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Abstract
Optimal join order sequence significantly impacts query execu-
tion performance. Because the search space grows exponentially
with the number of relations involved in the queries, DP-based ap-
proaches can compute optimal plans only for queries with a small
number of relations. Many heuristic methods trade off solution
quality for computational efficiency. Quantum computing excels
at solving combinatorial optimization problems such as join order
optimization. However, existing quantum-related methods either
focus solely on left-deep join trees—thus narrowing the problem
scope—or support bushy join trees but are constrained by quan-
tum hardware and cannot scale to large queries. Importantly, nei-
ther branch has been integrated into an actual database system.
In this paper, we present a hybrid quantum–classical optimization
approach for bushy join trees, integrated within a real database
system (PostgreSQL). This approach expands the search space for
join order sequences and overcomes previous limitations. Evalu-
ation on the Join Order Benchmark shows that our method can
reduce query execution time by up to 92.7% and achieve a 1.42x
improvement in end-to-end latency.

CCS Concepts
• Computer systems organization→ Quantum computing; •
Information systems→ Query optimization.
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1 Introduction
Join order (JO) optimization is a fundamental challenge in database
systems. The objective is to determine the most efficient sequence
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for joining relations within a query, as the chosen sequence signifi-
cantly impacts query execution performance. Since the search space
grows exponentially with the number of relations, the JO problem
is known to be NP-hard [3]. Dynamic programming (DP)–based
approaches (e.g., [11]) can compute optimal plans by exhaustively
enumerating all possible join sequences for queries with relatively
few relations; however, they become impractical for larger queries.
To overcome this limitation, various heuristic methods have been
proposed that trade off solution quality for computational efficiency.
Several works [5, 12, 16, 25] demonstrate that restricting the search
space from bushy join trees to left-deep trees reduces the join or-
der searching time, though at the cost of potentially missing more
optimal join order sequences.

Quantum computing offers significant promise for solving com-
binatorial optimization problems such as join order optimization
problem. A common approach formulates the JO problem as a Qua-
dratic Unconstrained Binary Optimization (QUBO) problem [10]
and solves it using quantum or quantum-inspired hardware (e.g.,
D-Wave [6]; Fujitsu Digital Annealer [2]). Recent quantum-related
works [9, 21–24] formulate the JO problem by restricting the search
to left-deep join trees. Another line of research [14, 15] uses a
power-set based encoding for relations to support more general
bushy join trees, thereby searching more possible join trees. How-
ever, their QUBO-based formulation will be directly sent to quan-
tum annealers, which are constrained by the limited number of
qubits and sparse connectivity (each qubit connects to only a few
neighbors). As a result, their method supports join orders of at most
five relations, limiting its applicability to larger-scale real-world
queries [14]. Importantly, these existing quantum and quantum-
inspired JO approaches remain at the simulation stage, as none
have been integrated into real-world query optimizers, leaving
their practical effectiveness as an open question.

In this paper, we present a hybrid quantum-classical optimiza-
tion for bushy join trees within a real database system environment.
Our approach is built on a state-of-the-art D-Wave hybrid solver,
the Nonlinear-Program Solver (NL-Solver) [18]. The hybrid solver
combines both classical heuristics and quantum capabilities, over-
coming the limitations of using quantum annealers alone.We define
a faithful bushy join tree representation with constraints within
the NL-Model, enabling exploration of significantly larger queries
than previous work. We then propose a corresponding join cost
function as the optimization objective. We evaluate our approach
on the Join Order Benchmark [8] in real database setup. Results
show that query plans generated by our method reduce execution
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Figure 1: Hybrid Quantum-Classical Solvers and Model.

time by up to 92.7% (for query q21) compared to PostgreSQL’s de-
fault plans. Even when accounting for external quantum-service
communication overhead, our approach achieves an end-to-end
latency improvement of 1.42x for queries q62 and q63.

2 Preliminaries
Quantum annealing (section 2.1) is the theoretical foundation of
the hybrid quantum-classical optimization (section 2.2). We apply
them in hint-based query plan generation (section 2.3) to guide the
join order optimization process in the database systems.

2.1 Quantum Annealing
Quantum Annealing [7] (QA) shares similarities with Simulated
Annealing (SA) in that both methods explore the searching space
by proposing random changes to the state configuration. In SA, a
proposed change is accepted if it decreases the value of the cost
function; if the cost increases, acceptance is decided by a certain
probability. Moreover, QA leverages quantum tunneling to facilitate
exploration, thereby reducing the likelihood of becoming trapped in
local minima. QA is used to solve problems that can be naturally for-
mulated as Quadratic Unconstrained Binary Optimization (QUBO)
problems, which correspond to minimizing an energy function over
binary variables representing qubit states [21]:

𝐸 (®𝑠) =
∑︁
𝑖 𝑗

𝐽𝑖 𝑗 𝑠𝑖 𝑠 𝑗 +
∑︁
𝑖

ℎ𝑖 𝑠𝑖 .

where 𝑠𝑖 and 𝑠 𝑗 are binary variables representing the qubits’ states,
ℎ𝑖 denotes the local bias on qubit, and 𝐽𝑖 𝑗 represents the interaction
strengths between qubits. The Quantum Processing Unit (QPU) uses
superconducting loops to represent individual qubits [1]. During
quantum annealing, the initial superposition is transformed into a
state that minimizes the system’s energy, which, in turn, encodes
the solution to the combinatorial optimization problem.

2.2 Hybrid Quantum-Classical Optimization
We utilize the hybrid quantum-classical optimization process pro-
vided by D-Wave’s hybrid solver. Figure 1a provides an overview
of its workflow. The solver accepts user-defined optimization prob-
lems. It then initiates multiple parallel threads, each incorporating
both a classical heuristic module and a quantum module (QM). The
classical heuristic module iteratively refines the problem’s search
space while the QM submits quantum queries from this refined
space to the QPU. The feedback from the QPU iteratively guides the
heuristic module toward more promising regions of the solution
space. Finally, the best solutions found are returned to the user after
a predefined time limit or a user-specified duration.
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Figure 2: Overall Workflow of Our Approach.

In this paper, we employ D-Wave’s Nonlinear-Program Solver
(NL-Solver) [18], which is a hybrid solver designed for general opti-
mization problems. In this solver, the nonlinear model (NL-Model)
is used to encode the optimization objective and its constraints
through several key components, such as decision variables, con-
stants, and mathematical operations [18]. This encoding can be rep-
resented with a directed acyclic graph (DAG) [18], where symbols
correspond to nodes and the computation flow over these symbols
is represented by edges. Figure 1b illustrates a simple example. We
consider 𝐴, 𝐵, and 𝑋 as numeric values, where 𝑋 is a decision vari-
able, and𝐴 and 𝐵 are constants. In this example, we setmin(𝑋 ×𝐵)
as the optimization objective and𝐴+𝑋 ≥ 5 as a constraint. Notably,
each mathematical operation creates a new intermediate variable
node. After the NL-Model is constructed as the DAG representation,
the NL-Solver fixes the model and performs multiple optimization
iterations. In each iteration, the NL-Solver assigns a value to the
decision variable 𝑋 and executes the computation flow defined by
the model’s DAG to get the value of the optimization object. Note
that the constants 𝐴 and 𝐵 remain fixed during computation.

2.3 Hint-based Query Plan Generation
Hint-based plan generation is a commonly used technique in many
well-known query optimizers (e.g., PostgreSQL [20], MySQL [13],
Oracle [17]). For example, pg_hint_plan [19] tweaks PostgreSQL
execution plans by embedding “hints” in SQL comments. A hint can
serve as join order directives, represented by a clause beginning
with Leading to specify the join order of relations. Inner paren-
theses denote grouping precedence in the join order sequence. For
example, a hint for bushy join tree Leading ((a (b c)) (d e)) in-
dicates that 𝑏 ⊲⊳ 𝑐 is performed first, followed by 𝑎 ⊲⊳ (𝑏 ⊲⊳ 𝑐), then
𝑑 ⊲⊳ 𝑒 , and finally the two intermediate results are joined. Notably,
this hint fixes the order of operands in each join (e.g., 𝑑 ⊲⊳ 𝑒 rather
than 𝑒 ⊲⊳ 𝑑). PostgreSQL then selects join operators (e.g., hash join,
nested loop join) for each join. Once the optimizer accepts a hint,
it is converted into a complete query plan and used for execution.

3 Workflow Overview
Figure 2 illustrates the overall workflow of our approach. Upon
receiving a user query, we retrieve cardinality and selectivity sta-
tistics from the DBMS engine, which serve as constant symbols in
the NL-Model. The expected join order sequence is defined as the
decision variable. Similar to the workflow in Figure 1b, we enforce
the bushy join tree constraints and define a join order cost function
to be minimized (see Section 4). Once the model is constructed, it
is submitted to the NL-Solver via the D-Wave Leap platform [4].
The solver returns a join order sequence expected to minimize cost.
This sequence is then translated into a bushy join tree plan hint,
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guiding a classical query optimizer (e.g., PostgreSQL’s optimizer)
to generate a complete query plan. Finally, the execution engine
executes this plan to produce and return the query results.

4 The Proposed Approach
We focus on identifying the optimal join orders among bushy join
tree structures using a hybrid quantum-classical optimization ap-
proach. Our approach consists of two key components: (1) enforcing
bushy join tree structure constraints (see Section 4.1), and (2) con-
structing the join cost optimization object within the NL-Model
(see Section 4.2).

4.1 Bushy Join Tree
In this section, we propose an efficient representation for encoding
arbitrary bushy join trees within the NL-Model, which allows us
to define a minimal set of variables and constraints to enforce the
structure. Our formulation starts by defining a directed connected
graph 𝐺 = (𝑁, 𝐸), where we model the join relationships as a
directed graph whose vertices 𝑁 comprise two types of nodes: Leaf
and Join node. Suppose there are 𝑛 relations in the given query. Leaf
node 𝑁𝑖 directly map to the input relation 𝑅𝑖 , so that 𝑁0, . . . , 𝑁𝑛−1
denote the relations {𝑅0, 𝑅1, . . . , 𝑅𝑛−1} in our query optimization
formulation. Considering each join connects two nodes,𝑛 leaf nodes
generate 𝑛 − 1 join nodes, resulting in a total 𝑇 = 2𝑛 − 1 of nodes.
These join nodes are labeled 𝑁𝑛 through 𝑁𝑇−1, with enumeration
starting at 𝑛 immediately after the leaf nodes. For each join node
𝑁𝑘 , it represents the join of 𝑅𝑖 and 𝑅 𝑗 , i.e. 𝑅𝑘 = 𝑅𝑖 Z 𝑅 𝑗 . Note that
for 𝑛 ≤ 𝑘 < 𝑇 , 𝑅𝑘 is not an original input relation but is introduced
for notational consistency. The final join node 𝑁𝑇−1 denotes the
final solution of the query execution. Each pair of directed edge
(𝑁𝑖 → 𝑁𝑘 , 𝑁 𝑗 → 𝑁𝑘 ) ∈ 𝐸 composes the join 𝑅𝑖 Z 𝑅 𝑗 , where 𝑅𝑖
appears on the left-hand side and 𝑅 𝑗 on the right-hand side.

To efficiently represent the graph𝐺 of any bushy join tree, we
introduce a vector-based encoding, denoted by parent list. Figure 3
illustrates this encoding. Each node in the query plan, whether a
leaf or a join node, has an entry in this list that indicates the index
of its parent node. For example, the entries 𝑁0 and 𝑁1 both take
the value 4, indicating that the parent of leaves 𝑅0 and 𝑅1 is the
join node 𝑅4. Similarly, the entries 𝑁4 and 𝑁5 both take the value 6,
indicating that the parent of join nodes 𝑅4 and 𝑅5 is 𝑅6. We impose
the following constraints to enforce bushy join tree.

Constraint 1 - Acyclicity (Tree Structure): The query plan graph
must not contain self-loops or cycles. In our directed representation,
no node 𝑁𝑖 may have an edge (𝑁𝑖 → 𝑁𝑖 ), whether 𝑁𝑖 is a leaf or a
join node, since a relation cannot join with itself. Moreover, there
must be no reciprocal edges (𝑁𝑖 → 𝑁 𝑗 ) and (𝑁 𝑗 → 𝑁𝑖 ). As the
join flow 𝑅𝑖 → 𝑅 𝑗 and then 𝑅 𝑗 → 𝑅𝑖 is meaningless in the query
optimization context. We enforce this constraint by requiring:

parent[𝑖] ≥ 𝑖 + 1 for 0 ≤ 𝑖 < 𝑇 − 1, parent[𝑇 − 1] = 𝑇 − 1.

Since each node points to only one other node in our formulation,
the above constraints also exclude cycles involving more interme-
diaries (e.g., a grandchild of a node cannot be its parent).
Constraint 2 - Binary-Tree Degrees: Each join node must have
exactly two children. In other words, each join step combines ex-
actly two relations 𝑅𝑖 and 𝑅 𝑗 , and no node may have more than
two inputs. Since the model construction phase does not involve
actual values, we cannot directly identify which relations partici-
pate in each join. To address this, we define two auxiliary variables.
The first is a list of constant symbols to facilitate comparisons:
consts = [𝑖]𝑇−1

𝑖=0 . The second is a two-dimensional equal-indicator
matrix: eq𝑗,𝑖 = I(parent[𝑖] = consts𝑗 ), where eq𝑗,𝑖 ∈ {0, 1}𝑇 . Here,
eq𝑗,𝑖 = 1 if the 𝑖th entry of parent equals consts𝑗 , indicating that
node 𝑁𝑖 is a child of 𝑁 𝑗 , and eq𝑗,𝑖 = 0 otherwise. We then enforce
the following constraint on degree𝑗 for each node 𝑁 𝑗 , which sums
the indicator of its children across all other nodes except itself:

degree𝑗 =
𝑇−1∑︁
𝑖=0

eq𝑗,𝑖 − eq𝑗, 𝑗 , degree𝑗 =

{
0, 𝑗 < 𝑛 (leaves),
2, 𝑗 ≥ 𝑛 (join nodes).

Constraint 3 - Bushy-Tree Structure: In strictly linear trees (e.g.,
left-deep trees), each join node (𝑅𝑖 Z 𝑅 𝑗 ) is joined with a new
relation 𝑅𝑚 to form (𝑅𝑖 Z 𝑅 𝑗 ) Z 𝑅𝑚 . Instead, a bushy tree permits
joining two join nodes. For instance, given 𝑅𝑘 = 𝑅𝑖 Z 𝑅 𝑗 and
𝑅𝑙 = 𝑅𝑚 Z 𝑅𝑛 , they may form 𝑅𝑘+𝑙 = (𝑅𝑖 Z 𝑅 𝑗 ) Z (𝑅𝑚 Z 𝑅𝑛) . To
enable this flexibility, we constrain the range of possible values for
each parent entry to {𝑛, . . . ,𝑇 − 1}. This ensures that each node,
whether a leaf or a join node, can potentially be the child of join
nodes 𝑁𝑖 , . . . , 𝑁𝑇−1. Combined with Constraint 1, this setup allows
a node to join with any other valid node without forming loops.
Constraint 4 - Arbitrary Permutation of Leaf Assignments:
Our formulation can already represent any bushy tree structure
BT = {𝐵𝑇1, . . . , 𝐵𝑇𝑝 }. Furthermore, it requires permuting all leaf
nodes 𝑁0, . . . , 𝑁𝑛−1 in each structure 𝐵𝑇𝑖 to cover all possible join
order sequences of the input relations. We achieve this by allowing
each entry inside parent to take values independently. In this
way, all permutations are first allowed, and then the above-defined
constraints are applied to construct a valid bushy join tree.

4.2 Join Cost Construction
Applying the previously defined constraints yields a valid parent
list representing a bushy join tree. We then construct the join order
cost function as the optimization objective. Since we remain in the
model construction phase, the specific relation pair (𝑅𝑖 , 𝑅 𝑗 ) for each
join step is unknown. In this case, we introduce a matrix-based
formulation to handle all possibilities within the model. Recall that
the NL-Solver uses this join order cost to select the most promising
value of decision variable (join order sequence) that yields the
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Algorithm 1 Cost Construction for Bushy Join Tree in NL-Model
Input: Number of relations 𝑛, list of integer variables enforcing

bushy-tree structure parent ∈ R𝑇 , number of nodes in parent:
𝑇 = 2𝑛 − 1, penalty constant 𝑀 , initial cardinalities c ∈ R𝑛 ,
initial selectivity matrix 𝑆 ∈ R𝑛×𝑛 , previously defined consts ∈
R𝑇 and eq ∈ {0, 1}𝑇×𝑇

Output: Join cost for given bushy join tree including penalty
1: Initialization and preparation:
2: 𝑆 ← 𝑆, 𝑆𝑖𝑖 ← 0 ∀ 𝑖 = 0, . . . , 𝑛 − 1 ⊲ Zero-diagonal selectivities
3: D ← FetchNotConnectedRelationPairs

{
(𝑅𝑖 , 𝑅 𝑗 )

}
4: zero← [0 | 𝑗 = 0, . . . ,𝑇 − 1]
5: ℓ ← [1 ≪ 𝑖 | 𝑖 = 0, . . . , 𝑛 − 1] ∪ [0 | 𝑖 = 𝑛, . . . ,𝑇 − 1] ∈ R𝑇 ⊲

List of the compositions of the original relations for each node
6: Cost ← [] ⊲ List of join costs
7: for 𝑣 = 𝑛, . . . ,𝑇 − 1 do ⊲ For all the new generated nodes
8: Select children nodes for 𝑣 in matrix representation:
9: 𝑧 ← 0𝑇−|c | ; c̃← hstack(c, 𝑧)
10: 𝑦 ← where(eq[𝑣], c̃, zero) ⊲ Children selection
11: Compute cost and cardinality for new join node:
12: 𝑐𝑜𝑠𝑡𝑣 ←

∑
0≤𝑖< 𝑗<𝑣 𝑦𝑖 ∗ 𝑆𝑖 𝑗 ∗ 𝑦 𝑗 ⊲ Join cost

13: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ← ∑
(𝑖, 𝑗 ) ∈D
𝑖<𝑣, 𝑗<𝑣

eq[𝑣] [𝑖] ∗ eq[𝑣] [ 𝑗] ∗𝑀 ⊲ Penalty

14: 𝑐𝑜𝑠𝑡𝑣 ← 𝑐𝑜𝑠𝑡𝑣 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦
15: c← hstack(c, 𝑐𝑜𝑠𝑡𝑣) ⊲ Append new cardinality
16: 𝐶𝑜𝑠𝑡 .append(𝑐𝑜𝑠𝑡𝑣); ⊲ Accumulate cost
17: Update contained original relations for new join node:
18: 𝑚𝑎𝑠𝑘𝑣 ← (ℓ ⊙ 𝑒𝑞 [𝑣]).sum() ⊲ Merge compositions
19: ℓ ← put(ℓ, [𝑣],𝑚𝑎𝑠𝑘𝑣)
20: Compute selectivities related to the new join node:
21: 𝑖𝑑𝑥𝑠, 𝑣𝑎𝑙𝑠 ← [ ], [ ]
22: for 𝑘 = 0, . . . , 𝑣 − 1 do
23: 𝜎𝑣,𝑘 ← 1 ⊲ Selectivity between 𝑣 and 𝑘
24: for 𝑖 = 0, . . . , 𝑛 − 1 do
25: for 𝑗 = 0, . . . , 𝑛 − 1, 𝑖 ≠ 𝑗 do
26: 𝜎𝑣,𝑘 ← 𝜎𝑣,𝑘×where(𝑒𝑞[𝑣] [𝑖]∧𝑒𝑞 [𝑘] [ 𝑗], 𝑆𝑖 𝑗 , 1)
27: end for
28: end for
29: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← logical(∑𝑇−1

𝑖=0 𝑒𝑞 [𝑣] [𝑖] ∗ 𝑒𝑞[𝑘] [𝑖])
30: 𝜎𝑣,𝑘 ← where(𝑜𝑣𝑒𝑟𝑙𝑒𝑎𝑝, 𝑀, 𝜎𝑣,𝑘 ) ⊲ Penalty
31: 𝑖𝑑𝑥𝑠.extend( [𝑣 ∗𝑇 + 𝑘, 𝑘 ∗𝑇 + 𝑣]) ⊲ Positions
32: 𝑣𝑎𝑙𝑠 .extend( [𝜎𝑣,𝑘 , 𝜎𝑣,𝑘 ]) ⊲ Update Values
33: end for
34: 𝑆 ← put(𝑆, constant(𝑖𝑑𝑥𝑠), stack(𝑡𝑢𝑝𝑙𝑒 (𝑣𝑎𝑙𝑠)))
35: end for
36: Return: min

∑𝑇−1
𝑣=𝑛 𝐶𝑜𝑠𝑡 [𝑣 − 𝑛]

minimum cost across iterations; any candidate value of the decision
variable incurring a large cost or penalty will be less preferred.

Algorithm 1 presents the detailed procedure. It begins with ini-
tialization and preparation (lines 1–6). We design a list variable
ℓ , where each value encodes which original relations are selected
at the current node. For example, a four-bit binary vector repre-
sents {𝑅0, 𝑅1, 𝑅2, 𝑅3}: 0100 indicates the leaf node 𝑅2, and 1011
indicates the join node has already combined leaf nodes 𝑅0, 𝑅1 and
𝑅3. The original selectivity matrix 𝑆 is transformed by setting its
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Figure 4: A Selection of Query Plans Generated by Our Ap-
proach Outperforms PostgreSQL’s Default Plans.

diagonal entries to zero, yielding 𝑆 . This transformation enables
and simplifies the cost computation for a given join order in the
nonlinear model, as the current nonlinear model supports only a
limited programming grammar and set of operations.

For each new join node 𝑣 , the algorithm first selects its children
using the matrix representation (lines 8–10), and then computes
the join cost and cardinality for 𝑣 (lines 11–16). If 𝑣 joins invalid
relations (i.e., two original relations that are not connected), the
cost incurs a penalty. Next, ℓ is updated for node 𝑣 (lines 17–19).
Afterward, the selectivities between all previous nodes 𝑘 and the
new join node 𝑣 are computed (lines 20–34) following the bushy-
tree scenario: the selectivity 𝜎 (𝑣, 𝑘) = ∏

𝑖∈leaf (𝑣)
∏

𝑗∈leaf (𝑘 ) 𝑠 (𝑖, 𝑗).
Another penalty is applied when nodes 𝑣 and 𝑘 share the same
original relations (denoted as overlap). Since the selectivity matrix
is symmetric, we set 𝑆𝑣𝑘 = 𝑆𝑘𝑣 = 𝜎 (𝑣, 𝑘). The computed values are
then updated in place. Finally, the sum of all generated join costs is
set as the optimization objective to be minimized.

After enforcing the bushy join tree structure and constructing
the join cost optimization target, we get a complete NL-Model. This
model is then submitted to the NL-Solver to find solutions.

5 Experimental Evaluation
We first introduce our experimental setup in Section 5.1. We then
evaluate our approach by addressing the following questions: (1)
How effective is our approach in solving the hint-based query opti-
mization problem, as reflected in query execution latency? (2) What
is the end-to-end latency of our approach, and does it maintain an
advantage when communicating with an external quantum service?
(3) What is the distribution of query plan shapes generated by our
approach, i.e., what is the ratio of left-deep trees and bushy trees?

5.1 Experimental Setup
We run all our experiments on a single server equipped with an
Intel Core i9-9980XE CPU and 128 GB of RAM. We employ the
hybrid_nonlinear_program_version1p solver as our NL-Solver on
the D-Wave Leap quantum service platform. We set up PostgreSQL
16.4 with the corresponding pg_hint_plan version. We evaluate
our approach using the Join Order Benchmark (JOB) [8], which
comprises 113 analytical queries over a real-world dataset from the
Internet Movie Database (IMDB). These queries involve complex
joins and predicates, ranging from 3 to 16 joins, with an average of
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8 joins per query. This complexity makes JOB a suitable and widely
adopted benchmark for testing join-order optimization.

5.2 Evaluation Results
Query Plan Quality. We evaluate query plan quality by mea-
suring the actual execution time (Exec Time) of JOB queries on
PostgreSQL. Figure 4 compares the latencies of the plans gener-
ated by our method and by PostgreSQL. Among 113 queries, our
approach yields speedups on 31 queries, with a maximum latency
improvement of 92.7% and an average improvement of 42.09%.

For the other queries whose generated hints did not yield exe-
cution time improvements, our approach exhibited limited perfor-
mance degradation, with execution times averaging 11.77% slower
than PostgreSQL. Notably, 11 queries achieved near parity with
PostgreSQL (within a 2% execution-time difference). These results
complete the performance analysis of our approach.
End-to-End (E2E) Latency. We measure E2E latency to compare
the complete query execution pipeline. For PostgreSQL, E2E latency
comprises planning time and execution time. In our approach, it
includes PostgreSQL planning time (with hints), PostgreSQL exe-
cution time, and NL-Solver time. Table 1 presents a detailed break-
down of these components for four JOB queries. Although the
NL-Solver contains additional overhead, primarily due to cloud-
service communication, our approach still achieves overall E2E
latency improvements. These gains result from our method gener-
ating better join order sequences compared to PostgreSQL’s default
ones, yielding execution time speedups ranging up to 13.15x.
Join Tree Shape. We analyzed the distribution of join-tree shapes
produced by our approach across the benchmark queries. For queries
with fewer joins or a chain-type join structure, left-deep trees
predominate (80%). This trend is exemplified by queries q21, q62,
and q63, which yielded execution latency improvements of 92.70%,
90.46%, and 87.35%, respectively. Simultaneously, our method em-
ploys bushy trees for the remaining 20% of queries, particularly
those with complex join relations that benefit from parallel join
execution. Queries such as q102 (17 relations) and q93 (12 relations)
achieved improvements of 76.88% and 52.06%, respectively.

6 Conclusion and Future Work
In this paper, we present a hybrid quantum–classical optimization
approach for bushy join trees. Our evaluation, based on a real-
world workload and an actual database setup, demonstrates its

Table 1: End-To-End Latency Breakdown and Comparison
Between Our Approach and PostgreSQL.

Time (ms) q21 q60 q62 q63

PG
Planning 1.00 3.14 3.17 1.16
Execution 3581.40 10951.31 4680.26 4846.42

Ours
Planning with hints 2.24 8.31 9.03 9.02

Execution 272.35 6010.00 429.58 585.60
NL-Solver 2530.22 2748.32 2854.31 2816.42

Gain
Exec Time ↑ 13.15x 1.82x 10.89x 8.28x
E2E Latency ↑ 1.28x 1.25x 1.42x 1.42x

effectiveness from improving query execution latency and end-to-
end latency. For future work, we plan to extend this approach to
handle even larger queries and to evaluate it on more complex
workloads. Moreover, we intend to progressively expand the deci-
sion space of our hybrid quantum–classical approach within the
query optimization context, to support finer-grained hint genera-
tion, including join-operator selection (e.g., hash join, nested-loop
join) and table-scan strategies (e.g., index scan, sequential scan).
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