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ABSTRACT

Query optimizers are crucial for the performance of database sys-
tems. Recently, many learned query optimizers (LQOs) have demon-
strated significant performance improvements over traditional opti-
mizers. However, most of them operate under a limited assumption:
a static query environment. This limitation prevents them from
effectively handling complex, dynamic query environments in real-
world scenarios. Extensive retraining can lead to the well-known
catastrophic forgetting problem which reduces the LQO general-
izability over time. In this paper, we address this limitation and
introduce LIMAO (Lifelong Modular Learned Query Optimizer), a
framework for lifelong learning of plan cost prediction that can
be seamlessly integrated into existing LQOs. LIMAO leverages a
modular lifelong learning technique, an attention-based neural net-
work composition architecture, and an efficient training paradigm
designed to retain prior knowledge while continuously adapting to
new environments. We implement LIMAO in two LQOs, showing
that our approach is agnostic to underlying engines. Experimental
results show that LIMAO significantly enhances the performance of
LQOs, achieving up to a 40% improvement in query execution time
and reducing the variance of execution time by up to 60% under
dynamic workloads. By leveraging a precise and self-consistent de-
sign, LIMAO effectively mitigates catastrophic forgetting, ensuring
stable and reliable plan quality over time. Compared to Postgres,
LIMAO achieves up to a 4x speedup on selected benchmarks, high-
lighting its practical advantages in real-world query optimization.
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1 INTRODUCTION

Query optimizers are crucial components of database systems, re-
sponsible for selecting efficient execution plans for queries. Tradi-
tional query optimizers have been the backbone of database systems
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for decades (e.g., [20, 55]). However, their inherent limitations and
challenges, such as reliance on heuristics (e.g., attribute indepen-
dence [32, 59]) and inaccurate cost models especially with complex
workloads and diverse data distributions, have spurred the develop-
ment of learned query optimizers (LQOs) (e.g., [15, 36, 37, 65, 70]),
where machine learning (ML) models have been used to replace
or improve different components of the query optimizer including
cardinality estimation [28, 57, 67], cost prediction [38, 56], and plan
search [36, 37, 65, 70].

While effective in certain scenarios, existing LQOs struggle in
dynamic environments with shifting data distributions and query
workloads. Recent efforts (e.g.,[10, 48]) have primarily focused on
managing controlled and infrequent shifts. However, addressing
significant and frequent changes remains a challenge, as the pre-
dominant solution still relies on complete retraining from scratch.
This approach is computationally expensive and susceptible to per-
formance degradation due to catastrophic forgetting[26], where pre-
viously learned knowledge is lost when adapting to new workloads,
particularly in cases of temporary changes or workload reversions.

In this paper, we address this limitation by introducing LIMAO,
a framework for Lifelong Modular Learned Query Optimization.
LIMAO focuses on the learned cost prediction (LCP) problem, where
ML models (e.g., tree convolution networks [46] and transform-
ers [44]) are employed to predict (sub-)plan costs. In particular,
LIMAO aims at promoting existing LCPs (e.g., [36, 37, 65, 70]) in
LQOs to be lifelong learners; capable of continuously learning and
adapting over time while retaining and leveraging previously ac-
quired knowledge to ensure stable performance. LIMAO is based
on the idea of learning reusable knowledge in a modular man-
ner [40, 41]. The core intuition is that, to develop a versatile LCP
capable of accurately predicting the costs of unseen queries, it is es-
sential to learn reusable knowledge of queries’ sub-plans, i.e., tasks,
that can be recombined for new queries, rather than tailoring LCPs
to specific query types or workloads. This approach draws inspira-
tion from advancements in robotics and mirrors human problem
solving, where accumulated, reused, and recombined skills enable
efficient handling of novel challenges over time.

Realizing the idea of learned reusable knowledge in the query
optimization context requires addressing three key challenges:
(1) identifying a modular decomposition approach suited to the tree
structure of query plans, (2) ensuring the LCP effectively reuses
existing knowledge about tasks (i.e., sub-plans) before incorpo-
rating new knowledge to prevent redundant learning, and (3) de-
veloping a learning strategy that preserves previously acquired
knowledge when integrating new knowledge from tasks in new
queries. To address these challenges, LIMAO introduces several
core components. To tackle the first challenge, LIMAO employs an
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Figure 1: A typical learned query optimizer architecture.
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efficient plan decomposer that splits query plans into sub-plans (i.e.,
tasks) using a new notion of “break” operators that define modular
points in the plan tree. For the second challenge, LIMAO builds and
maintains Module Hubs, a shared repository of specialized neural
network modules corresponding to specific task types, using an
efficient variation of the K-prototype algorithm [25]. LIMAO fur-
ther introduces a new attention-based neural network composition
architecture that dynamically integrates the selected modules from
the hub and assigns appropriate weights to their contributions to
the final plan cost estimation. To overcome the third challenge,
LIMAO proposes a novel two-phase training approach grounded
in the lifelong learning paradigm that avoids overriding previous
knowledge. This approach leverages experience replay buffers along
with a lightweight episodic updates mechanism to facilitate fre-
quent, low-overhead model updates during the online phase while
eliminating the need for full retraining in the offline phase.
LIMAO is a generic framework designed to seamlessly integrate
with almost all existing LQOs. In this paper, we showcase its po-
tential by integrating it with Balsa [65], a state-of-the-art reinforce-
ment learning-based query optimizer, and Bao, a state-of-the-art
hint-based query optimizer, as system prototypes. We tested on
IMDB [32] and TPC-H [11] using Postgres and designed challenging
dynamic situations for them. Our experimental evaluation across
various dynamic workloads and data distribution shifts shows that
LIMAO not only has better results on execution time but also out-
performs the prototype by orders of magnitude in query stability
(variance of plan quality over the same query). For IMDB queries,
LIMAO improves plan execution time up to 40% and query stability
by 60%, effectively addressing catastrophic forgetting. LIMAO also
achieves up to 400% gains in execution time compared to Postgres.
For TPC-H queries, 2X speedup is achieved, and the query stability
gain is more than 100X, demonstrating significant performance
improvements and resilience under dynamic situations. LIMAO can
reduce the number of bad plans to 0, while Balsa has a few hun-
dred. We also test LIMAO’s resilience to overcome the fluctuation
in different dynamic levels on different workloads for IMDB, the
result shows that LIMAO can achieve up to 6x speedup than Balsa.

2 LCP AS A LIFELONG LEARNING PROBLEM
2.1 LCP in Learned Query Optimizers

Plan cost prediction is a critical operation in query optimization
that determines the efficiency of an execution plan. Traditional
cost models rely on formulas that take cardinality estimates of sub-
queries as inputs and use manually-tuned constants and heuristics

refined over years to align estimated costs with actual performance
(e.g., [19, 20, 55]). While effective, these traditional models often
struggle to capture the complexity of varying data distributions
and query workloads [38, 56].

Many LQOs (e.g., [36, 37, 65, 70]) adopt learned cost prediction
(LCP) techniques, where ML models, such as tree convolution net-
works [46] and attention mechanisms [60], are used to predict
the cost of (sub-)plans based on execution statistics from diverse
datasets and workloads !. LCPs play a central role in these LQOs
to guide the plan search algorithms to find the best execution
plan. For instance, the plan search process can be modeled as a
deep reinforcement learning problem, with LCP as value networks
to guide searches that complete partial plans into full execution
plans [65]. Alternatively, other plan search algorithms learn how to
select among candidate plans generated by traditional optimizers
while leveraging LCPs to estimate the cost of these candidate plans
(e.g., [36]) or their relative rankings (e.g., [70]). Figure 1 shows a
typical architecture of an LQO employing LCP with its plan search.

2.2 LCP with Lifelong Learning

Performance Degradation in Dynamic Environments. While
existing LCP approaches (e.g., [36-38, 56, 65]) have shown promise,
they face significant challenges in dynamic environments of data
and query workloads. Some LQOs have attempted to address the dy-
namic environment challenges by emulating the data and workload
drift scenarios during training, such as randomly removing [10]
or partially masking query information [48] to force ML models
to make predictions with missing information. However, these
approaches are only effective for slight and infrequent changes
in query or data distributions. Most LCP approaches still require
complete (re-)training from scratch (i.e., ML model parameters are
completely re-learned) when faced with significant and frequent
changes in the environment. For example, an LCP trained on a
workload dominated by JOB queries [32] will generate suboptimal
plans if the workload is frequently altered with CEB queries [48],
which involve more complex join patterns than JOB. While robust
learned cardinality estimators (e.g., [34, 48]) might adapt to such
changes, the LCP still needs to be retrained to reflect this change in
the plan cost prediction. Extensive retraining of LCPs in response
to frequent changes in dynamic environments can lead to the cata-
strophic forgetting problem [26], where the learned model fails to
retain prior knowledge when retrained on new ones, especially in
cases of temporary changes or workload reversions. To better un-
derstand this failure behavior, we conducted a simple experiment
that simulates frequent workload drift using a TPC-H query work-
load [11] (scale factor of 10). We divided the workload into two sets,
namely setl and set2, based on query templates, and alternated
their execution every 5 iterations over a total of 100 iterations. In
each iteration, all queries from the active set were executed (e.g.,
setl ran during iterations 1-5, set2 during iterations 6-10, and so
on, with each set running for a total of 50 iterations). We evaluated
two variations of Balsa [65], a typical RL-based LQO: vanilla Balsa,
which suffers catastrophic forgetting, and our LIMAO-based Balsa,

!Unlike approaches that focus solely on learning cardinality estimation [17, 27, 47, 62,
67, 68, 71], our focus is on learned end-to-end cost prediction techniques.
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Figure 2: Catastrophic forgetting on the LQOs performance.

which addresses this issue based on our proposed LIMAO frame-
work. Both variations incrementally retrained their LCPs at the end
of each iteration. This means that for iterations 2 to 4 within any
5-iteration period, queries used an LCP that had been (re)-trained
on their current query set, while in iteration 1, they relied on an
LCP trained on the other query set from the previous period. Fig-
ure 2 shows the execution time of one query in setl across its 50
iterations. After iteration 20, the performance of both variations
started to stabilize, where vanilla Balsa encounters latency jumps
at the beginning of the 5-iterations period due to the catastrophic
forgetting of its LCP that was re-trained on the other query set
in the previous 5-iterations period. In contrast, the LIMAO-based
variation was more stable despite frequent workload changes.

Our Goal. Our ultimate goal is to develop a lifelong LCP that can
be useful for long stretches of time. The LCP can continuously
learn and adapt over time, integrating new knowledge from chang-
ing queries and data while retaining and leveraging the previously
acquired knowledge to ensure that performance in prior tasks does
not degrade. While single-task learning approaches incorporating
techniques like transfer learning [6] and mechanisms to avoid cat-
astrophic forgetting [29] seem to be a natural fit for our problem,
they are inherently task-specific and struggle to generalize to signif-
icantly different tasks. Multi-task learning (e.g., [53]) offers another
direction, where a single model can be learned to share knowledge
across diverse types of queries and data scenarios, but this approach
is impractical since future queries and data patterns cannot be fully
anticipated. Following the same direction, large-scale pre-training
on diverse query workloads and data distributions (e.g., [22, 23])
can provide a foundation, yet assumes stationary distributions and
fails to adapt to the dynamic nature of real-world database environ-
ments. Furthermore, pre-trained models are inherently imperfect
and require continual feedback from the execution environment to
correct unexpected behaviors and maintain effectiveness over time.

3 LIMAO OVERVIEW

Main Observation and Challenges. We observe a key limitation
hindering existing LCPs from being suitable for a lifelong setup:
they treat each query as a standalone task, which is inadequate for
knowledge retention. Queries often comprise fine-grained patterns
that are hard to learn with a single ML model. Moreover, these pat-
terns can be shared across queries to help in predicting their costs.
For example, in a multi-table join query, it is typical to combine
different types of join operators (e.g., nested-loop join, hash join,
sort-merge join) to run the query, and such combinations often
recur in other queries. Thus, it is valuable to learn these patterns

as independent ML modules. Learning compositional modules en-
ables the recombination of these modules for unseen queries and
the addition of new patterns (i.e., new modules) without requiring
a complete update of the LCP’s model. However, achieving this
presents three main challenges. First, we need to identify a modular
decomposition approach that is suitable for the plan tree structure
(Challenge 1). Second, we need a strategy that ensures that the LCP
really reuses knowledge from existing modules to predict the cost
of new queries before incorporating any specific new knowledge
to these new queries (Challenge 2). Third, when incorporating
such new knowledge, we must devise a learning strategy that si-
multaneously prevents the forgetting of knowledge already stored
in existing modules (Challenge 3).
Framework Overview. Here, we propose LIMAO, a framework
(shown in Figure 3) that tackles the above-mentioned challenges
and allows existing LCPs to be efficient lifelong learners. Inspired
by recent advances in robotics and human learning processes [39-
42] that focus on learning reusable knowledge, LIMAO formulates
the learning process of LCP as a functional compositional learn-
ing problem [40]. The core idea is to decompose query plans into
smaller “tasks” (i.e., sub-plans), each handled by specialized neural
network “modules” (e.g., Tree-CNN [46], Transformer [60]), which
are then composed into a higher-level network to predict the over-
all cost (similar to programming, where functions are combined to
solve complex problems). For example, a query plan with nested-
loop joins and hash joins can reuse pre-trained modules for these
operators, recombining them to handle unseen queries efficiently.

To address Challenge 1, LIMAO introduces a Plan Decomposer
(Section 4) that divides the plan into sub-plans (i.e., tasks) based
on a new notion of “break” operators. These operators efficiently
define points in the plan tree where modular composition can occur.
To tackle Challenge 2, LIMAO maintains a shared compositional
knowledge base called Module Hubs. Each hub contains a set of spe-
cialized neural network modules that correspond to a specific task
type, allowing the model to dynamically select the most relevant
modules for a given task. LIMAO further employs a composable
neural network (Section 7) designed to predict the cost of any plan
based on the modules chosen for the tasks inside it, dynamically
weighting their contributions to refine the final estimate. To over-
come Challenge 3, and inspired by prior works [40], LIMAO adopts
an efficient two-phase training paradigm (Section 8) that encour-
ages knowledge reuse rather than redundantly learning patterns.
The training process of LCP is divided into online and offline phases.
During the online phase, LIMAO attempts to form a cost prediction
model for the LCP and train it using only existing close enough
modules from the Module hubs. To ensure that LCP wisely reuses
previously acquired knowledge without overriding it, LIMAO modi-
fies only a copy of the selected modules using a lightweight training
mechanism. In this approach, each training iteration is divided into
smaller sections called episodes, which allow for prompt model
updates and avoid disastrous plans. The original module parame-
ters remain unchanged, and any newly discovered knowledge is
stored in a buffer for later use in the offline phase. During the offline
phase, the LCP incorporates any new knowledge from the buffer
by updating the original parameters of existing modules.

Figure 3 shows the components and workflow of LIMAO. First,
a candidate or a final plan is obtained from an LQO. For example,
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Figure 3: LIMAO framework overview.

an LQO like Bao [36] would rely on complete candidate execution
plans generated by a traditional optimizer to select from, whereas
Neo [37] and Balsa [65] use a step-by-step plan searcher that builds
on partial plans at each iteration. Then, the Plan Decomposer breaks
the plan into sub-plans (i.e., tasks) (Section 4). Next, the Tasks En-
coder obtains efficient embeddings for each task using plan-level
and operator-level features (Section 5), which are used by the Task
Modules Selector and Modular Plan Cost Predictor components. The
Task Modules Selector (Section 6) retrieves the most relevant mod-
ules from the Module Hubs based on embeddings, adopting a K-
prototype clustering algorithm [25]. These hubs are created and
frequently updated by the Task Modules Maintainer (Section 6). The
Modular Plan Cost Predictor assembles the selected modules into a
compositional neural network. Their output query representations
are weighted and merged using the attention mechanism [7, 12, 21]
to generate a final cost estimate for the plan. When the LQO pro-
vides a final plan based on the cost estimates, the plan is executed
in the query execution engine and feedback is sent to Experience
Manager for (re-)training the Modular Plan Cost Predictor and the
selected modules using our two-phase training approach.

4 PLAN DECOMPOSITION INTO TASKS

In this section, we illustrate the process of decomposing a query
plan into a set of tasks to address Challenge 1. This process is an
important step in enabling the functional composition of LIMAO.
However, it is very challenging because decomposing a plan into
a set of combinable tasks is inherently complex. This complexity
arises from the variable structure of the query plans, where the
number, types, sequence of operators, and tree depth are not fixed.
Approach. A straightforward idea for decomposing a query plan is
to divide it into pipelines based on “blocking” operators [43]. How-
ever, this often results in suboptimal tasks from the functional com-
position perspective, as blocking operators may create pipelines
that are too coarse-grained, resulting in large, monolithic tasks
where diverse execution patterns (e.g., various join types or scan
methods) are grouped together. Such coarse decomposition makes
it challenging to construct reusable modules for other queries. De-
termining appropriate breakpoints in the plan tree for task decom-
position is, in general, a non-trivial problem. Sub-trees that are

too deep result in ineffective decomposition, as they closely re-
semble the original query plan, while overly frequent breakpoints
create shallow sub-trees that fail to capture plan complexity and
add computational overhead due to the proliferation of sub-trees.
To address this, we introduce the concept of “break” operators
to guide the plan decomposition process. A break operator is an
operator that splits the plan tree at its first occurrence during a
top-down traversal. Specifically, we identify the first occurrence of
a break operator in both the left and right sub-trees of the root, and
extract the corresponding sub-trees rooted at these operators. We
stop the traversal upon encountering the first instance of each break
operator type to avoid creating structurally overlapping sub-trees
rooted at the same operator type. Continuing the decomposition
beyond the first occurrence would lead to multiple sub-trees that
share the same break operator type at their roots—i.e., they would
be functionally overlapping—resulting in unnecessary tasks.
Joins as Break Operators. In principle, break operators can be
any type of query plan operator (e.g., scan, join, aggregate, sort).
However, for break operators to be effective, they should satisfy two
key criteria: 1) Performance-critical: the break operator should sig-
nificantly influence the query execution time, and 2) Decomposition-
effective: splitting around this operator should produce sub-plans
that are neither too fine-grained nor too coarse, enabling meaning-
ful modular learning. We chose the join operators as break oper-
ators because they best satisfy both criteria. First, join operators
are typically the most computationally expensive components in
query plans. Second, decomposing around join operators results in
sub-plans that are rich in structure and execution variability.
Example. Figure 4 shows an example of our plan decomposition
approach using two example break operators: hash join (HJ) and
nested-loop join (NL). The left side shows the original plan tree,
while the right side shows the resulting four sub-trees (i.e., tasks):
three sub-trees that are generated by the break operators and one
sub-tree that spans the remaining operators (i.e., aggregations,
scans, non-break join operators) from the root to the first encoun-
tered break operator or leaf nodes for completeness. The plan tree
is traversed independently for each break operator type to generate
their corresponding tasks. For the NL operator, only one sub-tree
(Tree 2) is generated as the first encountered NL node has no sibling
and already covers its grandchild NL node, which is colored in grey.
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Figure 4: Example on plan decomposition into tasks. Grey
operators are those break operators that are ignored because
their ancestral nodes already include at least one instance of
the same break operator type.

Conversely, for the HJ operator, two HJ-rooted sub-trees (Trees
3 and 4) are produced, as the traversal continues through the left
and right sub-trees of the NL node, marked in purple. Note that,
since Tree 2 is NL-rooted and Tree 3 (or Tree 4) is HJ-rooted (i.e.,
functionally non-overlapping), they can overlap structurally.

5 TASK ENCODING

Efficient encoding of decomposed tasks is crucial to capture their
characteristics during the module selection and cost prediction
steps. Below, we provide the details of encoding a single task:
Table Selectivity (Feature A). This captures the selectivity of
tables involved in the task. Following the approach in [48], we
use traditional cardinality estimators to compute these selectivities.
These estimators add minimal overhead to the inference time of the
learned model while providing valuable information. If there are n
tables in a workload, then we represent this feature with a numerical
vector of length n, where each entry contains a normalized value
between 0 and 1 (i.e., table selectivity divided by table size) if the
task involves the corresponding table, and 0 otherwise.

Operator Mapping (Feature B). This encodes the join and scan
properties associated with the task. To generate it, we perform a
bottom-up traversal of the sub-tree corresponding to the task and
record the count of each type of join operator (hash join (HJ), merge
join (MJ), and nested-loop (NL) join) and scan operator (sequential
scan (SS) and index scan (IS)) encountered. If there are n tables in a
workload, then we represent this feature with a numerical vector of
length 3 + 2n, where the first three entries correspond to the counts
of the join types, and the remaining entries represent the counts of
scan types for each table.

Preorder Index (Feature C). This encodes the tree structure of
the sub-tree associated with the task in a numerical vector. Similar
to [37, 65], we generate this vector using a pre-order traversal of
the sub-tree, where each entry represents the index of a node in the
original query plan to which the task belongs. For nodes with no
children, the corresponding child entries in the vector are set to 0.
Query Feature (Feature D). This captures whether the SQL query
associated with the task possesses any of the following four proper-
ties: (1) contains a sub-query, (2) includes an aggregation function,
(3) contains a GROUP BY clause, or (4) contains an ORDER BY
clause. It is represented as a binary 0-1 vector of length 4.
Example. Figure 5 depicts the encoding of the three break-operator-
based tasks in Figure 4 (we omitted the encoding details of Tree 1
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Figure 5: Encoding for the tasks represented with trees 2, 3,
and 4 in Figure 4.

to avoid cluttered visualization). The upper left part shows the SQL
query corresponding to the decomposed plan. Features A and D are
defined at the query-level and then used with all tasks. In contrast,
features B and C are task-specific, with B; and C; representing the
features for the task associated with Tree i (i € {2,3,4}). Addi-
tionally, we detail the process of generating Feature B for Tree 3,
demonstrating a bottom-up traversal that incrementally counts the
join and scan operators encountered.

6 MODULES MAINTENANCE AND SELECTION

Identifying the appropriate neural network modules for the decom-
posed tasks is a critical step in constructing an accurate LCP. A
straightforward approach is to treat each unique combination or
sequence of operators in a query plan as an independent task and
assign a dedicated neural network module to it in the module hub.
For example, a task that involves SS followed by NL would require
a different module from a task that involves SS followed by "in-
dexed" NL. Similarly, a task executing HJ before NL would require
a distinct module from the one executing them in reverse order.
However, this approach is impractical, as it would lead to an explo-
sion in the number of modules, significantly increasing storage and
search overhead while limiting the benefits of modularization by
over-specializing each module to a highly specific task. To address
this, our idea is to maintain a representative module for each group
of similar enough tasks using a clustering algorithm. These repre-
sentative modules serve as a carrier of knowledge, which is the
prerequisite for solving Challenge 2. All representative modules
built for an LQO integrated with LIMAO share the same neural
network architecture, inherited from the base LCP model used by
this LQO (e.g., the Tree-CNN architecture in Balsa [65]). However,
they differ in their parameters, which are specialized through train-
ing on their respective tasks (i.e., sub-plans). These parameters are
then dynamically adapted as tasks evolve over time, resulting in a
balance between accuracy and efficiency.

Building Each Module Hub as a Cluster. We adopt a variation of
the K-prototype algorithm [25] to maintain K representative neural
network modules for each type of task decomposed using a specific
break operator type (i.e., a set of K representatives for NL-rooted
tasks, and another set of K representatives for HJ-rooted tasks, etc).



We choose the K-prototype algorithm for two key reasons. First, it
is an extension of K-means designed to handle mixed data types
(numerical and categorical features), which is compatible with our
numerical and categorical task encodings (Section 5). Second, it is
computationally efficient, making it practical for maintaining and
updating module clusters dynamically over time. Our algorithm for
constructing clusters for each module hub operates in four steps
during the training phase of any LQO. First, initialize K module
representatives (i.e., centroids) with random values for Feature A
as the numerical feature, and Features B, C, D as categorical ones,
based on the training set queries. Second, for each task x; decom-
posed from the training examples, assign it to the cluster with the
smallest dissimilarity value, calculated according to this formula:

d= " dism(xijyox)+y Y, discat(xijier) (1)
jetay je{B.C.D}

where x;; is a feature vector (numerical or categorical), and
ck is the representative for cluster k € {1,...,K}, y is a weight-
ing factor to balance the influence of numerical and categorical
features, and dispym and discat are vector-wise numerical (e.g., Eu-
clidean distance) and categorical (e.g., mismatch count) dissimilarity
functions, respectively. Third, for each cluster representative cy,
update its numerical cZ}lm and categorical cl‘f}.t features using the
num _ _1

e o 2ix; €5, Xij and most frequent value
cat _

Cpj = argmaxy 2x;es, 1(xij = v) functions, respectively, where S

numerical mean ¢

is the set of tasks assigned to the cluster. Fourth, repeat the second
and third steps until convergence; either no change in task assign-
ments occurs or the maximum number of iterations is reached.
Selecting Modules and Updating Hubs. During the testing phase,
we simply use Equation 1 to determine the appropriate representa-
tive cluster for any incoming task that minimizes the dissimilarity
value and then retrieve its corresponding neural network module. If
the dissimilarity of a task to all clusters exceeds a predefined thresh-
old, the Task Modules Maintainer creates a new cluster with that
task as its representative. Moreover, the modules maintainer peri-
odically checks cluster sizes and removes any clusters that contain
fewer tasks than a specified minimum.

7 MODULAR PLAN COST PREDICTION

Our primary objective in LIMAQO is to enable LQOs to construct a
customized LCP neural network policy for each query by selecting
and combining modules from several shared module hubs, thereby
promoting knowledge reuse to address Challenge 2. To achieve
this, we propose to use neural composition techniques (e.g.,[2, 18])
to assemble a complete LCP neural network from the selected
modules to handle the query. Neural composition has been exten-
sively applied to build modular architectures in supervised learning
(e.g.,[2, 52]) and reinforcement learning (e.g.,[18, 64]) and has re-
cently been adapted for functional compositional problems [13, 40].
Attention-based Neural Composition. A large class of existing
neural composition methods assumes a linear dependency struc-
ture between decomposed tasks (i.e., a chaining or graph structure),
which is common in robotic tasks [4, 40] (e.g., a pick-and-place
robotic task is decomposed into sequential steps such as “grasp”,

followed by “lift”, and then “place”). This chaining structure, how-
ever, creates brittle dependencies among modules, where changes
to one module can have cascading effects on others. Moreover, this
assumption does not align well with our break-operator-based de-
composition, which can produce non-temporally related tasks. For
instance, a multi-table join query may be decomposed into two
parallel HJ tasks, as shown in Figure 4. Although parallel neural
composition approaches [3, 51] seem well-suited for such scenarios,
they often fail to capture the inherent inter-dependencies between
query tasks, particularly as the outputs of these tasks must be
combined to produce a unified cost prediction for the entire query
plan. Additionally, not all tasks contribute equally to the final cost
prediction, which these methods typically overlook.

To address these limitations, we propose an attention-based vari-
ation of parallel neural composition. This variation facilitates the
composition of cost prediction tasks by leveraging attention mech-
anisms [7, 12, 21] to capture task relationships and adjust their
contributions accordingly. The core idea is to assign importance
to the outputs of different modules using attention weights, dy-
namically adjusting their contributions based on their potential
impact on the final predicted cost. Attention mechanisms have
already demonstrated their effectiveness in other database appli-
cations [34, 54], and we extend their utility to our cost prediction
framework. Formally, assume that there are k modules with impor-
tance wy, - - - , Wi, then the assigned weight wlf for wi,i € [1,k] is
in a softmax weighting form: w{ = exp(wi)/z‘i:1 exp(wj).

Furthermore, we train the combination of modules correspond-
ing to one query plan as a whole unit. In this way, the modules are
not only trained on their tasks but also learn to collaborate with
other modules under different combinatorial setups.

Network Architecture. Figure 6 shows the neural network ar-
chitecture of our LCP. After a plan is decomposed into K tasks
and their corresponding modules are retrieved (see Section 6), the
table selectivity encoding (i.e., Feature A) is passed through a se-
ries of fully-connected layers, each progressively reducing in size.
The output of the third fully connected layer is then concatenated
with the operator mapping encoding (Feature B) of each decom-
posed task, resulting in a new vector representation P for each
task. Next, using the pre-order index encoding (Feature C), the tree
representation of encodings is reconstructed for each task. Each
node in this tree corresponds to the previously concatenated vec-
tors from Features A and B, resulting in 1 X f’ dimension. This
tree representation is then processed by its corresponding mod-
ule to generate a module-specific plan representation w; for each
task (e.g., Tree-CNN-based [36, 48, 70] or Tree-LSTM-based [8, 69]
plan representation). Afterward, the attention merger is applied to
these module-specific plan representations. It dynamically assigns
weights to each representation and combines them to send to the
output MLP layers, producing the final cost estimation of the plan.

8 LIMAO TRAINING

LIMAO introduces a novel training mechanism that follows the
lifelong learning paradigm, incorporating experience buffers and
episodic updates to improve the quality of LCP and reduce training
costs. The training mechanism effectively addresses Challenge 3
by: 1) taking advantage of reusable modules to eliminate the time
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Figure 6: Neural network architecture of modular LCP.

Algorithm 1 Training Mechanism in LIMAO

1: T« 0; Bepisode < [I: Banr < [1
2: M « Init(input & output MLP, Module Hubs)
3: while T < iterations do

> Initialization

4: if T > 0 then

5: M « DeepCopy(M”) > Offline updates
6: if Drift Detected then

7: | M.CompletelyTrainWith(B;;)

8: else

9: | M.CompletelyTrainWith( By, )

10: | M’ « DeepCopy(M), Biass <[]

11: e1 ...ep < iteration queries > Split queries into episodes
12: for each episode e; do > Online exploration phase
13: for each query g € e; do

14: moduleslds < ModuleSelector(q;)

15: feedback « PredictAndExecute(M’, q j, moduleslds)

16: Bepisode-Add(feedback, moduleslds)

17: M’ LightlyTrainWith (&)

18: Biast-Add(Bepisode) and Reset Bepjsode

19: Bair-Add(Byast)
20: Evaluate (M, testSet)
21: L TeT+1

> Evaluation

needed for retraining from scratch when query or data pattern
drifts; 2) using experience replay to quickly reclaim previous knowl-
edge; and 3) dividing training queries within each iteration into
subsets of episodes and performing rapid lightweight model train-
ing after each episode? In such a way, LIMAO generates better
plans in shorter learning periods while effectively avoiding bad
plans and stabilizing plan quality. We have two main phases: an
online phase where we episodically update a copy of the LCP model
and populate the experience buffer, and an offline phase where we
update the original LCP model and perform experience replay. The
details of our method (Algorithm 1) are as follows:

Initialization. The Experience Manager maintains an episode buffer
Bepisode that is refreshed per training episode, and an experience
buffer B,;; that contains experience from every iteration (line 1).
The experience from the previous iteration is defined as B;,s;. We
create the LCP model M by initializing the neural network’s MLP
input and output layers with random parameters, as well as all
the modules in Module Hubs and Attention Merger (line 2). To
avoid catastrophic damage to the model M while (re-)training it,
we maintain a copy M’ that is updated frequently in our episodic
setup, whereas M is updated once per iteration (Details are below).

ZNote that, in LIMAO, training iterations and their corresponding episodes use different
sets of queries, unlike existing LQOs (e.g.,[36, 65]), which fix the same set of queries
across all training iterations.

Online Phase. An under-trained LCP model, particularly in early
iterations, could lead to a sequence of inefficient plans due to infre-
quent model updates. To avoid this, we introduce an episode-based
paradigm that updates the LCP model more frequently to stabilize
performance. In each episode, the current LCP model is used to pre-
dict query plans for the episode’s queries, which are then executed.
The resulting runtime feedback, along with the corresponding mod-
ule combinations, is stored in the episode buffer Bepisode (lines
14-16). At the end of the episode, M’ is quickly trained based on
the buffer, with only a few epochs of neural network updates (line
17). This lightweight training process introduces minimal latency to
the online exploration phase, typically completes in a few seconds,
while avoiding damage to the model M.

Offline Phase. In this phase, we perform comprehensive training
on the model M to ensure it remains up-to-date in dynamic en-
vironments (lines 5-9). We start by replacing M with the model
copy M’ which was episodically trained in the previous iteration.
Following this, M is retrained using an experience replay buffer,
determined by whether a drift is detected or not. If a drift in query
patterns or data distribution is identified [1, 5, 16, 24, 33, 35], then
M is retrained using the experience buffer 8,;;, which contains
experiences from all prior iterations, allowing the model to retain
historical knowledge while integrating new patterns. If no drift is
detected, then M only requires light adaptation. In this case, we
limit the retraining of M to the most recent experiences stored in
Byast (lines 6-9) only to reduce overhead and prevent overfitting.
Note that, regardless of whether retraining uses B; or By, M
converges quickly, as it is initialized from M’, which has already
been lightly exposed to recent workload and data shifts.

9 EXPERIMENTAL EVALUATION

Here, we conduct experiments to answer some key questions: Can
LIMAO help generate better plans in dynamic environments (Sec-
tion 9.2.1)? How does LIMAO training paradigm prevent cata-
strophic forgetting (Section 9.2.2)? How do the design components
of LIMAO contribute to its performance (Section 9.3.3)? How effec-
tively can LIMAO avoid bad plans (Section 9.3.4)?

9.1 Experiment Setup

Benchmarks. We perform our evaluation using TPC-H [11] and
IMDB-based [32] benchmarks. For IMDB, we evaluate on the JOB [32]



and CEB [48] query sets, as well as a set of queries from [36], which
we refer to as BaoQs. We construct six benchmarks for IMDB and
three benchmarks for TPC-H, where we randomly split each bench-
mark into training and test sets, as shown in Table 1. The first three
IMDB workloads consist of distinct query templates, while the last
three reuse the same templates as the first three but apply different
filtering conditions to create different queries.

Table 1: Evaluation workloads and their templates.

Workload  training test Template

IMDB_set1 94 18 Most from JOB, 2 from BaoQs
IMDB_set2 71 14 Most from BaoQs, 3 from JOB
IMDB_set3 30 5 Most from CEB, 3 from JOB
IMDB_set4 94 18 Most from JOB, 2 from BaoQs
IMDB_set5 14 5 Most from CEB, 3 from JOB
IMDB_set6 14 5 Most from CEB, 3 from JOB
TPC-H_set1 34 6 TPC-H template 3, 8, 10, 13
TPC-H_set2 34 6 TPC-H template 5, 7, 12, 14
TPC-H_set3 40 12 Other TPC-H template except 15

Static and Dynamic Environments. We conducted experiments
under four different environments: Static, Workload Switch, Vol-
ume Switch, and Both Switch. For Workload Switch, the experi-
ment iteratively switches between multiple query sets. We refer to
the collection of these query sets as a combined workload. For Volume
Switch, the experiment iteratively switches between two databases
with different data volumes. For the IMDB dataset, this involves
switching between the full database and a subset containing only
data from the year 2000 onward. For TPC-H, we switch between
databases with scale factors of 10 and 1. The Both Switch scenario
combines changes in both query patterns and data volume simul-
taneously. Unless otherwise specified, dynamic scenarios involve
periodic switching every 5 iterations over a total of 100 iterations,
resulting in 50 combined iterations to evaluate for each switch side.
For example, in Workload Switch, IMDB_set1 is used for iterations
1-5, IMDB_set2 for iterations 6—10, then back to IMDB_set1 for
iterations 11-15, and so on. We analyze the performance of LIMAO
under non-periodic switching in Section 9.2.3 and 9.2.4.

We compare LIMAO to the following LQOs and Postgres:
Baselines: We evaluate the performance of LIMAO against three
baselines: Balsa [66], an LQO that uses deep reinforcement learn-
ing to construct query plans step-by-step from scratch; Bao [36],
an LQO that employs a multi-armed bandit model to steer the
traditional optimizer toward more efficient plans via ranked hint
sets, without fully replacing it; and Postgres [49], the traditional
rule-based and cost-based optimizer (Version 12.5). We integrated
LIMAO with both Balsa and Bao, denoted as LIMAO-Balsa and
LIMAO-Bao, respectively. We also extended Balsa’s source code
to support non-equality joins and multiple join conditions between
two tables, and applied these improvements to both Balsa and
LIMAO-Balsa. Our experimental evaluation primarily uses LIMAO-
Balsa to assess LIMAO, while LIMAO-Bao is used to explore the
performance under non-periodic and cross-schema switching situ-
ations in Section 9.2.3 and Section 9.2.4, respectively.
Performance Metrics. We evaluate performance using several key
metrics, including query execution time, the number of bad query

plans, and execution stability. Execution stability is used to quantify
the degree of catastrophic forgetting and is measured using two
indicators: the variance and the derivative of the total workload
execution time across iterations. Variance captures fluctuations in
execution time, while the derivative is computed from a smoothed
curve of execution time to reflect the rate of change over time.
Better stability implies better handling of catastrophic forgetting.

Default Settings. Unless otherwise specified, we adopt the follow-
ing default configurations. To construct the Module Hubs in LIMAO,
we select HJ and NL as break operators for the IMDB benchmark,
with module hub sizes (i.e., K representative modules) of 2 and 3
respectively. For the TPC-H benchmark, we use HJ and MJ as break
operators, each with a module hub size of 1. The sizes of Module
Hubs are determined by the complexity of the workload and the
occurrence frequency of the corresponding operator types. In both
benchmarks, we include an additional module hub, referred to as
OTH, which stores modules corresponding to sub-plans not rooted
at a break operator (e.g., Tree 1 in Figure 4). For training LIMAO,
we divide the queries in each training iteration into episodes of 10
queries. In both the Bao and LIMAO-Bao implementations, we use
49 hint sets and train using the most recent 500 execution records.
Machine Settings. Unless otherwise specified, experiments are
conducted on CloudLab [50], using c240g5 which is equipped with
dual Intel Xeon Silver 4114 CPUs (2.20 GHz, 20 cores total), 192 GB
DDR4 RAM, a 480 GB SATA SSD, and NVIDIA P100 GPU.

9.2 End-to-End Experimental Results

In this section, we evaluate the performance of LIMAO across
four dynamic scenarios. Section 9.2.1 presents the performance
of LIMAO-Balsa under a basic Workload Switch scenario, where
two workloads are alternated periodically. In this setting, LIMAO-
Balsa performs comparably to Balsa and shows advantages in cer-
tain cases only. Therefore, in Section 9.2.2 and Section 9.2.3, we
devise more complex Workload Switch scenarios which involve
periodic switching among three workloads and the other using a
non-periodic switch pattern. In Section 9.2.4, we shift to LIMAO-
Bao to evaluate performance under a non-periodic, cross-schema
switching scenario involving five different workloads. Given the
stronger performance of LIMAO-Balsa, we further evaluate its be-
havior in Sections 9.2.5 to provide a deeper analysis of the benefits
introduced by integrating LIMAO into Balsa.

9.2.1 Comparison with Balsa under a simple Workload Switch. In
a simple Workload Switch scenario, we evaluate the performance
of LIMAO-Balsa and Balsa by alternating between IMDB_set1 and
IMDB_set2 every 5 iterations over a total of 100 iterations. Table 2
shows the speedup ratios of the best query plans generated by
LIMAO-Balsa and Balsa in this setup. Both systems outperform
Postgres by up to 2.4x on IMDB queries. The performance gain in
IMDB workloads is largely due to the ability of LQOs like Balsa
and LIMAO-Balsa, which generate plans from scratch, to better
handle complex join conditions commonly found in these queries.
In IMDB_set1, LIMAO further enhances performance by decom-
posing complex queries into simpler sub-queries and effectively
preserving historical knowledge from the workload, giving it an
edge over Balsa. In IMDB_set2, the BaoQs workload is more com-
plex than JOB, featuring more join operations and longer average



query execution time. Under such conditions, the limited number of
training iterations and queries may not provide enough examples
per module combination to train a fully effective model in LIMAO-
Balsa, resulting in a slight performance degradation in IMDB_set2
compared to IMDB_set1.

For TPC-H, the performance advantage of LIMAO-Balsa and
Balsa over Postgres is less obvious, particularly due to the rela-
tively simple join conditions. This observation aligns with prior
findings [15, 66, 70], which show that LQOs typically offer limited
improvements over traditional query optimizers for the TPC-H
benchmark. Despite this, LIMAO-Balsa still achieves improved per-
formance under the TPC-H_set1 and TPC-H_Combined workloads.
The lack of performance gains in TPC-H_set2 for both Balsa and
LIMAO-Balsa can be attributed to operator selection behavior. In
TPC-H_setl, using only HJ is generally sufficient to generate opti-
mal plans. However, in TPC-H_set2 which includes templates such
as 5,7, 12, and 14, the use of NL would be more optimal. However,
when Balsa becomes biased toward always selecting HJ during
training, it fails to consider NL, which may be critical for optimal
performance in certain queries. This bias can result in performance
that is even worse than Postgres. Increasing the number of training
iterations could help mitigate this issue by enabling the model to
learn when using NL is beneficial.

In Figure 7, we provide further insights by analyzing several slow
queries: those with execution times exceeding a few seconds, drawn
from different workloads to highlight where performance advan-
tages emerge. Consistent with the results in Table 2, LIMAO-Balsa
generally outperforms Balsa on IMDB queries. TPC-H templates 3,
8, and 10 do not involve complex aggregation functions or nested
structures and contain complex join orders. In such cases, a build-
from-scratch LQO like Balsa performs well. However, for TPC-H
queries with relatively simple join structures, the benefits of using
Balsa or LIMAO-Balsa over Postgres are minimal.

Table 2: Execution speedup ratio of LIMAO-Balsa vs Balsa in
simple Workload Switch.

Workload LIMAO-Balsa Balsa Postgres
IMDB_set1 2.44 1.96 1.00
IMDB_set2 2.66 2.68 1.00
IMDB_Combined 2.59 2.40 1.00
TPC-H_setl 1.31 1.30 1.00
TPC-H_set2 0.76 0.75 1.00
TPC-H_Combined 1.11 1.10 1.00

9.2.2 Challenging Periodic Workload Switch. Here, we move to a
more complex scenario, where we alternate between IMDB_set1,
IMDB_set2, and IMDB_set3 every 5 iterations, over a total of 120
iterations, and evaluate LIMAO-Balsa against Balsa. Table 3 shows
the overall speedup and the variance of plan execution times across
iterations. LIMAO-Balsa consistently outperforms Balsa in both
metrics, indicating that it produces faster and more stable query
plans. Specifically, LIMAO-Balsa requires as little as 30% of Post-
gres’s execution time and 60% of Balsa’s, while achieving up to 8.8%
greater stability compared to Balsa. As the environment becomes
increasingly dynamic, the stability of LIMAO-Balsa becomes more
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Figure 8: Execution time throughout 120 iterations in the
challenging Workload Switch.

prominent, thanks to its episode-based training mechanism, which
promptly trains the model to prevent generations of bad plans.

Table 3: Speedup ratio and variance of execution time of
LIMAO-Balsa vs Balsa in challenging Workload Switch.

Metric LIMAO-Balsa Balsa Postgres
IMDB_set1 Speedup 2.49 1.53 1.00
IMDB_set2 Speedup 4.08 2.92 1.00
IMDB_set3 Speedup 1.53 1.31 1.00
Combined Speedup 2.90 2.07 1.00
IMDB_set1 Variance ~ 4.73 x 10>  4.20 x 10° NA

1.05 x 107 NA
2.29 % 10° NA

1.18 x 10°
5.21 x 10°

IMDB_set2 Variance
IMDB_set3 Variance

Figure 8 visually depicts the execution time of Balsa and LIMAO-
Balsa, summed across all training and testing queries within each it-
eration, with different line segments indicating the active workload
at each point. LIMAO-Balsa exhibits significantly greater stability
and shows steady performance improvements over time. In contrast,
Balsa’s performance curve is highly erratic, with frequent spikes
that correspond to instances of catastrophic forgetting, where the
model generates poor plans upon switching back to a previously
seen workload. This figure highlights LIMAO-Balsa’s ability to effec-
tively mitigate catastrophic forgetting, demonstrating its robustness
and practical viability for real-world dynamic environments.



9.2.3 Challenging Non-periodic Workload Switch. In this experi-
ment, we use all six IMDB workloads, with workloads switching
randomly: each executed for 2 to 8 consecutive iterations. To ensure
reproducibility, we use fixed random seeds. The total number of iter-
ations is set to 100. As shown in Figure 9, Balsa requires 405 seconds
to complete all workloads optimally, while LIMAO-Balsa achieves
the same in just 307 seconds. Balsa encounters 464 timeouts (de-
fined as queries exceeding 60 seconds in execution time), compared
to only 219 timeouts with LIMAO-Balsa. These results demonstrate
that LIMAO significantly improves Balsa’s performance in highly
unpredictable, non-periodic environments.

Table 4: Speedup ratio of LIMAO-Bao vs Bao in non-periodic
Workload Switch for LIMAO-Bao experiment.

Workload LIMAO-Bao Bao Postgres
IMDB_set1 1.17 1.17 1.00
IMDB_set2 1.48 1.25 1.00
IMDB_Combined 1.34 1.22 1.00
TPC-H_set1 1.98 2.04 1.00
TPC-H_set2 3.20 3.20 1.00
TPC-H_set3 1.97 1.58 1.00
TPC-H_Combined 2.15 1.91 1.00
All 5 Workloads 1.85 1.66 1.00
Total Workload Runtimes
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Figure 9: Total optimal execution time of different workloads
in non-periodic cross-schema Workload Switch.

9.2.4  Non-periodic Workload Switch with Schema Changes. In this
section, we evaluate LIMAO-Bao under a non-periodic Workload
Switch scenario involving schema changes. We randomly switch
between five workloads: IMDB_set1, IMDB_set2, TPC-H_set1, TPC-
H_set2, and TPC-H_set3, where each workload is executed consecu-
tively for 2 to 10 iterations. Table 4 reports the speedup ratios of Bao
and LIMAO-Bao under this dynamic setting. Overall, LIMAO-Bao
shows either promising improvements or performance comparable
to Bao across most workloads. LIMAO-Bao achieves an average
speedup of 1.85x over Postgres, compared to 1.66x achieved by Bao.
Both Bao and LIMAO-Bao perform particularly well on the TPC-H
benchmarks, which can be attributed to Bao’s hint-based design
that is especially effective for handling simpler, join-naive queries.

9.2.5 Performance of LIMAO-Balsa and Balsa in All Situations. Fig-
ure 10 presents the execution time of static workloads and three
types of dynamic switching scenarios across iterations, highlight-
ing the overall performance stability of LIMAO-Balsa and Balsa.
While both achieve comparable overall performance, LIMAO-Balsa
demonstrates a significantly more stable execution pattern, whereas
Balsa suffers from noticeable fluctuations.

In the Static setting (Figures 10a and 10b), LIMAO-Balsa performs
comparably to Balsa, but with consistently lower execution time in
most iterations. Notably, in the TPC-H Static scenario, LIMAO-Balsa
exhibits much lower execution time at the beginning, whereas Balsa
produces a continuous segment of poorly performing plans. This
trend indicates that LIMAO-Balsa’s episodic training mechanism
helps prevent the repeated generation of suboptimal plans, even
in static environments. In the Both Switch scenarios (Figures 10g
and 10h), Balsa’s performance is highly unstable, especially in the
IMDB environment, where performance even deteriorates over time.
In contrast, LIMAO-Balsa maintains low execution latency and
stable performance across all iterations. These results demonstrate
that LIMAO-Balsa is more robust than Balsa across both static
and dynamic scenarios. This improvement can be attributed to the
lifelong LCP, which stabilizes the training process and reduces the
occurrence of performance spikes—an issue commonly observed in
conventional reinforcement learning approaches.

9.3 Micro Benchmarks

9.3.1 Performance Stability. During training iterations, LIMAO-
Balsa demonstrates notable performance stability. In this experi-
ment, we collect the total execution time at each iteration, smooth
the resulting time series into a continuous curve, and compute its
derivative to assess stability. Figure 11 shows the derivatives of the
fitted curves for both Balsa and LIMAO-Balsa. In dynamic envi-
ronments, Balsa exhibits substantial instability, as reflected by its
large and highly variable derivative values. Such instability often
results in severe performance degradation, as discussed in detail
in Section 9.3.4. Moreover, consistently lower derivative values
suggest that a model is converging, as the differences in execution
time between consecutive iterations become minimal. For instance,
in the IMDB Workload Switch scenario, LIMAO-Balsa’s derivative
values remain below 1500 after 30 iterations, compared to 11,000
for Balsa. Similarly, in the TPC-H Both Switch scenario, LIMAO-
Balsa’s values stay below 1000 after 20 iterations, whereas Balsa’s
rise to 4400. These observations indicate that LIMAO-Balsa likely
converges significantly faster, potentially requiring only slightly
more than half the number of iterations compared to Balsa. Table 5
further supports this observation by presenting the variance in exe-
cution time across different scenarios. In every case, LIMAO-Balsa
exhibits lower variance than Balsa, often by orders of magnitude.
Notably, in the IMDB Both Switch scenario, LIMAO-Balsa achieves
22X greater stability than Balsa. These results highlight that LIMAO
substantially improves Balsa’s robustness particularly when both
query workloads and data distributions shift.

9.3.2 Choice of Module Hub’s Length. To evaluate the impact of
different Module Hub sizes, we test three settings on the IMDB
workload by varying the number of modules assigned to the HJ, NL,
and OTH hubs. In setting S1, we assign 1 module each to H]J, NL,
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Figure 10: Performance of Balsa and LIMAO-Balsa throughout iterations in all 8 types of dynamic environments.
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Figure 11: Derivatives of execution time from each iteration.

Table 5: Variances for Balsa and LIMAO-Balsa. The results
are based on each iteration’s combined execution time.

Workload pattern LIMAO-Balsa Balsa
IMDB Both Switch 1.77 X 10 4.00 x 107
IMDB Workload Switch ~ 2.23 x 10®  6.96 x 10°
IMDB Volume Switch 9.43 x 10*  4.32x 10°
TPC-H Both Switch 1.10 x 10 8.30 x 10°
TPC-H  Workload Switch ~ 3.93 x 10°  7.70 x 10°
TPC-H Volume Switch 1.44 x 10° 1.88 x 107

and OTH. In setting S2, we use 2 modules for HJ, 3 for NL, and 1 for
OTH. In setting S3, we assign 3 modules to each of HJ, NL, and OTH.
These three settings are evaluated over 20 iterations in the IMDB
Workload Switch scenario to compare their minimum execution
time per iteration. The results for S1, S2, and S3 are 4067s, 3652s,
and 4826s, respectively (S2 has the best performance). This result

highlights how the choice of Module Hub size can significantly
influence the performance of LIMAO. In the IMDB workload, NL
joins tend to exhibit more complex behavior than HJ and OTH
operators, so allocating more modules to NL tasks improves model
performance. However, assigning too many modules can lead to
underfitting, as the number of training tasks per module becomes
insufficient, ultimately degrading overall performance.

9.3.3 Ablation Study. To evaluate the impact of different compo-
nents in LIMAO, we conduct ablation studies in the IMDB Volume
Switch and TPC-H Workload Switch environments. For the IMDB
workload, we compare the following variations: (1) Balsa, (2) Balsa
+ decomposition, (3) Balsa + decomposition + Module Hub, (4) Balsa
+ decomposition + Modular RL training, and (5) the full LIMAO-
Balsa. As described in Section 9.1, each Module Hub in the TPC-H
workload is limited to one module due to the simpler join patterns
characteristic of TPC-H. Accordingly, we evaluate only three con-
figurations for TPC-H: Balsa, Balsa + decomposition, and Balsa +
decomposition + Modular RL training (i.e., LIMAO-Balsa without the
Module Hub component). Figure 12 shows the performance of Balsa
and the various LIMAO-Balsa variants. As shown in Figures 12a
and 12b, LIMAO-Balsa achieves the lowest cumulative execution
time in both IMDB and TPC-H workloads, demonstrating its ro-
bustness and effectiveness in dynamic environments. In Figures 12¢
and 12d, we observe that while some variants occasionally dis-
cover better individual query plans than Balsa and LIMAO-Balsa,
they suffer from higher average execution times overall. This is
primarily because, without the use of a replay buffer, these variants
tend to overfit to a narrow subset of queries. A specific module
combination may be trained on only a limited set of queries and
thus fail to generalize when presented with new ones, resulting
in performance collapse. Similarly, using decomposition alone can
lead to overfitting and poor generalization. This issue is particularly
evident in the variant combining tree decomposition with Mod-
ule Hubs. In contrast, LIMAO-Balsa achieves an optimal balance
between short-term peak performance and long-term stability.
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Figure 12: Accumulated, average, and minimum execution
performance of LIMAO-Balsa variations.

9.3.4 Bad Performance Plans. A query plan is considered bad if
its execution time exceeds 512 seconds. Table 6 reports the num-
ber of such timeouts across different scenarios for both Balsa and
LIMAO-Balsa. Balsa experiences significantly more timeouts dur-
ing model training, while LIMAO-Balsa effectively avoids them.
When LIMAO-Balsa encounters a bad plan, it is less likely to gen-
erate a similar one in subsequent iterations, due to its episodic
training mechanism that enables prompt model tuning. This en-
hanced stability stems from the lifelong LCP training paradigm,
which allows LIMAO-Balsa to quickly recognize the characteristics
of poor-performing plans and adapt accordingly in future episodes.
This highlights the importance of training the model to identify
and avoid bad plans as early as possible.

Table 6: Number of time-outs in different situations.

Database Environment Balsa LIMAO-Balsa
IMDB Static Workload 54 5
TPC-H Static Workload 127 0
IMDB Workload Switch 1128 120
TPC-H Workload Switch 230 26
IMDB Volume Switch 67 2
TPC-H Volume Switch 949 0
IMDB Both Switch 605 120
TPC-H Both Switch 322 98

9.3.5 Extra Training Overhead. As discussed in Section 8, LIMAO
introduces additional training overhead due to experience buffer
replay and episodic updates. Although this adds cost per iteration,
the overall training time remains competitive due to faster conver-
gence. With access to high-performance GPUs such as the NVIDIA
4090 or A100, this additional overhead is further mitigated and
does not hinder practical deployment. In our IMDB experiments,
episodic training in LIMAO-Balsa takes approximately 3 seconds
per episode, with up to 10 episodes per iteration. The post-iteration
training phase in both Balsa and LIMAO-Balsa (including buffer
replay) ranges between 4 and 9 seconds per iteration, depending

on the workload (e.g., JOB, CEB, BaoQs). While LIMAO-Balsa in-
curs slightly higher per-iteration training costs, it converges sig-
nificantly faster, typically within 30 iterations (as shown in Fig-
ure 11)—resulting in a total training overhead of 160-310 seconds.
In contrast, Balsa often requires at least 50 iterations, leading to
a total overhead of 200-450 seconds. Thus, despite the added per-
iteration cost, LIMAO-Balsa achieves lower overall training time.
For simpler workloads like TPC-H, the training overhead becomes
minimal for both systems.

10 RELATED WORK

Learned Query Optimizers (LQOs). Existing LQOs like Bao [36],
LEON [9], and Lero [70], leverage neural networks to refine and
enhance query plans generated by traditional optimizers. It mini-
mally interferes with the underlying optimizer logic, reducing the
risk of generating bad plans. However, these LQOs remain capped
with the recommendations of traditional optimizers. On the other
hand, LQOs like Balsa [66], Neo [37], and Lemo [45] control the
plan generation process, allowing them to explore a broader range
of execution strategies. While this leads to the discovery of superior
plans, it also introduces greater variability and potential instability
in performance. LIMAO can be integrated with both categories of
LQOs and allow their LCPs to operate in a lifelong setup, improving
their training stability, and ensuring more consistent performance
across varying workloads and data distributions.

Query Execution in Dynamic Environments. Bao [36] and
HybridQO [69] evaluate their performance under dynamic work-
loads, data, and schema by periodically introducing new query tem-
plates, data updates, and schema normalization. Similarly, Lero [70],
LEON [9], and ERASER [61] test their models by incrementally
adding new data to the database. However, they provide limited
insights into the LQOs’ performance stability, as the updates are
neither extensive nor frequent enough to fully capture the complex-
ities of real-world, fluctuating environments. In contrast, LIMAO
introduces a comprehensive benchmarking framework for dynamic
scenarios, simulating more intricate changes and showing how
it can enhance performance stability. Meanwhile, recent research
in learned cardinality estimation has addressed challenges related
to workload drifts during query execution by partially masking
query information to promote generalization [48], utilizing rapid
re-training with replay buffers [63], and applying attention mecha-
nisms to capture relationships between queries and dynamic under-
lying data [34]. Conversely, LIMAO takes a more holistic approach,
focusing on learned cost prediction for entire query plans.

11 CONCLUSION AND FUTURE WORK

In this paper, we introduce LIMAO, the first modular lifelong learn-
ing framework for query optimization designed to handle signifi-
cant and frequent shifts in workloads and data distributions. LIMAO
provides a lifelong learned plan cost predictor that can adapt over
time while retaining and leveraging previously acquired knowledge
to ensure stable performance. LIMAO has several contributions,
including a modular plan decomposition, an attention-based neural
composition, and an efficient two-phase training approach. We inte-
grated LIMAO with two LQOs, and evaluated them with IMDB and
TPC-H queries under dynamic situations. Our evaluation shows



that LIMAO can improve query speed up to 40% and the variance
in running times of the same query by 60% for IMDB. For TPC-H,
LIMAO achieves more than 2x speedup and 100X query stability
gain. For future work, we plan to 1) integrate LIMAO with addi-
tional LQOs, 2) automatically identify workload-customized break
operators for query decomposition and sizes for module hubs, and
3) explore knowledge transfer across different databases. In this
study, we only focused on query optimization, a task with inherent
modularity that aligns well with the principles of lifelong modu-
lar learning. However, we believe that our proposed framework
can be extended to other learned database tasks, such as knob
tuning [31, 58] and learned indexes [14, 30], where modular repre-
sentations and continual adaptation are also essential.
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