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ABSTRACT
We present SERAG, a Self-Evolving RAG System for Query Opti-
mization. SERAG mitigates the cold start problem of learned query
optimizers (LQOs) while continuously learning from execution feed-
back via a Retrieval-Augmented Generation (RAG) system. SERAG’s
self-evolution dynamically constructs prompts for LLMs using pre-
vious execution records, which in turn generates an optimized
query plan. Our preliminary experimental results indicate that
query plans generated by SERAG take, on average, 36% less execu-
tion time than PostgreSQL’s. Additionally, it outperforms LQOs and
demonstrates robust generalization capabilities across workloads.
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1 INTRODUCTION
Query optimization is a fundamental and performance-critical prob-
lem in database systems that focuses on translating declarative user
queries into efficient query plans. Human experts take decades to de-
sign and improve classical query optimizers (e.g., PostgreSQL [22]).
To accelerate optimizer development and improve query perfor-
mance, several studies have applied different techniques to query
optimization, such as machine learning [1, 15, 16, 35, 37, 38, 40]
and large language models [26, 36]. While these learned query op-
timizers (LQOs) represent exciting work and have even seen some
industry adoption [39], we argue that existing LQOs capture at
most two of three desirable properties:

(1) An LQO should learn from its mistakes, quickly incorporating
feedback from the previously generated query plans.

(2) An LQO should work immediately, without requiring exten-
sive training (i.e., the “cold start” problem).

(3) An LQO should adapt to changes in schema, workload, and
data, without significant human effort and retraining.

For example, the Bao [16] system learns from its mistakes and
adapts to changes, but requires several hours of training before
becoming competitive. The Fastgres system [33] does not suffer
from the cold start problem and can learn from its mistakes, but
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it cannot adapt to changes in query workload without significant
retraining. Two recent systems [26, 36] use fine-tuned LLMs as an
oracle for either plan generation or plan selection. However, due to
the high cost of fine-tuning an LLM, these approaches cannot learn
from their mistakes or continuously improve.

Why is there no existing system with all the desired properties?
Intuitively, LQOs that do not use LLMs tend to have below-par
reasoning skills: they must simplify the problem by either requiring
large amounts of training data (and therefore having a “cold start”)
or by assuming the schema and workload are fixed (and therefore
not being able to adapt). LQOs that do use LLMs can work imme-
diately and adapt to changes, but correcting their mistakes using
current techniques is too costly for the critical path of a DBMS.

Here, we propose SERAG, a RAG-based query optimizer that has
all three of the desired properties. SERAG uses an LLM to avoid the
cold start problem and adapt to changes. To learn from its mistakes,
SERAG uses a continuously updated vector database (VecDB) of past
query executions that serve as the query optimizer’s "memory." This
paper presents our current (and actively under development) design
for SERAG, along with a preliminary experimental evaluation.

SERAG’s key innovation is taking advantage of few-shot learning,
a capability of LLMs to generalize to new problems by inserting
several examples into the LLMs input (the prompt or context win-
dow). These additional examples serve to help LLMs to generalize
to new problems [14, 17, 21]. Critically, few-shot learning works
best when the provided examples are close to the problem-at-hand.
RAG [13] frameworks combine the strengths of robust retrieval
systems (e.g., VecDBs) [31]) with the creative capabilities of LLMs.

A critical part of any RAG system is ensuring that the underlying
VecDB is filled with relevant and useful information. Althoughmost
RAG systems solve this issue by manually prepopulating the VecDB
(e.g., with relevant documents), SERAG populates that dynamically
at runtime. When SERAG sees a query plan that is working well,
that plan is stored in the VecDB to be retrieved and used later.
Similarly, when SERAG sees a query plan that performs poorly, the
plan is stored in the database to serve as a negative example for
future optimization. By continuously expanding and refining its
VecDB, SERAG learns to repeat its successes and avoid its failures.

Experimental results show that SERAG outperforms PostgreSQL
and an LQO (Bao [16]), and its self-evolving paradigm enables LLMs
to better solve query optimization problems.

We summarize our contributions as follows:

(1) To the best of our knowledge, we show for the first time that
RAG systems can be used for query optimization.

(2) SERAG mitigates LQO’s cold start issue and generalizes well
across different workloads without retraining, while still
continuously learning from execution feedback.
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Figure 1: Overview of SERAG.

(3) Our preliminary experiments verify SERAG’s promise, show-
ing encouraging inference overhead and query performance.

2 PRELIMINARIES
Here, we briefly describe RAG, VecDBs, and LLMs, each of which
is a critical component of SERAG. Due to space constraints, we are
not able to present a complete discussion of these popular topics,
so we refer the reader to various survey papers.
RAG. Retrieval-augmented generation [3] fetches external knowl-
edge (e.g., from a VecDB) to augment an LLM’s prompt without
updating its weights. This method overcomes the static knowledge
limits of standalone LLMs, although it requires careful text selection
to fit within the context window of the model.
Vector Databases. VecDBs [20] store high-dimensional embed-
dings, which are numerical vectors representing the semantic con-
tent of raw data. They use specialized index structures to cluster
similar vectors, enabling rapid similarity searches by comparing
query vectors with stored ones using metrics like cosine similarity.
LLMs. Large languagemodels are transformer-based architectures [6]
with billions of parameters that excel at diverse NLP tasks [9, 10, 18].
Chain-of-thought training enhances their reasoning [32], enabling
them to power question-answering systems.

3 OVERVIEW OF SERAG
The complete pipeline of SERAG consists of three stages: Prepara-
tion, Initialization, and Generation. Figure 1 shows the architecture
of SERAG. During the Preparation stage, previous execution records
are stored in a VecDB. For a user-submitted workload containing re-
peated queries (as in [30, 39]), the Initialization stage is the scenario
when SERAG encounters a query 𝑄 for the first time (denoted by
the dashed line): the query 𝑄 is sent to the database execution en-
gine, and the initial results are stored in the VecDB. On subsequent
encounters with query 𝑄 , it is first sent to the database engine
to extract the necessary statistics 𝑆 , including table cardinalities
and filter cardinalities, without actual execution. In parallel, 𝑄 is
sent to the VecDB to fetch 𝑘 query examples by similarity search
(see Section 3.1). Each query example contains the original query,
the generated query plans (hints), and the corresponding database
statistics (the same as the 𝑆 we mention before). These query ex-
amples work as references while constructing the dynamic prompt
(see Section 3.2). Then, the prompt is sent to an LLM to generate a
query plan hint. The original query, along with the generated query
hint, is executed by the database execution engine. The execution

latency is compared with historical records, and this feedback is in-
corporated into the dynamic prompts to iteratively improve future
plan generation (see Section 3.3).

3.1 Storage Design
For each workload, the VecDB stores 3 record collections [20]
in an identical schema1, denoted as 𝐶𝑝 , 𝐶𝑖 , and 𝐶𝑔 , which cor-
respond to the 3 stages in the pipeline: Preparation, Initialization,
andGeneration. During the preparation,𝐶𝑝 stores reference records
that serve as query examples for LLM. This collection is static and
remains unchanged during execution. In the initialization,𝐶𝑖 stores
initial execution records as starting points. During pipeline running,
𝐶𝑔 stores the execution records using the hint generated by SERAG.

Figure 2 shows the composition of collections. For each record,
we maintain seven properties: Id, Iteration, SQL_id, Vector, SQL,
Hint, and Execution Time. In 𝐶𝑝 and 𝐶𝑖 , the iteration is set to 0
to distinguish them from𝐶𝑔 , whose iterations start at 1. When new
records come, our VecDB inserts them into the targeted collections
using the layout described above. When extracting information,
the given user query is first encoded as a fixed-length dense vec-
tor by SentenceTransformer [23]. Then, our VecDB fetches the 𝑘
most related queries𝑄1, 𝑄2, . . . , 𝑄𝑘 from collection𝐶𝑝 using cosine
similarity [34]. Finally, these queries and plan hints are used to
construct dynamic prompts.

3.2 Dynamic Prompt Design
Figure 3 shows the prompt structure, which comprises two compo-
nents: the static system prompt 𝑆𝑃 and the dynamic user prompt
𝑈𝑃 . The 𝑆𝑃 specifies (1) the role of the LLMs (e.g., database ex-
perts), (2) the actions that the LLMs should perform, and (3) the
constraints on these actions. The 𝑈𝑃 is dynamically constructed
for each user query 𝑄 and consists of four parts. The first part of
𝑈𝑃 comprises 𝑘 examples from 𝑘 queries that are similar to 𝑄 (see
Section 3.1); each example includes the query, database statistics,
and the corresponding query plan. Notably, SERAG also supports
not using any example as reference in the prompt, i.e., 𝑘 = 0. The
second part of𝑈𝑃 provides information for the current 𝑄 : the SQL
statement, database statistics, and the default query plan generated
by the database engine. The third part of 𝑈𝑃 presents the best his-
torical query plan generated by SERAG for𝑄 and its corresponding
performance gain relative to the default query plan. Note that this
third part of 𝑈𝑃 serves as heuristics that enable the LLM to under-
stand the current plan performance and generate an improved plan.
Finally, the fourth part of𝑈𝑃 adds expectations and regulations for
LLMs, including (1) generating a better plan, (2) avoiding copying
the current plans, and (3) ensuring output in the correct format.

3.3 Self-evolving Feedback Paradigm
SERAG’s self-evolving feedback paradigm (depicted in the middle
section of Figure 1) learns from historical records to enhance the
LLM’s current generation. This paradigm mainly focuses on the
optimization of LLM’s prompt 𝑃𝑟𝑜𝑚𝑝𝑡 . In Algorithm 1, for each
query 𝑄 , we update the best historical execution plan 𝑝𝑙𝑎𝑛∗ and
its execution time 𝑡∗ (lines 3–7). Then, its performance gain 𝜂 over
the initial execution time is computed to steer the LLM’s behavior
1A collection in a VecDB is like a defined table in relational databases.
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Figure 2: A Visual Example of
Collection 𝐶𝑥 (𝑥 = 𝑝, 𝑖, 𝑔).

## You are a database expert: Description of query optimization task.
## You can perform the following actions: Definition of available actions.
## You have these restrictions on your actions: Constraints on actions.

𝑆𝑃: System Prompt

## Here are the {k} similar query-answer pairs for reference:
k pairs of reference queries and their corresponding execution plans

## Here is the query and its corresponding statistics:
The SQL Query and its relevant database statistics.

## The default execution plan provided by the database engine:
Default execution plan of this query (without applying hints).

## The best historical query plan you generated and performance gain:
Best historical query plan and performance gain.

 

## Please generate a better query plan than provided references.
Do not repeat, Stick to the correct format, etc.

𝑈𝑃: User Prompt

Figure 3: Dynamic Prompt in
SERAG.

in the current generation. If the best historical execution time 𝑡∗
exceeds the original execution time 𝑡𝑜 , then 𝜂 = (𝑡𝑜 − 𝑡∗)/𝑡𝑜 < 0,
indicating that the best historical plan is worse than the original
query plan, which serves as a negative example to offer feedback
(line 9). Finally, SERAG merges this feedback information to obtain
the evolved 𝑃𝑟𝑜𝑚𝑝𝑡 to prevent the LLM from falling into the same
performance pitfall again (line 10). As the pipeline continuously
runs, 𝑃𝑟𝑜𝑚𝑝𝑡 optimization drives the self-evolving process.

3.4 Supervised Fine-tuning for LLMs
To promote LLMs’ understanding of hints formats, we apply super-
vised fine-tuning (SFT) [5] on local LLMs. In SFT, we first prepare a
training set Dtrain, which contains constructed pairs of prompts 𝑥
and pre-generated hints ℎ𝑖𝑛𝑡∗ from the query optimizer. Then, for
a given pre-trained LLM 𝜃 , we maximize the conditional predictive
probability 𝑝𝜃 (ℎ𝑖𝑛𝑡∗ |𝑥) by minimizing the cross-entropy loss.

4 EVALUATION
We first introduce the experimental setup in Section 4.1. Then, we
evaluate our SERAG using different benchmarks and multiple LLMs
to address the following questions: (1) What is the performance
gain over PostgreSQL and Bao [16] (Section 4.2)? (2) What is the
performance of SERAG’s variants (Section 4.3)? (3) What is the
overhead of using RAG (Section 4.4)? (4) How effective is our self-
evolving feedback paradigm? AndWhat is the generalization ability
of SERAG across workloads (Section 4.5)?

4.1 Experimental Setup
Environment.We run all our experiments on one server with an
AMD Ryzen 9700X CPU, 128 GB of RAM, and NVIDIA A6000 GPU
with 48GBmemory.We set up PostgreSQL 16.4 with the correspond-
ing pg_hint_plan. We use Milvus [31], three local LLMs (DeepSeek-
Coder-Instruct-7B (DS-Coder), LLaMA3.1-8B and LLaMA3.2-3B’s
SFT version). We also use API calls to remotely access the GPT-o3-
mini and DeepSeek-V3 Chat (DS-Chat) models. We warm up the
machine before running the experiments to mitigate caching issues.
The experiments are conducted iteratively. In each iteration, a com-
plete query workload is used to process. Then, the same workload
is used repeatedly across multiple iterations.
Evaluation Metrics.We focus on the following metrics: (1) Per-
formance Gain in Query Execution Latency: To directly evaluate
the quality of the generated hints, we measure the time 𝑡 used by
PostgreSQL, following generated hints, to construct a complete
plan and execution. Then, we compute the performance gain 𝜂

(same in Algorithm 1) over PostgreSQL default execution time 𝑡𝑜 .

Algorithm 1 Prompt Evolving Paradigm in SERAG
1: Init: User-submitted query 𝑄 , LLM’s prompt 𝑃𝑟𝑜𝑚𝑝𝑡

2: ℎ𝑖𝑛𝑡 ← LLM(𝑃𝑟𝑜𝑚𝑝𝑡) ⊲ Previous generated hint
3: 𝑝𝑙𝑎𝑛, 𝑡 ← ExecEngine(𝑄,ℎ𝑖𝑛𝑡) ⊲ Previous execution record
4: 𝑝𝑙𝑎𝑛∗, 𝑡∗ ← 𝐺𝑒𝑡𝐵𝑒𝑠𝑡𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑅𝑒𝑐𝑜𝑟𝑑 (𝑄)
5: if 𝑡 < 𝑡∗ then
6: 𝑝𝑙𝑎𝑛∗ ← 𝑝𝑙𝑎𝑛 ⊲ Update the best historical execution plan
7: 𝑡∗ ← 𝑡 ⊲ Update the best historical execution time
8: 𝑡𝑜 ← GetExecutionTimeFromInitializationStage(𝑄)
9: Compute the performance gain of optimal record: 𝜂 ← 𝑡𝑜−𝑡∗

𝑡𝑜
10: 𝑃𝑟𝑜𝑚𝑝𝑡 ← ConstrcutPrompt(𝑆𝑃,𝑈𝑃, 𝑝𝑙𝑎𝑛∗, 𝜂) ⊲ From System

prompt, User prompt, Current best plan, and Performance gain

(2) Inference and RAG Retrieval Latency: These metrics measure the
latency overhead from LLM inference and extracting from VecDBs.
(3) Relative Execution Time (RET): We measure the overall execu-
tion time of all the queries in each iteration. For iteration 𝑖 , we
define 𝑅𝐸𝑇 (𝑖 ) =

∑
𝑗 𝐸
(𝑖 )
𝑗
/∑𝑗 𝐸

(𝑖 )
𝑗

, where 𝐸 (𝑖 )
𝑗

and 𝐸
(𝑖 )
𝑗

denote the
execution time of query 𝑗 on SERAG and PostgreSQL, respectively.
Benchmarks. Join-Order-Benchmark (JOB) [12] workload is used
for generating query-answer examples stored in the vector data-
base during the preparation stage. Then we evaluate SERAG using
Cardinality Estimation Benchmark (CEB) [19] and Stack [16] work-
loads. We used 2 queries per template for CEB and 5 for Stack, with
timeouts of 10s and 30s, respectively, to handle poor query plans.
SERAG’s Variants and Generation Modes.We define three vari-
ants by how they incorporate examples (references) into the LLM’s
prompt. PGRef uses examples from PostgreSQL’s execution plans.
LQORef uses examples from a LQO (Balsa [35]), which provides
higher-quality plans. NoRef does not use any examples. During the
preparation stage, the execution records of the JOB are stored in the
𝐶𝑝 collection of the vector database. Regarding the LLM outputs
of SERAG, we have two modes: Join Order and Complete Hint.
Join Order indicates that SERAG is asked to only output a join
order format hint; in contrast, Complete Hint requires the LLM to
generate a complete hint to reflect the details in the query plan.

4.2 Query Execution Latency Comparison
Table 2 shows the comparison among SERAG (with LLaMA3.1-3B
SFT on JOB, NoRef variant), PostgreSQL, and an LQO (Bao [16],
trained on JOB)2. SERAG outperforms both PostgreSQL and Bao
on two benchmarks. Moreover, Bao shows a performance decrease
when encountering a complex situation (transitioning from JOB to
CEB); however, SERAG’s performance on CEB is even better than
on JOB (in Join Ordermode). This comparison shows that SERAG
performs well regardless of the benchmark used for fine-tuning.

4.3 Performance Gains of SERAG’s Variants
In this experiment, we run all 3 variants of SERAG on the CEB
workload for 50 iterations. We extract the optimal execution plan
for each query to measure the performance gain relative to Post-
greSQL. Overall gain denotes the improvement across all queries,

2The JOB training set used in SFT is different from the JOB test set used for evaluation.
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Table 1: Overall and Filtered Performance Gains of SERAG ↑.

SFT LLaMA3.2 3B LLaMA3.1 8B DS-Coder 7B
Gen-Modes
Variants

Join Order Complete Hint Join Order Complete Hint Join Order Complete Hint
Overall Filtered Overall Filtered Overall Filtered Overall Filtered Overall Filtered Overall Filtered

NoRef 63.62% 71.81% 45.31% 52.63% 12.84% 62.86% 9.31% 25.18% 0.63% -17.29% 1.71% 18.79%
LQORef 20.09% 35.87% 36.80% 39.65% 10.93% 41.50% 39.26% 44.87% -7.98% -183.50% 1.36% 0.98%
PGRef 17.07% 62.21% 43.58% 48.04% 12.83% 52.93% 17.31% 38.57% 3.03% 42.59% 1.31% 4.96%

Table 2: Performance Gain over PostgreSQL ↑.

JOB CEB
SERAG
(NoRef)

Join Order Comp. Hint Join Order Comp. Hint
50.79% 62.32% 63.62% 45.31%

Bao 47.48% 22.60%

whereas Filtered gain is computed only for queries in which
SERAG generates query plans that differ from those of PostgreSQL.

Table 1 shows that the fine-tuned LLaMA3.2 outperforms the
other two local LLMs, demonstrating that SFT is beneficial for
LLMs to learn the hint format and thus perform better. Moreover,
this model exhibits enhanced independent reasoning in the NoRef
setting, even without requiring prepared records from PostgreSQL
or LQO. For the complex task of generating a complete hint
on vanilla models (Local LLaMA3 and DS-Coder), performance
improves when additional references are provided (i.e., under the
LQORef and PGRef configurations).

4.4 Inference and RAG Retrieval Time
We evaluate overheads incurred by the inference of LLM along
with the RAG retrieval. We break down these overheads for the SFT
LLaMA3.2-3B model in NoRef variant and Join Order generation
mode, which performed best previously. The average retrieval time
is 0.7ms, and the inference time is approximately 236ms on an
NVIDIA A6000 and 160ms on an NVIDIA A100. The dominant
overhead arises from the inference time, which can be mitigated by
using powerful GPUs. Furthermore, when considering execution
time savings - where SERAG’s query plans for the CEB workload
average 520.67ms compared to PostgreSQL’s 922.86ms) - SERAG’s
end-to-end time remains superior.

4.5 Self-evolution and Generalization
Self-evolving Feedback Evaluation. Figure 4 shows the RET met-
ric when using five different LLMs with SERAG across 50 iterations.
We use the NoRef variant of SERAG and set the generation mode as
Join Order. GPT-o3-mini, SFT-LLaMA, and vanilla LLaMAmodels
show a fluctuating performance over iterations. As observed, SFT-
LLaMA ultimately surpasses the PostgreSQL baseline (the dashed
line) at late iterations (around 50), benefiting from SFT. The per-
formance gain is even more evident in GPT-o3-mini, which begins
converging toward optimal performance as early as iteration 20.
In contrast, the vanilla LLaMA’s performance fails to converge (its
best 𝑅𝐸𝑇 is 0.87). As for the DS-Chat and DS-Coder models, the per-
formance gains (with 𝑅𝐸𝑇 = 0.97 and 𝑅𝐸𝑇 = 0.96, respectively) are
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quite minor, indicating that they are less sensitive to the multiple-
iteration feedback. We derive additional insights: (1) Even when
the LLM is closed-sourced (e.g., GPT-o3-mini), SERAG’s feedback
paradigm can still steer its performance and achieve self-evolving.
(2) General LLMs (LLaMA3) and reasoning LLMs (GPT-o3-mini)
exhibit superior performance compared to task-specific LLMs (DS-
Coder and DS-Chat). They are also less dependent on high-quality
examples in the given prompt.
Cross Workload Generalization. To evaluate SERAG’s general-
ization across workloads and avoid scenarios where the test work-
load (CEB) is similar to JOB (used for LLM fine-tuning), we perform
experiments on Stack, which is entirely different from JOB. We
configure SERAG using the NoRef variant and Complete Hint gen-
eration mode. Figure 5 shows the self-evolving process of SERAG.
With our self-evolving paradigm, all LLMs perform better on Stack.
Notably, the fine-tuned LLaMA model exhibits decreasing execu-
tion times over iterations, demonstrating that fine-tuning enables
the LLM to systematically understand the query optimization task
and facilitate continuous learning on new workloads.

5 RELATEDWORK
LLMs have demonstrated superior performance in numerous tasks
within DBMS (e.g., knob tuning [4, 8, 11, 27], Text-to-SQL [2, 7],
code generation [29], and schema understanding [28]). Recently,
several systems have begun integrating RAG to perform SQL gener-
ation [24] and query rewrite [25]. While two recent works [26, 36]
employ LLMs for query optimization, to the best of our knowledge,
we are the first to integrate RAG for the query optimization.

6 CONCLUSION
This paper proposes SERAG, a self-evolving RAG system for query
optimization. It leverages LLMs’ pre-trained knowledge to avoid
cold starts and enhance generalization across workloads. SERAG
dynamically generates prompts and enables continuous evolution
via execution feedback. Future work includes improving LLM gen-
eration efficiency and stability to better solve query optimization.
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