, “bowl”, and “pizza”) for each dataset respectively.

Results — Figure 8 and Figure 9 show the comparison results for

two-target-object and three-target-object workloads. In Figure 8,

our system, especially Paine with videos, achieves the best re-

sult. Even though our BERT regression model was only trained

with single-target-object examples, its advantage over baselines

is still significant in the multiple-target-object workload, yielding

up to a 92.23% improvement on YouTube-8M data and a 91.37%

improvement on HowTo100M data. The model built without videos

exhibits great performance in the low-frequency group. However,

in the medium- and high-frequency groups, this model falls short

of exceeding one of the baselines, Adapted Focus. Selecting videos

containing frequent objects is a relatively easy task for baselines.

In order to beat baselines, the object relations need to be well mod-

eled, but general commonsense knowledge from knowledge graphs
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Figure 10: The performance of optimization methods when
varying the index size.
and text may not be enough to achieve this goal. Our model built

without videos does not aim to be helpful in this case.

Even though processing the three-target-object workload is a

harder task, Paine outperforms baselines for infrequent target ob-

ject combinations as shown in Figure 9. Due to the space limit, we

do not show more results of queries with more than three target

objects. However, according to the trend, we expect Paine can work

well for multiple target objects.

5.3 Various Settings
In this section, we vary the experimental scenarios to test how our

algorithms perform in a wide range of settings, including different

index time budgets in Section 5.3.1, different amounts of object

statistics for model training in Section 5.3.2, the effect of the online

learning strategy in Section 5.3.3, and different LIMIT numbers

in Section 5.3.4. We tested single-target-object queries in the low-

frequency group set the LIMIT fraction to 20%.

[R3.D1] In a hard scenario, the target objects are quite rare and

cannot be captured by the index. To test how our methods perform

in this scenario, we ran experiments in a hard mode in this section,

that is to say, for each query, the target object was deleted from

the index. We did not test this mode in the overall comparison in

Section 5.2 because all three baselines rely directly on the index

and they would reduce to a simple scan method in the hard mode.

5.3.1 Index Budget.
Summary — In general, our optimization algorithms become more

useful with the increase of the index size. They have a significant

advantage over Scan even with a tiny index size.

Overview — In our default setting, frames are processed to build

the index at the rate of one frame per second. As the index time

budgets vary, it may be necessary to reduce the rate accordingly.

We experimented with different average frame rates for the index,

ranging from 0.02 to 1 frame per second.

Results — Figure 10 shows the performance of Paine and Scan

under different index settings. We find that when the average index

frame rate increases, our system’s performance becomes better. It

is reasonable because object information from more frames usually

can promote a better understanding of the video content. We can

also see that our system can achieve substantial improvement com-

pared with Scan even with an extreme index budget limit: up to a

74.52% improvement on YouTube-8M and up to a 36.41% improve-

ment on HowTo100Mwhen only 0.05 frames are indexed per second

on average. We notice that the model built with videos improves at

a faster rate as the index size increases compared to the model built

without videos, indicating that the commonsense knowledge from

videos equips the former model with better capabilities to leverage

complex relationships among multiple objects.
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Figure 11: The performance of optimization methods trained
with different amounts of videos

5.3.2 Size of Videos for Commonsense Knowledge Collection.
Summary — The performance of the model built with videos be-

comes better when the size of videos used for commonsense knowl-

edge collection increases for model training.

Overview — In practice, in the model preparation stage, it might

not be feasible to collect a large amount of videos that have the

same object distributions as new-coming videos. To test this sit-

uation, we varied the size: using 1%, 5%, 10%, 50%, and 100% of

the assigned videos to train the model. For a fair comparison, we

adjusted the training epochs for each model to ensure the same

amount of training steps. The online learning strategy was not

applied in this experiment.

Results — Figure 11 shows the comparison of different probabilis-

tic models trained with varying sizes of videos that are used for

commonsense collection. When the size is larger, it can yield more

accurate and comprehensive commonsense knowledge so that our

optimization method can process fewer video clips. When the size is

very small (e.g., 1%), the BERT regression model is not fully trained

but it still substantially outperforms the scan method.

5.3.3 Online Learning.
Summary — Our model built with videos can be further improved

by the online learning strategy. In general, the performance gets

better with the increase in video size during online learning.

Overview — In order to test whether the online learning strategy

is effective, we varied the fraction of data used for online learning

from 0% to 100%. To make the comparison fair, we adjusted training

epochs for the experiments with different data fractions to achieve

the same training steps.

Results — Compared with no online learning, the model after full

online learning can process up to 19.98% fewer videos on YouTube-

8M and up to 7.81% fewer videos onHowTo100M.When the fraction

increases from 10% to 100%, the overall performance is gradually

enhanced. However, when the online learning fraction is too small,

the performance could even become worse. A possible reason could

be that the model has overfitted to the limited examples, resulting

in unsatisfactory results on new data. It would be better to use this

strategy after enough video information is gathered.

5.3.4 LIMIT Values.
Summary — Our optimization algorithms are effective across a

wide range of LIMIT values, even when faced with the demanding

task of retrieving all satisfying videos.

Overview — In the conducted experiments, we selected a mod-

erate and representative LIMIT value, 20% of the videos that can

satisfy the query’s predicate. To assess the robustness of our models

across varying LIMIT settings, we systematically tested the LIMIT

fractions ranging from 10% to 100%, with intervals of 10%.
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Figure 12: [R1.W2] The performance of optimization meth-
ods when varying the LIMIT value.
Results — [R1.W2] Figure 12 shows the comparative performance

of different optimization methods on two datasets across a range of

LIMIT fractions. The x-axis represents the LIMIT fraction, which is

the fraction of LIMIT value relative to the total count of videos that

can satisfy the predicate. Both of our models (yellow and orange

lines) show significant performance across a wide range of LIMIT

settings, outperforming the scan method. As the LIMIT fraction ap-

proaches 100%, the task becomes more challenging, but our models

continue to be substantially faster than scan.

5.4 Discussion
In this work, we focus on video selection queries with a built-in

object detector. Our optimization methods are orthogonal with the

detection model, so as an extension, users can also provide their

own detection model in the predicate. If the user-defined detector

can detect new object categories, useful object statistics would

not be collected in the model preparation stage. Fortunately, our

general-purpose model built without videos may still perform well.

[R3.D9] Besides the benefit of accelerating query processing,

our optimization method can also return more relevant videos to

users. For example, when videos are processed by a simple scan, a

video containing only a single frame of the target object might be

returned, but it is unlikely to happen in our method. If relevance

ranking is considered, we believe our method can still beat base-

lines. In addition, it is unlikely for Paine to return rare videos, for

example, returning videos containing a tennis racket in a depart-

ment store rather than on a tennis court when the target object

is “tennis racket". However, users can specify the atypical target

object combination (e.g., “tennis racket" and “department store") in

their query if they are interested in rare situations. Even though

target objects are not closely related in such cases, results from the

low-frequency group in Section 5.2.2 demonstrate that Paine can

effectively retrieve rare videos.

It is worth noting that the query processing procedure can be

further improved during the invocation of the object detector, for

example, batch processing in voodoo indexing [18], specialized NNs,

the difference detector, etc. These techniques can be combined

with our system or baselines. To ensure a fair comparison and

focus on the video ranking mechanism before the detection model

invocation, we did not include these techniques in our experiments.

6 RELATEDWORK
Some previous related literature is outlined below:

Video Analytics—Due to the complexity of video analysis models

and the growing size of video data, optimizing video queries to

improve efficiency is an important research direction. There are two

optimization categories. One category optimizes queries with error

tolerance, i.e., some returned videos may actually not satisfy the

predicates. These works apply binary classification models that are

shallower than the object detection models in predicates [3, 26, 27],

select appropriate input video settings and model settings (e.g., the

frame resolution, the frame rate, and the model size) [3, 5, 24, 33,

46, 70], propose probabilistic predicates to prefilter items [39], or

construct approximate indexes of possible object classes [20]. The

other category accelerates query processing while not reducing the

accuracy of query results. These works enable parallel processing

for large-scale video analysis [38, 50], build query-independent

index groups to select candidates for model processing [18], or

materialize and reuse user-defined functions’ results for exploratory

video analytics [66]. However, none of the previous literature has

exploited commonsense knowledge for video query optimization.

Commonsense Knowledge Applications on Visual Data —

Over the past decades, commonsense knowledge has been collected

and modeled by knowledge graphs (e.g., WordNet [44], Concept-

Net [57], Wikidata [63], and CSKG [22]), natural language corpus

(e.g., NELL [8] and OMCS [56]), and multiple choice QA problems

(e.g., VCR [68] and SWAG [69]) through crowdsourcing, mining

and other advanced methods. Because commonsense knowledge

consists of facts that are expected to be known by all humans, it

has been applied to many computer vision tasks in order to achieve

human-level performance. It can be utilized to improve the accu-

racy of object detection [14, 51], action recognition [17], and image

classification [41], and enable visual commonsense reasoning [68].

QueryOptimization Based on Indexes—Traditional index struc-

tures [9, 42] have been widely applied in modern database manage-

ment systems [13, 45, 47] for query optimization. Some works have

designed novel index techniques. Database cracking [21] gradually

cracks databases for building indexes according to users’ queries.

Learned index structures [35] adopt machine learning models for

index construction in order to reduce time. However, these indexes

are not applicable to video and other unstructured data.

7 CONCLUSION AND FUTUREWORK
It is common for video selection queries to include deep learning

models for object detection in the predicates. Due to the long in-

ference time of these models, it is crucial to develop optimization

techniques. In summary, we propose a novel index mechanism

that utilizes an inexpensive index and commonsense knowledge to

prioritize videos that are likely to contain target objects. We have

implemented a prototype system, Paine, and tested it on real-world

video corpora with a wide range of settings.

Our work represents an important first step towards video query

optimization based on commonsense knowledge. For future work,

we could consider calibrating the predicted probabilities to enable

skipping the processing of high-probability videos, if users can tol-

erate a small error. [R1.D1]Moreover, it would be exciting to expand

our approach to tackle more general cases, such as video selection

queries that filter objects with specific position constraints or filter

temporal features (e.g., activities from multi-frame sequences). It

is promising to reuse our framework — building corresponding

indexes and commonsense knowledge models for these features,

and prioritize videos that are likely to satisfy the predicate.
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