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Abstract—We show how to utilize machine learning approaches
to improve sliding window algorithms for approximate frequency
estimation problems, under the ‘‘algorithms with predictions”
framework. In this dynamic environment, previous learning-
augmented algorithms are less effective, since properties in sliding
window resolution can differ significantly from the properties of
the entire stream. Our focus is on the benefits of predicting and
filtering out items with large next arrival times — that is, there is a
large gap until their next appearance — from the stream, which we
show improves the memory-accuracy tradeoffs significantly. We
provide theorems that provide insight into how and by how much
our technique can improve the sliding window algorithm, as well
as experimental results using real-world data sets. Qur work
demonstrates that predictors can be useful in the challenging
sliding window setting.

I. INTRODUCTION

Stream processing plays a crucial role in various
applications, such as network monitoring, intrusion detection
systems, and sensor networks. Dealing with large and rapidly
incoming data streams presents challenges in providing
accurate responses to queries due to high computational and
memory costs. Furthermore, these applications require time-
efficient algorithms to cope with high-speed data streams. To
that end, stream processing algorithms often build compact
approximate sketches (synopses) of the input streams.

Estimating the frequency of certain items in a data stream is
a fundamental step in data analysis. Several algorithms, such as
Count-Min Sketch [1], Count Sketch [2] have been proposed
to estimate item frequencies in the data streams.

As time passes, newer data often becomes more relevant
than older data, necessitating an aging mechanism for the
sketches. In financial analysis, for instance, analysts prioritize
current market trends, whereas in intrusion detection systems,
recent intrusion attempts are of primary concern. In both cases,
outdated information loses significance over time. Retaining
old data not only consumes valuable memory resources but
also introduces noise, complicating the analysis of recent,
relevant data. Many applications realize this by tracking the
stream’s items over a sliding window. The sliding window
model [3] considers only a window of the most recent items
in the stream, while older ones do not affect the quantity we
wish to estimate. Indeed, standard approaches to the problem
of maintaining different types of sliding window statistics have
been extensively studied [3]-[7].
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Recently, machine learning has been combined with
traditional algorithms, yielding the paradigm of learning-
augmented algorithms, also known as algorithms with
predictions. This approach aims to improve algorithms by
leveraging advice from machine learning models in the form
of predictions. In the context of streaming algorithms, Hsu et
al [8] introduced learning-based frequency estimation, where
machine learning is utilized to predict the most frequent items,
known as ’heavy hitters,” with the goal of reducing estimation
errors. They utilized known hashing-based algorithms such as
Count-Sketch and Count-Min Sketch, which approximately
count item frequencies by hashing items to buckets. The
learning process ensured that predicted heavy hitter items
were not placed in the sketch but assigned dedicated counters,
facilitating accurate counting. In addition, [9] described a
learned-based algorithm for identifying heavy hitters, top k,
and flow frequency estimation. They focus on the Space
Saving algorithm and exclude predicted low-frequency items
from updating the Space Saving, while ensuring that predicted
heavy-hitter items remain in the structure. In this way, the
Space Saving accuracy is improved.

However, these approaches do not directly translate to the
sliding window model, where different items can become
heavy hitters or have low frequency locally within a window
as time passes. In other words, an item that is a heavy
hitter for the entire stream may not be a heavy hitter
in any particular data window. Moreover, to the best of
our knowledge, predictions have not been applied to the
problem of approximate counting in the sliding window
setting. In general, sliding window variations of approximate
counting and other problems are generally more challenging
than variations without sliding windows, so perhaps this is
unsurprising.

In this work, we aim to demonstrate the applicability
of predictions to sliding window algorithms for frequency
estimation problems, focusing on how natural predictions of
the gap between item arrivals can lead to easy-to-implement
improvements in this setting.

We focus on Window Compact Space-Saving (WCSS) [5]
and present the learned-based version, LWCSS. Our primary
idea is to exclude items that appear only once in the sliding
window from being included in the data structure used for
tracking item frequencies, inspired by LSS [9].

However, LSS employs predictors that relate to the entire



stream, which cannot be directly applied to a sliding window.
An item with low frequency in the entire stream might not be
low-frequency within a particular window, potentially leading
to unbounded estimation errors.

Our key insight is the potential to exclude items that appear
once by employing an effective predictor for each item’s
next arrival time in the stream. With a perfectly accurate
predictor, we could identify single-occurrence items within
the sliding window by determining whether they have not
appeared previously in the stream, and have a predicted
next appearance time that exceeds the current window size.
Predictors of next arrivals have been employed in for example
caching with machine learning advice [10].

We treat the next arrival predictor as a black box and do not
delve into its internal functioning; our approach can therefore
be utilized with any suitable learning scheme that produces
a predictor. We analyze both theoretically and empirically
the performance gains offered by predictors, as well as the
robustness of our approach to predictor errors.

We also explore potential future directions, such as
developing a predictor capable of learning item frequencies
within a given time frame and periodically retraining itself
using transfer learning techniques to adapt to shifts in the
data distribution across frames. Furthermore, we discuss the
prospect of extending our approach to handle other types of
queries in the sliding window setting.

II. PROBLEM DEFINITION

Given a universe U, a stream S = uy,us,... € UYN is a
sequence of arrivals from the universe. (We assume the stream
is finite here.) We denote by f}V the frequency of item i over
the last W arrivals.

We seek algorithms that support the following operations:

« ADD(%): given an element i € U, append i to S.
« QUERY(%): return an estimate f}V of f/V

Definition 1. An algorithm solves (W, )-WFrequency for if
given any Query(i) it returns fV satisfying

SV < Y W

III. SLIDING WINDOW ALGORITHMS

Sliding window algorithms have two conceptual steps:
removing outdated data and recording incoming data. These
algorithms aim to avoid storing the entire window sequence,
as the window size is typically large. Due to such memory
limitations, approximation algorithms are desirable and
often employed. Such algorithms typically do not maintain
individual counters for each item, but instead employ an
approximate counting algorithm to monitor item frequencies.

In this work, we choose Window Compact Space Saving
(WCSS) [5] as our underlying algorithm'. WCSS solves
(W, e)-WFrequency when the queries are frequency queries.

'Our approach could be applied to other sliding window streaming
algorithms that follow the same setup of dividing the stream into frames
(e.g. [11], [12])

The stream is divided
into W-sifed frames

Each frame is partitioned
into k blocks
2

! Y Y
Each block is The current W-sized window

of size W /k

Fig. 1: WCSS algorithm overview (adapting a figure in [5])

It divides the stream into frames of size W and each frame is
divided into k equal-sized blocks as illustrated in Figure 1. The
query window also has size W and, importantly, it overlaps
with no more than 2 frames at any given time.

WCSS counts how many times each item arrived during
the last frame. When the counter exceeds a multiple of the
block size (w, %, etc), WCSS identifies it as an overflow.
The algorithm keeps track of the item ID associated with each
overflow, and selectively keeps only overflowed items for past
blocks. To identify these overflowed items, WCSS uses an
instance of the Space Saving algorithm (SS) [13] which is re-
initialized as empty at the beginning of each frame. In addition,
WCSS employs specific data structures to keep track of the
overflowed item IDs, denoted by overflowsRecord.

In WCSS, overflowsRecord contains a collection of up to
k+1 queues. Each queue corresponds to a block that overlaps
with the current window. Within each queue, WCSS stores the
IDs of items that have overflowed in the corresponding block.
Whenever an item overflows, WCSS appends its ID to the
current block’s queue. When a block ends, WCSS removes
the oldest queue from the collection. In order to estimate
the frequency of an item within a given window, WCSS
counts the overflow occurrences of the item and multiplies the
result by % Similar setups are found in works that support
other queries over sliding windows, such as in [11]. In this
work, overflowsRecord contains a hierarchical tree structure
consisting of frequency tables. These tables store overflowed
item IDs along with their respective frequencies within block
intervals.

IV. LEARNED SLIDING WINDOW ALGORITHM
A. Overview

Given the specific characteristics of the sliding window
setup, we want a predictor that offers a time-sensitive
approach, in contrast to a predictor for whether an item is
a heavy hitter over the stream, which is time-insensitive. We
employ an oracle that, for a specific item ¢ and timestamp
t, predicts the next occurrence of i, or equivalently how
many arrivals will occur before item ¢ appears again. A
detailed description of this predictor, outlining its structure
and functionality, will be provided later in this section.

Based on this prediction, LWCSS excludes items predicted
to next appear again beyond the frame size from being inserted
in the SS instance. These items are referred to as non-essential
items. As the SS instance is reset at the beginning of each
frame, we obtain a “cleaner” SS instance, as proposed in [9].



Note that the non-essential items are not consistently ignored
in every occurrence; rather we consider each arrival of the item
and take an appropriate action based on the predictor. Note
that if we had perfect predictions for non-essential items, then
not including them in the Space Saving instance allows us to
minimize memory overhead with no cost in terms of accuracy.

However, machine learning methodologies are inherently
imperfect, and they may exhibit errors, including substantial
and unexpected errors. Therefore, as suggested in the
algorithms with predictions literature (see, e.g., [14]),
algorithms based on machine learning predictions must
demonstrate sufficient robustness to handle errors that may
occur. In particular, the notion of robustness that has
become common is that the performance of algorithms using
predictions should not be significantly inferior to that of
conventional online algorithms that do not rely on predictions,
even if predictions are inaccurate. Unless some mitigating
structure is added, ignoring items predicted as non-essential
can lead to unbounded errors. For example, if a heavy hitter
of the current frame is predicted incorrectly as a non-essential
item, this item is excluded from the sliding window algorithm,
violating the error guarantee (Definition 1).

We therefore apply the idea of keeping a Bloom filter of
predicted non-essential items previously ignored during the
current frame to ensure robustness, suggested by [9]. The
Bloom filter, like the Space Saving instance, is flushed at the
beginning of each frame.

There are two sources of estimation error when some
arrivals of item ¢ are predicted to exceed the window size.
The first source of error arises when item arrivals are predicted
incorrectly to exceed the window size. Ideally, these arrivals
should have been captured by the Bloom filter and inserted
back into the SS. However, when we insert item ¢ into the
Bloom filter for the first arrival that exceeds the window
size, we do not add it to the SS. Thus, if the first arrival
is mispredicted, we may miss one insertion (otherwise, it is
correct not to insert this arrival into the SS). Second, the
Bloom filter flushing at the beginning of a new frame causes an
underestimation. Since the queried intervals can overlap with
at most two frames, this imposes an underestimation error of
no more than 1. To compensate for these two sources of error
occurring together, we add 2 to the query.

Importantly, because the predictor is concerned with the
item’s next arrival, the number of single occurrence items
within the frame exceeds the number of single occurrence
items across the entire stream and depends on the frame size
as shown in Figure 3.

B. Next occurrence oracle

In what follows, we use a slightly different approach that
allows us to utilize a simpler predictor and still obtain strong
performance. Rather than try to predict the next arrival exactly,
we predict whether the next arrival is larger than W or not. If
the next arrival is larger than W, then it clearly lies outside the
frame (Figure 2). This allows us to have our predictor perform
a binary classification, rather than solve a regression problem.

nextArrival > W?

. |
i

nextA‘frival(i)

Fig. 2: Next arrival prediction in sliding window setting.
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Fig. 3: Average single items ratio vs. frame size using real-
world traces (described in Section V).

To construct the next occurrence oracle, we trained a neural
network to predict if an item will show up again within a
specified period of time (the next W items in the stream).
By converting the problem into a two-category classification
problem, we simplify the prediction problem. The oracle
is thus tasked to classify whether the next appearance of
the item falls within our specified window size, tagged as
1, or exceeds this limit, indicated as 0. Our model is a
Recurrent Neural Network (RNN) that utilizes Long Short-
Term Memory (LSTM) cell. We chose this framework for its
effectiveness in processing sequential data as demonstrated
in prior research [15]; however, we emphasize that other
predictors could be used.

For our test cases, we focus on networking problems, and
items are source-destination IP address pairs. The network
begins by transforming the source and destination IP addresses
into indices, which are then converted into embedding vectors.
As a result of this process, IP addresses are represented
in a dense and expressive manner. Our model uses these
embeddings as input to the LSTM layer. In the LSTM
layer, the sequence of IP address embeddings is processed,
in order to capture temporal dependencies. After the LSTM
produces the final hidden states, the results are passed to
a fully-connected (dense) layer that outputs one value. This
output value, after being passed through a sigmoid activation
function, represents the model’s prediction of whether the
next appearance of an item falls within the specified window
size W or not. This prediction is generated based on the
sequence of IP addresses provided as input. The model
is trained using Binary Cross-Entropy with Logits Loss
(BCEWithLogitsLoss) and the Adam optimizer. After training,
the model’s performance is evaluated using the F1 score on
a separate test dataset. Again, the implementation of such



a predictor is our tailored approach, and it is just one of
many possible options. Depending on the requirements, our
design may be replaced or enhanced with any other effective
prediction technique.

C. Robustness Result

Consider a sliding window algorithm A that follows the
same setup of dividing the stream into frames. The WCSS
algorithm is an example of such an algorithm. In the following,
we prove the robustness of our approach in the general case
using algorithm A. We show that our proposed algorithm is
robust, in the sense that it cannot perform significantly worse
than the corresponding algorithm that does not use predictions.

Theorem 1. Let A be an algorithm for (W,e — &)-
WFrequency. Then LWCSS solves (W, €)-WFrequency.

Proof. For any item ¢ and any window of size W, we may
underestimate the count of item ¢ by at most two. This is
because we may undercount an item once when it is predicted
not to occur within the next W steps and it is not already a
positive from the Bloom filter. As each window of length W
can intersect two frames, and the Bloom filter is reset to empty
at frame boundaries, we can undercount an item at most twice
over any W consecutive steps.
We have

QY £ Agy._ 2 ).QUERY(i) +2. (1)

That is, our estimate is the query result for ¢ from .4, which
is an algorithm for (W, e — %)-WFrequency, with at most 2
instances of ¢ removed from the stream .4 processes and an
extra count of 2 added back in. It follows the smallest possible
return value is

@ -2+2=0q,

and the largest possible return value is
2
(QZV+ <€) W> +2=QV +W,
w
proving the claim. O

V. EVALUATION

In this section, we present an empirical study and compare
WCSS and LWCSS.

Experimental Setup. We implemented WCSS and LWCSS
in Python 3.7.6. The evaluation was performed on an AMD
EPYC 7313 16-Core Processor with an NVIDIA A100 80GB
PCIe GPU, running Ubuntu 20.04.6 LTS with Linux kernel
5.4.0-172-generic, and TensorFlow 2.4.1. We extend WCSS
by incorporating a predictor, which is built using an LSTM
network, and compare it against traditional WCSS using real-
world datasets.

Datasets. Our real datasets comprise CAIDA Internet
Traces [16] obtained from multiple sources: (1) equinix-
chicago 2016 high-speed monitor is located at an Equinix
datacenter in Chicago and is connected to a backbone link
of a Tier 1 ISP between Chicago, IL and Seattle, WA (2)
equinix-sanjose 2014 monitor (SJ) is positioned at an Equinix

TABLE I: Traces from [16] used in the evaluation

Trace ‘ #ltems ‘ #Uniques
Chicago | 88,529,637 | 1,650,097
NY 63,284,829 | 2,968,038
SJ 188,511,031 | 2,922,904

TABLE II: Predictor Accuracy

Metric | Value
F1 Score (Chicago) | 81.3%
F1 Score (NY) 87.3%
F1 Score (SJ) 83.5%

datacenter in San Jose, CA, connected to a backbone link of a
Tier 1 ISP between San Jose, CA and Los Angeles, CA (3) The
equinix-nyc 2018 monitor is located at an Equinix datacenter
in New York. These traces are summarized in Table L.

For the synthetic data, we considered the Zipf distribution
where the items are selected from a bounded universe, and
the frequencies of an item with rank R is given by f(R, ) =
constant where (v is a skewness parameter. For predictions, we
employed a synthetic predictor that computes the true count
for each item, and then adds an error which is drawn 1.i.d.
from a normal distribution with mean parameter 0 and standard
deviation o = 1.

Metrics. In the approximation error evaluation, we use Root
Mean Square Error (RMSE). When an item is encountered,
we query its frequency estimation immediately and calculate
the RMSE. For performance of operations, we use updates or
queries per second.

A. Accuracy Comparison

Figure 4 shows the accuracy (RMSE) as a function of
memory for WCSS and LWCSS setting W = 2!°, This
evaluation includes three real datasets: Chicago, NY, and SJ,
and utilizes a pre-trained LSTM predictor. The predictor’s
performance on each dataset is summarized in Table II. The
results demonstrate that LWCSS outperforms WCSS in terms
of accuracy across all three datasets since the filtering of
single-occurrence items enhances the SS’s accuracy which
is crucial for overall accuracy. Figure 4 demonstratea the
feasibility of our approach using the next arrival predictor.

Figure 5a shows the RMSE as a function of window
size using the Chicago dataset. As seen, as the window
size increases, the RMSE also increases. Additionally, the
performance improves as the window is smaller because the
ratio of single items becomes larger, as shown in Figure 3.

B. Performance Comparison

Figures 5b and 5c show the performance of WCSS and
LWCSS in terms of the update and query time respectively
using the Chicago dataset and setting W = 2'3. The query
performance of the two algorithms appears closely aligned
due to their consistent operations. The update performance of
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LWCSS is slightly worse than WCSS due to the additional
operation of inserting single occurence items into the Bloom
filter.

VI. FUTURE WORK AND EXTENSIONS

A. An alternative approach: frequency prediction within time
frames

A potential direction for future work is to explore an
alternative approach that learns item frequencies within each
given time frame. By predicting the frequencies of each item
in the frame, we can apply previous work introduced by [8]
to the sketch that tracks item frequencies within each frame.
However, a challenge with this approach is that we need to
retrain the predictor in each frame. One way to overcome this
computational inefficiency in a streaming setting is: Instead of
training a new predictor for each frame, we could employ a
single predictor and retrain it periodically to adapt to shifts in
the data distribution across frames.

Specifically, we can perform the retraining process after
observing items for M frames. The value of M will be
determined based on the extent of accuracy drop in the
predictor; smaller values of M should be set if the predictor
incurs a higher accuracy drop. This periodic retraining aims to
strike a balance between maintaining prediction accuracy and
minimizing computational overhead. To enhance the efficiency
of the retraining process, we can utilize recent advances in
transfer learning within deep learning [17]. In particular, we
can avoid retraining the model from scratch and shorten the
training cycle by selectively retraining only specific layers in

the model using information from recent frames. The main
intuition behind this approach is that in many neural networks,
the initial layers capture general features, while the later
layers focus on specific features that are more dependent
on the problem at hand (in our case, these later layers are
sensitive to distribution shifts). During the retraining process,
we can freeze all hidden layers in the LSTM and fully-
connected networks and then selectively retrain only those
layers connected to the input and output of each network. As
long as the dimensions of the frozen layers remain constant at
any point in time, it is acceptable to reuse them. By preserving
the learned general features and selectively updating the task-
specific layers, we can leverage the knowledge gained from
previous frames while efficiently adapting to the current data
distribution.

As a future direction, we will compare this frame-based
frequency prediction approach with our existing method using
the next arrival predictor. This analysis could provide insights
into the trade-offs between the two approaches and guide the
selection of the appropriate technique based on the specific
window size.

B. General learned sliding window framework

Stream processing encompasses three fundamental tasks:
membership queries, frequency queries, and heavy hitter
queries. Membership queries determine whether a given item
is present within the sliding window. Frequency queries report
the occurrence count of a specific item. Heavy hitter queries
identify all items whose frequencies exceed a predetermined
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threshold. Our research focuses on frequency queries over data
streams within a sliding window setting. We recognized that
the work proposed by [12] introduced a generic framework,
termed Sliding Sketches, which can be applied to existing
solutions for the above three tasks, enabling them to support
queries over sliding windows. This work employed a similar
approach of dividing the stream into frames (referred to as
segments in their work). Consequently, our approach could
intuitively be applied to this general framework.

VII. RELATED WORK

The problem of estimating item frequencies over sliding
windows was first studied in [18]. To estimate frequency
within a We additive error over a window of size
W, their algorithm requires O(e~!log® e~ !log W) bits of
memory. This memory requirement was later optimized to
O(s~1log W) bits as highlighted in [19]. Hung and Ting
in [20] further refined this by improving the update time to a
constant and locating all heavy hitters in the optimal O(s~!)
time. The WCSS algorithm, as introduced in [5], also provides
frequency estimates in constant time.

Algorithms with predictions is, as we have stated, a rapidly
growing area. The site [21] contains a collection of over a
hundred papers on the topic. The idea of using predictions to
specifically improve frequency estimation algorithms appears
to have originated with [8], where they augmented a learning
oracle of the heavy hitters into frequency estimation sketch-
based algorithms. Later [22] and [9] explored the power of
such an oracle, showing that it can be applied to a wide
array of problems in data streams. All these papers use neural
networks to learn certain properties of the input. We, however,
differ from those papers because we consider the sliding
window setup, in which properties derived from window
resolution can differ significantly from those derived from the
entire stream, and therefore, other predictions are required.

VIII. CONCLUSION

We have presented a novel method to improve sliding
window algorithms for approximate frequency estimation by
incorporating a learning model that filters out low-frequency
“noisy” items. Past research on learning-augmented algorithms
does not perform well in the sliding window settings due
to variations between the properties of the sliding window
resolution and the entire data stream.

We have demonstrated the benefits of our design both
analytically and empirically.

Code Availability: All code is available online [23].
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