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ABSTRACT
We present a quantum-based approach for the optimization of join

orders in database applications. Our approach relies on a hybrid

framework, where classical heuristics are combined with a quantum

processor to accelerate the search over the set of solutions to a con-

strained problem. By taking advantage of a previously introduced

formulation of the join order optimization as a Quadratic Uncon-

strained Binary Optimization (QUBO) problem, we implement it

using the Constrained Quadratic Model (CQM), a hybrid classical-

quantum solver that interfaces classical heuristics with D-Wave’s

quantum annealer. We show that even a generic implementation

of this classical-quantum hybrid framework produces competitive

results for the join order problem, suggesting that better-tailored

hybrid solvers could produce a computational advantage.
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1 INTRODUCTION
The join order (JO) optimization problem [25] is pivotal in any query

optimizer, where the goal is to determine themost efficient sequence

for joining multiple relations in a database join query from among

all possible combinations of sequences. Due to its huge search

space, JO is known to be an NP-hard combinatorial optimization

problem where obtaining sufficiently good solutions becomes more

challenging as the number of relations increases. For small join

queries, dynamic programming (DP) approaches can deliver optimal

solutions. However, for large join queries, DP approaches fail due

to the exponential increase in their computational demands. In this

case, pure classical computation solutions have to rely on heuristics

that involve quality-efficiency tradeoffs to reduce the search space

and come up with a solution in a reasonable time.
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Meanwhile, solving combinatorial optimization problems, e.g.,

JO optimization, has been one of the main applications of quantum

computing devices due to their ability to process a vast number

of potential solutions at once rather than exploring each possibil-

ity sequentially as classical computers do. One of the first such

devices, the D-Wave quantum annealer [16], aimed at exploiting

quantum mechanical properties to find the ground state of the Ising

model [20] (a representation of a set of interacting magnets). Since

the Ising model is NP-hard [1], other combinatorial optimization

problems could be mapped into and solved using the quantum an-

nealer. Quadratic Unconstrained Binary Optimization (QUBO) [30]

is an example of the problems that can be directly obtained from the

Ising model by a simple remapping of the optimization variables

(from 𝑠𝑖 = {+1,−1} to binary variables 𝑥𝑖 = {0, 1}).
Although combinatorial optimization problems can be trans-

lated into Ising models and programmed into quantum annealers,

the capabilities of the physical hardware impose restrictions that

limit the range of problems that can be effectively implemented.

A quantum annealer like the D-Wave processor is built by laying

out superconducting loops on a 2-dimensional architecture. Each

loop is associated with what is known as a quantum bit, i.e., qubit.

Implementing the Ising model requires that we control interactions

between pairs of qubits. However, in this superconducting architec-

ture, only qubits that are geometrically close to each other can be

made to interact. This results in a very sparse connectivity graph,

with each qubit interacting only with a constant number of other

qubits (currently around 15).

The limitations imposed by quantum hardware constraints re-

sult in specific problems not being suited for direct implementation

on a quantum annealer. For example, constraints on the optimiza-

tion variables cannot be implemented natively. However, there are

some well-known tricks to get around some of these issues, like

converting constraints into penalty terms that are added to the

cost function and mapping a single variable into a chain of qubits

to increase the effective degree of the connectivity graph. These

techniques aim at replacing the original problem with one that can

be implemented in the quantum annealer, with the guarantee that

the optimal solution is the same for both. However, to make the

mapping work, the above-mentioned techniques usually introduce

other issues of their own (e.g., limiting the size of the problem to

be solved) and may sometimes hinder the overall performance. It is

also worth mentioning that quantum computers operating using

the quantum circuit model can also be used to solve combinatorial

optimization problems [11]. However, its solutions either require

efficient quantum error correction algorithms, which are hard to

achieve with the currently available NISQ (Noisy, Intermediate
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Scale, Quantum) devices, or suffer from a very time-consuming pro-

cedure when optimizing parameters [2], which is not well suited

for applications that need good solutions to be produced quickly.

A different approach is based on using a hybrid quantum-classical

approach, where a classical algorithm pre-processes the problem

description and iteratively generates QUBO instances that can be

implemented natively in the quantum annealer. In this paper, we

present such an approach using a novel tool available on theD-Wave

API, referred to as the Constrained Quadratic Model (CQM) [14],

that avoids the direct mapping of constraints. Even though this

tool does not provide details about its inner workings, it allows

us to show a baseline performance for classical-quantum hybrid

approaches. This is (to our knowledge) the first application of this

tool to the JO problem. Our results show that the CQM classical-

quantum hybrid solver can reduce the cost of the best join order

found by the most recent state-of-the-art QUBO-based JO encoding

technique [29]. The average improvement can be between ∼ 3% and

∼ 6% for synthetic benchmarks and up to 20% for the JOB bench-

mark. These preliminary results show the potential of classical-

quantum hybrid approaches and call for the development of more

tailored implementations that could further improve performance.

2 BACKGROUND AND FUNDAMENTALS
2.1 Quantum Annealing (QA)
Quantum annealing (QA) has been proposed as a novel heuristic

for combinatorial optimization problems [17], and it is similar to

Simulated Annealing (SA). In SA, the configuration space is ex-

plored by randomly proposing changes to the state configuration:

if the new value of the cause function is decreased, the proposed

change is accepted; if the cost function increases, the change is

accepted with some probability. In QA, these changes are applied

on a quantum superposition of the configurations, allowing for a

massively parallel search of the configuration space. This allows

phenomena like quantum tunneling to facilitate the exploration,

potentially avoiding getting stuck in local minima.

In QA, a quadratic cost function over binary variables is encoded

in the interactions between two-level quantummechanical systems,

i.e., qubits, in a way that the solution to the problem of interest is the

configuration that minimizes the energy of this interacting system.

We can initialize the physical system in a state that is a quantum

superposition of all possible configurations, and then we proceed

to change the interaction strengths between the qubits slowly. This

annealing process (if performed slowly enough) transforms the

initial superposition into the state that minimizes the system’s

energy, which, in turn, encodes the solution to the combinatorial

optimization problem.

The D-Wave quantum annealer [16] implements this model using

superconducting technology, where small superconducting loops

represent individual qubits: current circulating around these loops

in both directions encode the 0 and 1 states of the qubit. For two

qubits that are close to each other, a programmable interaction

can be implemented between them, as well as local biases on the

individual qubits. With these elements, an interacting system can

be constructed whose energy takes the form

𝐸 (®𝑠) =
∑︁
𝑖 𝑗

𝐽𝑖 𝑗 𝑠𝑖 𝑠 𝑗 +
∑︁
𝑖

ℎ𝑖 𝑠𝑖 (1)

where ®𝑠 = (𝑠1, . . . , 𝑠𝑛) is a binary vector representing the system

configuration, and (ℎ𝑖 , 𝐽𝑖 𝑗 ) are parameters representing the local

biases on each qubit, and the interaction strengths between them.

One of the main limitations of quantum annealers is the restric-

tion imposed on the available interactions due to the geometrical

constraints imposed by the actual physical layout of the qubits.

Ideally, we would like all qubits to be able to interact with every

other qubit. However, to make two qubits interact, they must be

close together, and when we lay out the physical superconducting

loops on a two-dimensional surface, we see that this requirement is

impossible to fulfill. Hence, each qubit can only interact with a fixed

number of other qubits, resulting in a sparse connectivity graph.

For the D-Wave Advantage system [34] that we use (that uses the

Pegasus architecture [8]), the maximum degree of this graph is

15. Even though there are techniques to get around this issue by

mapping a single variable to a chain of physical qubits that has a

larger effective connectivity degree, we pay a price in the size of

problems that can be implemented (since the total number of qubits

in the processor is fixed). Encoding other problem features like con-

straints further reduces the number of qubits available to encode

variables. However, as we shall see next, there are other ways of

exploiting the quantum mechanical features of the processor by

combining them with classical approaches.

2.2 Hybrid Solvers and the Constrained
Quadratic Model (CQM)

As discussed above, even though any NP-complete problem can

be mapped into an instance of the Ising model, the limitations of

physical quantum annealing devices restrict the type of problems

that can run on them. The sparse connectivity of superconducting

quantum processors requires using multiple qubits to represent a

single problem variable, reducing the problem instance size that

can be solved. This becomes even more problematic for constrained

problems. Since the native problem solved by quantum annealers is

a Quadratic Unconstrained Binary Optimization (QUBO) problem,

solving constrained problems first requires transforming the con-

straints into penalty terms that need to be added to the objective

function. Mathematically, this can be done in a way that guarantees

that the optimal solution of the resulting QUBO can be used to ex-

tract the optimal feasible solution of the original problem. However,

this brings new issues: (i) enforcing equality constraints as penalty

terms results in an increasing connectivity requirement (usually full

connectivity); (ii) enforcing inequality constraints requires using

slack variables, which need to be represented by physical qubits, fur-

ther reducing the effective size of the instances that can be solved;

(iii) guaranteeing the faithful mapping of optimal solutions can

require fine-tuning of the penalty terms coefficients; and (iv) the

required strength of the penalty terms may be beyond the dynamic

range of the programmable parameters of the quantum annealer,

resulting in some of the smaller coefficients in the objective func-

tion being effectively neglected. Most of these issues, which can

have a negative effect on the performance of the device, also apply

to other platforms like a digital annealer.

One way to get around these obstacles is to abandon the goal of a

faithful mapping of optimal solutions and exploit the potential com-

putational power of the quantum annealer in a hybrid framework.
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The main idea of a hybrid solver is to pair the quantum processor

with a classical heuristic in an iterative fashion, where this heuristic

explores the search space and the output of quantum queries sent

to the quantum module (QM) is used to suggest more promising

areas of the solution space that the classical heuristic can further

explore. A front-end takes the problem description as input and

runs multiple threads of classical heuristics; the QM generates na-

tive QUBO problems that can be solved by the Quantum Processor

Unit (QPU) using quantum annealing; the results are passed back

to the front-end that outputs the best solution after a user-provided

time limit. Figure 1 (from [14]) shows a schematic of the hybrid

solver framework of D-Wave.

Figure 1: Schematic of the D-Wave hybrid solver framework.

D-Wave provides a Python framework to construct classical-

quantum hybrid solvers. They also provide three user-ready hybrid

solvers: the Binary Quadratic Model (BQM), the Discrete Quadratic

Model (DQM), and the Constrained Quadratic Model (CQM). In

this work, we used the CQM to solve the JO optimization problem.

The main advantage of the CQM is its ease of use in programming

complex constrained models. The inputs required are a description

of the optimization variables (that could be binary or integer), the

objective function, and the constraints. The constraints can be

linear or quadratic, and the CQM provides simple tools to input

any equality or inequality constraint. Algorithm 1 shows the steps

required to solve a constrained quadratic problem. There are no

steps required to map the problem to the underlying processor’s

connectivity, and there is no need to fine-tune parameters.

Algorithm 1 Constrained Quadratic Model

1: Declare the optimization variables

2: Describe the objective function to be minimised 𝑓 (𝑥)
3: Describe the constraints in terms of the declared variables

4: Initialize the CQM Model

5: Run the hybrid CQM solver

6: Extract the best solution provided that satisfies the constraints

2.3 Join Order (JO) Modeling and its QUBO
Encoding

2.3.1 Join Order Modeling. We follow the NP-complete characteri-

zation provided in [28, 29] for the JO problem in terms of problem
input, solution space, and cost function.

For the problem input, each query is represented in a graph form

𝑄 = (𝑉 , 𝐸), where 𝑉 is a set of nodes corresponding to the set of

input relations (each node 𝑣𝑖 represents a relation 𝑟𝑖 ) and 𝐸 is a set

of edges corresponding to the predicates used to join these relations

(each edge 𝑒𝑖 𝑗 represents a join predicate 𝑝𝑖 𝑗 between two relations

𝑟𝑖 and 𝑟 𝑗 ). Each relation 𝑟𝑖 has an 𝑛𝑖 cardinality and each predicate

𝑝𝑖 𝑗 is labeled with a respective join selectivity 𝑓𝑖 𝑗 . In addition, there

is no restriction on the query graph shape (e.g., cyclic, tree, star).

For the solution space, similar to existing works (e.g., [28, 29, 36]),

we focus on the left-deep join tree solutions, where each solution

has leaf nodes representing the input relations and intermediary

nodes representing the join actions.

For the cost function, we assign a cost to a join between two

relations 𝑟𝑖 and 𝑟 𝑗 using the following classical cost function [6, 29]:

𝐶out (𝑛𝑖 , 𝑛 𝑗 ) = 𝑓𝑖 𝑗𝑛𝑖𝑛 𝑗 (2)

To assign a cost for the whole join tree, we apply 𝐶out on the

joins defined over the sequence 𝑠 of relations 𝑠1, . . . , 𝑠𝑛 as follows:

𝐶 (𝑠) :=
𝑛∑︁
𝑖=2

𝐶out ( |𝑠1 . . . 𝑠𝑖−1 | , |𝑠𝑖 |) (3)

where |𝑠1 . . . 𝑠𝑖−1 | denotes the result size after joining 𝑠1, . . . , 𝑠𝑖−1.

2.3.2 Join Order QUBO Encoding. State-of-the-art JO techniques,

whether quantum-based (e.g., [25, 28]) or quantum-inspired (e.g., [29]),

typically transform the problem into the QUBO form. Recently,

in [29], the authors have proposed the most efficient QUBO-tailored

encoding for the JO problem that (1) enforces valid join trees as

solutions through constraints and (2) captures the cost of join oper-

ations more efficiently with the annealer. We adopt this encoding

technique in our work. In particular, to have valid join trees, two

main validity constraints are defined in [29]:

• Constraint 1: “Starting at two relations, the number of rela-

tions serving as operands for a join strictly increases by one

with each additional join step”

• Constraint 2: “Once used as an operand for a join at step 𝑗 ,

a relation must moreover serve as an operand for all joins

directly or indirectly succeeding 𝑗”

Since these constraints were implemented in a QUBO form,

they were encoded as quadratic penalty functions where a penalty

weight 𝐴 was applied if any constraint was not satisfied, inheriting

the QUBO limitations mentioned in Section 2.2.

To encode the join order costs, [29] proposed a novel quadratic
cost approximation method to exploit the QUBO’s quadratic opera-

tions. First, it derives the logarithmic intermediate result sizes for
the join tree. Then, it approximates their actual cardinalities as a

quadratic cost function. Assume roj𝑟 𝑗 is a binary variable defined for

each pair of relation 𝑟 and the join at step 𝑗 and indicates whether

a specific relation 𝑟 is selected to participate in the join at step 𝑗 .

Similarly, assume paj𝑝 𝑗 is a binary variable indicating whether a

predicate 𝑝 is applicable for the join at step 𝑗 . A logarithmic in-

termediate result size LogIntCard( 𝑗) for a join 𝑗 can be defined as

follows:

LogIntCard( 𝑗) =
R∑︁

𝑟=1

LogCard(𝑟 ) · roj𝑟 𝑗 +
P∑︁

𝑝=1

LogPredSel(𝑝) · paj𝑝 𝑗

(4)
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where LogCard(𝑟 ) and LogPredSel(𝑝) are variable coefficients, pro-

viding the logarithmic cardinality for relation 𝑟 and the logarithmic

selectivity for predicate 𝑝 , respectively, 𝑅 is the number of relations,

and 𝑃 is the number of join predicates. Given the LogIntCard( 𝑗)
definition, a quadratic join cost function QCost can be defined as

follows:

𝑄𝐶𝑜𝑠𝑡 =

𝑇∑︁
𝑡=1

𝐽∑︁
𝑗=1

𝜃𝑡
(
Buffer𝑡 𝑗 − LogIntCard( 𝑗)

)
2

(5)

where Buffer𝑡 𝑗 is given by the expression:

Buffer𝑡 𝑗 =

𝑁∑︁
𝑖=1

(2𝑖−1 · st𝑖 𝑗 ) (6)

Here, st𝑖 𝑗 is a binary variable, and𝜃𝑡 is one of𝑇 threshold values that

will be contributing to the overall cost if LogIntCard( 𝑗) ≤ log(𝜃𝑡 ).
The value of 𝑁 is chosen such that Buffer𝑡 𝑗 can take any value up

to log(𝜃𝑡 ). This setting guarantees that if LogIntCard( 𝑗) ≤ log(𝜃𝑡 ),
there is a variable setting that minimizes the 𝑄𝐶𝑜𝑠𝑡 formula by

assigning Buffer𝑡 𝑗 = LogIntCard( 𝑗), which eliminates the inner

quadratic term in 𝑄𝐶𝑜𝑠𝑡 . On the other hand, if LogIntCard( 𝑗) >
log(𝜃𝑡 ), Buffer𝑡 𝑗 is unable to match LogIntCard( 𝑗), leading to an

increased cost.

3 MAIN APPROACH
3.1 CQM-based Constraints for Join Order
In our approach, we address the major issue in defining constraints

for the JO optimization problem in QUBO encoding. In QUBO, the

constraints for the optimization problem can only be defined as a

quadratic penalty function added to the main cost function (check

Section 2.2). Writing constraints in such a way that each violation

results in a cost, thereby steering the solution towards feasibility. It

is essential to select the appropriate penalty weights to ensure that

these constraints are met, however, doing so without overwhelming

the objective function can be difficult. If the penalty weights are

set too high, they might dominate the objective function, forcing

the solution to emphasize meeting constraints rather than opti-

mizing the cost function. Conversely, if the weights are too low,

the solver may disregard the constraints. Furthermore, digital and

quantum annealers have low precision, making it impossible to

distinguish between closely spaced energy levels, which may result

in constraint breaches. Finally, as shown later, the JO optimization

problem requires encoding inequality constraints. However, due to

the limitation of not dealing with inequalities in typical quantum-

annealing-based (e.g., [28]) and quantum-inspired (e.g., [29]) ap-

proaches, constraints are converted to equality function first, by

using slack variables, and then included as penalty terms in the

cost function. This is very expensive in terms of extra variables and

can further hamper the quality of the solution.

To overcome the above-mentioned limitations, we propose using

the CQM module provided by the D-Wave hybrid solver frame-

work [14] to represent the different JO constraints. As mentioned in

Section 2.2, the CQM provides the flexibility of defining constraints

directly without adding any penalty function to the cost function or

adding a penalty weight. The details of our proposed CQM-based

constraints for the JO problem are below.

3.1.1 CQM-based Constraint 1. Revisiting Constraint 1 from Sec-

tion 2.3.2, which enforces the shape of the left-deep join tree, we

can easily provide a CQM equality constraint that checks, at join

step 𝑗 , if the total number of relations selected to participate in the

join so far is exactly 𝑗 + 1. This will ensure that each join step pro-

gressively involves more relations. The mathematical expression

for this constraint is:

R∑︁
𝑟=1

roj𝑟,𝑗 = 𝑗 + 1 (7)

where 𝑅 is the total number of relations, 𝑗 ∈ {1, .., 𝐽 }, and 𝐽 is the

total number of subsequent join steps in the query.

3.1.2 CQM-based Constraint 2. Revisiting Constraint 2 from Sec-

tion 2.3.2, which enforces the continuity of relations selection

throughout the sequence of join operations, we can provide a CQM

in-equality constraint that checks, for each relation 𝑟 , if this rela-

tion selected to participate in the join at step 𝑗 is also selected to

participate in the join at step 𝑗 + 1. The mathematical expression

for this constraint is:

roj𝑟,𝑗 − roj𝑟, 𝑗+1 ≤ 0 (8)

Note that satisfying this constraint for all possible pairs of 𝑟 and

𝑗 ensures that if a relation 𝑟 is selected at join step 𝑗 , it will also

appear in all subsequent join steps from 𝑗 + 1 to 𝐽 .

3.1.3 CQM-based Constraint 3. A critical requirement to meet

when setting rules for whether two relations should be joined or

not is that a predicate applies to a join only if both relations involved

in the predicate are members of that join. We can mathematically

express this requirement through the following two constraints:

paj𝑝 (r1,r2) , 𝑗 − rojr1, 𝑗 ≤ 0 (9)

paj𝑝 (r1,r2) , 𝑗 − rojr2, 𝑗 ≤ 0 (10)

where 𝑝 (r1,r2) ∈ {1, .., 𝑃} represents a join predicate defined over

the two relations r1 and r2.

3.2 Overall CQM-based Join Order Algorithm
Algorithm 2 shows our end-to-end CQM-based algorithm for find-

ing the optimal JO. The algorithm first initializes the CQM model,

creates all required variables, and CQM-based constraints defined

over them (lines from 7 to 20). Then, given these constraints, it

optimizes the JO objective function using CQM (line 21). We have

adopted the same quadratic cost approximationmethod from [29] as

an objective function. The current CQM solver utilizes the LeapHy-

bridCQMSampler framework [7] on D-Wave Quantum Annealers.

LeapHybridCQMSampler is built to solve large-scale CQM prob-

lems and employs a hybrid quantum-classical approach. While

quantum computers excel in swiftly exploring a huge range of po-

tential solutions due to quantum parallelism, they are augmented

by classical processors that handle higher-level issue decomposition

and solution synthesis. This hybrid framework seeks the benefits

of both technologies: the speed of quantum processing and the

dependability and scalability of traditional algorithms.
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Algorithm 2 Constrained Quadratic Model For Join Order Opti-

mization

1: Input: Cardinalities, Selectivities, and Relations

2: Output: Final Join Order, Final Cost

3: procedure Optimize Join Order

4: Initialize 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠 and 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 from Input

5: 𝑙𝑜𝑔_𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠 ← {log(𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠)}
6: 𝑙𝑜𝑔_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 ← {log(𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠)}
7: Initialize CQM Model

8: Define binary variables 𝑝𝑎 𝑗_𝑣𝑎𝑟𝑠 and 𝑟𝑜 𝑗_𝑣𝑎𝑟𝑠

9: for each relation 𝑟 and join 𝑗 do
10: Add constraint for incremental join participation

11: CQM-based Constraint 1:
∑𝑅
𝑟=1 𝑟𝑜 𝑗𝑟,𝑗 = 𝑗 + 1

12: Add constraint for continuity of relations

13: CQM-based Constraint 2: 𝑟𝑜 𝑗𝑟, 𝑗 − 𝑟𝑜 𝑗𝑟, 𝑗+1 ≤ 0

14: end for
15: for each predicate 𝑝 and join 𝑗 do
16: Add constraints for predicate applicability for 𝑟1
17: CQM-based Constraint 3: 𝑝𝑎 𝑗𝑝 (𝑟1,𝑟2) , 𝑗 − 𝑟𝑜 𝑗𝑟1, 𝑗 ≤ 0

18: Add constraints for predicate applicability for 𝑟2
19: CQM-based Constraint 3: 𝑝𝑎 𝑗𝑝 (𝑟1,𝑟2) , 𝑗 − 𝑟𝑜 𝑗𝑟2, 𝑗 ≤ 0

20: end for
21: Solve objective function (Equation 5) in CQM

22: Extract 𝑓 𝑖𝑛𝑎𝑙_ 𝑗𝑜𝑖𝑛_𝑜𝑟𝑑𝑒𝑟

23: Calculate 𝑓 𝑖𝑛𝑎𝑙_𝑐𝑜𝑠𝑡 using Equation 3

24: return 𝑓 𝑖𝑛𝑎𝑙_ 𝑗𝑜𝑖𝑛_𝑜𝑟𝑑𝑒𝑟, 𝑓 𝑖𝑛𝑎𝑙_𝑐𝑜𝑠𝑡

25: end procedure

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup
Our objective is to show the efficiency of our approach, referred

to as CQM, in finding more optimal JO sequences compared to

the original QUBO encoding in [29], referred to as DA method in

this section, given the same optimization time window. Note that

although the results reported by DA in [29] were based on the Fu-

jitsu digital annealer (a quantum-inspired hardware accelerator for

computational tasks), they dominated the results provided by other

quantum-based competitors in most cases. Therefore, we compare

our CQM results to the DA ones
1
. To have a fair comparison, we set

the time for the solver execution to be a maximum of 60 seconds,

as proposed in the experimental setup of DA in [29], to provide

the model enough time to find an optimal solution. We also stick

to the same evaluation method in [29]: (1) calculate the join cost

(Equation 3) of the obtained JO sequences based on the intermediate

result sizes, and then (2) normalize the costs (relative to the best

solution; square root scale).

Our CQM optimization algorithm is implemented in Python 3.12

and constructed using the D-Wave Ocean toolbox ’dimod’ library

(version 0.12.14). We run the algorithm using the D-Wave’s Leap

Hybrid CQM Sampler [7]. We used all the default configurations

by D-Wave except the time of the execution solver, which we set as

mentioned earlier. For cost threshold values 𝜃𝑡 in Equation 5, we

used the same values reported in [29].

1
The results reported by the DA authors exist in the following open-source repository:

https://github.com/lfd/vldb24/tree/main

Regarding benchmarks, we ran our experiments with three work-

loads provided by the authors of the paper [29]
2
:

• ’JOB’: The Join Order Benchmark (JOB) contains queries on

the IMDB dataset [18].

• ’Chain’ and ’Cycle’: Two synthetic join benchmarks, pro-

posed in [29], including join queries of chain and cycle graph

structures with different numbers of relations. These bench-

marks were designed to simulate real-world usage scenarios.

4.2 Experimental Results
Generally speaking, CQM is able to produce an overall improvement

in the JO cost efficiency for the three workloads (each workload

query has up to 50 relations to join) while finding the optimal JO

solution over the same period of optimization time used in [29].

Figures 2, 3, and 4 show our comparison results in the JOB
3
,

Chain, and Cycle workloads, respectively. We observe that CQM

outperforms DA in almost all queries. There are few instances in

which the results difference is of decimal points due to which the

minimum improved efficiency is presented as 0%. As we can see,

for JOB Workload, CQM method significantly outperforms DA in

many queries. In the case of Chain and Cycle workloads, the results

show less improvement in comparison to what we get in the case

of JOB workload, yet there are still improvements over DA. These

results indicate that CQM method is more effective when the join

queries are more complex, as in the JOB workload.

Table 1 has also presented a summary of our results. For the

JOB workload, the minimum cost efficiency gained is 1%, and the

highest recorded is up to 98%. On the other hand, in the case of

Chain and Cycle workloads, the final cost results for some queries

had very little difference, so the overall cost efficiency of the CQM

method over DA is calculated as 0%.

In brief, our results show that running the JO problem with a

hybrid quantum-classical approach is beneficial and provides room

for exploring different ways to implement the problem, potentially

yielding more significant results. So far, we have utilized the qua-

dratic cost approximation function provided in [29]. However, our

results have prompted us to further pursue analytical research to de-

velop approximation models for the JO cost that would potentially

be suitable for executing on hybrid classical-quantum solvers.

Figure 2: Normalized join costs (relative to CQM) of both
CQM and DA methods for JOB workload.
2
We used the open-source implementations of these workloads provided in

https://github.com/lfd/vldb24/tree/main

3
For the job workload, we present only the results for 10 queries to avoid cluttering.
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Figure 3: Normalized join costs (relative to CQM) of both
CQM and DA methods for Chain workload.

Figure 4: Normalized join costs (relative to CQM) of both
CQM and DA methods for Cycle workload.

Table 1: Measures of Percentage Cost Improvement For Three
Different Query Loads

Statistic Job Workload Chain Graph Cycle Graph

Minimum 1.0% 0.0% 0.0%

Maximum 98.0% 13.0% 10.0%

Average 20.8% 5.7% 2.8%

Median 13.0% 5.0% 2.0%

5 RELATEDWORK
The join order (JO) problem is one of the most thoroughly re-

searched problems in query optimization, as evidenced by numer-

ous studies (e.g., [19, 26, 27, 36]). Many approaches have been

proposed to exploit dynamic programming (e.g., [24, 31, 37]) to

find the optimal JO solution. However, such approaches struggle

with scalability as the number of relations increases. On the other

hand, heuristic-based approaches (e.g., [4, 13, 15, 32, 33]) provide

more scalable solutions when handling large join queries, yet still

bounded by the quality-efficiency tradeoff when running on clas-

sical computers. More recent efforts exploit machine learning to

learn better JO (e.g., [5, 22, 23]) or better query optimization plans

in general (e.g., [9, 21, 22, 39]).

Many quantum-based techniques (e.g., [25, 28, 38]) have been

proposed to address the JO problem. [28] investigated the per-

formance of the QUBO formulation of the JO problem provided

in [36] using gate-based quantum computing and quantum anneal-

ing. However, such QUBO formulation focused on the left-deep

join tree cases only. A more generic QUBO encoding has been

proposed in [25] to handle bushy join trees among all possible JO

solutions. Recently, a more efficient QUBO encoding for the JO

problem, exploiting both linear and quadratic terms in the QUBO

representation, has been introduced for left-deep join trees in [29],

and extended for the general join trees in [30]. We decided to ex-

tend the encoding in [29] using the CQM constraints instead of [30]

because [29] had more thorough benchmarking results that we

can compare the performance of our CQM-based approach against

([30] is just a theoretical approach, and we plan to extend it with

our approach in the future). Another interesting direction [38]

has explored using quantum machine learning for JO optimization

as well. Apart from JO, QUBO encoding has been investigated in

other database problems such as multi-query optimization [35] and

transaction scheduling [3, 12].

The direction of investigating hybrid classical-quantum approaches

has been paid very little attention in our database community. To

the best of our knowledge, [10] is the only work exploring such

direction in the multi-query optimization problem. However, there

is no work investigating the power of CQM-based hybrid solvers,

like the one provided by D-Wave [14]. We are the first to fill this

gap, where we used the JO problem as a case study to show the

effectiveness of these hybrid solvers.

6 CONCLUSION AND FUTUREWORK
Our preliminary results show that a very basic implementation of

a classical-quantum hybrid solver like CQM, can produce perfor-

mance results that already improve those of other methods reported

in the literature, like the ones obtained using a quantum-inspired

digital annealer. The average improvement on the cost of the best

join order found by CQM ranges from ∼ 3% to about ∼ 6% for two

synthetic benchmarks (’Chain’ and ’Cycle’), while reaching up to

20% for the JOB benchmark, that contains real-world queries.

It is worth noting that the CQM is a very user-friendly solver that

does not require the user to take care of the complicated mapping of

the problems into the quantum processor. An instance with many

linear (and even quadratic) constraints can be input into the solver

very straightforwardly. The solver then applies a set of classical

heuristics combined with quantum queries to the quantum process-

ing unit (QPU) to accelerate the exploration of the space of feasible

solutions. That being said, one drawback is that pre-processing

the problem instances and generating the native QPU problems by

CQM is still a black box, and hence, fully optimizing the JO encod-

ing process is not entirely fulfilled. Nevertheless, the CQM-based

results obtained in this paper are competitive with other methods.

This clearly calls for continued research on constructing smarter

hybrid classical-quantum solvers that could further improve the per-

formance. Our future plan is to exploit the D-Wave’s framework [7]

for implementing user-designed hybrid solvers in order to design a

JO-specific solver that captures the features of the JO problem and

embeds them in the hybrid classical-quantum operations. We also

plan to have a detailed analysis for the JO optimization running

time of CQM, extend our JO investigation to explore bushy and

general join trees (similar to [25, 30]), and even go beyond JO and

explore CQM with other database operations.
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