
CS170: Discrete Methods in Computer Science
Summer 2023
Introduction

Instructor: Shaddin Dughmi1

1These slides adapt some content from similar slides by Aaron Cote.



Course Basics

Instructor: Shaddin Dughmi (shaddin@)
TAs: Chandra Mukherjee (cmukherj@) and Neel Patel
(neelbpat@)
CPs: Ramiro Deo-Campo Vong (rdeocamp@usc),
David Lee (dhlee@), Aditya Prasad (aprasad4@)
Office Hours: TBD
Lecture: MWF 2:00-4:05 pm in GFS 118
Discussion: Thursday 2:00-4:05pm in GFS 118
Course duration: 6 weeks
Book: Essential Discrete Mathematics by Lewis and Zax
Website (forthcoming):
https://viterbi-web.usc.edu/ shaddin/cs170su23



Requirements and Grading

4-5 homeworks, worth 50%
No late homework allowed, but will discount lowest hw score by half

Midterm worth 20% (Thursday Jul 20, during discussion section)
Final worth 30% (Week of August 8, TBD).



What is this course about?

Discrete Math: disconnected, non-smooth objects (booleans,
integers, graphs, etc)

Most relevant to computer science and algorithms
Quite different from continous math like calculus

Logic and proofs
Reason clearly and precisely by using logic, instead of relying
exclusivly on fallible intuition
Proof: Argument which starts from assumptions (a.k.a. axioms),
applies rules of logic clearly in stepwise fashion, to establish a
conclusion
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Characterizing Triangles

Is there a triangle with sides of length 2,3,6? What about 2,3,4?

Is there a general rule to determine whether a triangle of given
side lengths exists?

Given three nonnegative numbers x, y, z with x ≤ y ≤ z, there is a
triangle with side lengths x, y, z if and only if z ≤ x+ y.

The “only if” part of this statement is often called the Triangle Inequality

Generalization 5/18
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Pigeonhole Principle

In a group of 8 people, two of them must have been born on the
same day of the week.

What about 14 people? 15 people?
If 11 pigeons go into 10 holes, there must be a hole with two
pigeons.
What about 170 pigeons and 169 holes? 85 holes? 84 holes?
Is there a general principle here?

Generalization 6/18
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Pigeonhole Principle

Pigeonhole Principle (colloquial)
If m pigeons go into n holes, and m > n, then there is a hole with two
pigeons.

Pigeonhole Principle
If f : X → Y and |X| > |Y |, then there are x1, x2 ∈ X with x1 ̸= x2
such that f(x1) = f(x2).

Extended Pigeonhole Principle
If f : X → Y and |X| > k|Y | for a positive integer k, then there are
distinct x1, x2, . . . xk+1 ∈ X such that f(x1) = f(x2) = . . . = f(xk+1).

i.e., if there are more than k times as many pigeons as holes, then
there is a hole with k + 1 pigeons.

Generalization 7/18
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Fundamental Theorem of Arithmetic

Prime number: An integer greater than 1 which is divisible only by
itself and 1.

2,3,5,7,11,17,. . .

Write down the following numbers as a product of primes in
nondecreasing order: 15,18,60,61,62

Prime factorization of integer n
n = pe11 · pe22 · . . . · pekk , where p1 < p2 < . . . < pk are primes, and
e1, . . . , ek are positive integers.

Fundamental Theorem of Arithmetic
Every integer n > 1 has one and only one prime factorization.

Generalization 8/18
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Generalization

We just saw three illustrations of generalization: From a few examples,
we extrapolated a principle or statement which applies more broadly.

Useful in more situations
Saves you from redoing the work every time
Helps you understand what’s really going on
Strips away irrelevant details and uncovers the common pattern /
phenomenon

Generalization 9/18
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Sets
A set is a collection of things (or elements), which are called its
members.

Common to denote a set with uppercase, elements in lowercase.
When describing a set explicitly by listing its members, we use
curly braces

E.g. A = {1, 2, 3}.

x ∈ X means that x is a member of set X.
x ̸∈ X means that x is not a member of X
Repetition does not matter, so can think of members as distinct
(i.e., different)
Order does not matter
|X| is the size (a.k.a. cardinality) of set X
A set may be finite (e.g. days of the week) or infinite (e.g. the
integers, real numbers, computer programs).

Mathematical Primitives and Notation 10/18



Functions
A function f is a rule which associates each member of one set X with
exactly one member of another set Y .

We write f : X → Y , and say f maps elements of the set X to
elements of the set Y .
If f associates x ∈ X with y ∈ Y , we write y = f(x). We call x the
argument or input of f , and y the value or output
Each x ∈ X gets mapped to exactly one y ∈ Y

Each y ∈ Y may have one x ∈ X that maps to it, or many, or none.

Mathematical Primitives and Notation 11/18



We will get into more detail on sets and functions later in the class.

Mathematical Primitives and Notation 12/18



Outline

1 Generalization

2 Mathematical Primitives and Notation

3 Some Examples of Proofs



For positive integers a, b, we use a|b to denote that a divides b evenly.
We also say a is a factor (or divisor) of b.

Claim
If p,m, n are positive integers, p is prime, and p|mn, then p|m or p|n.

p appears in the prime factorization of mn.
The (unique) prime factorization of mn can be obtained by
combining the prime factorizations of m and n.
p must have appeared in the prime factorization of m or n (or both)

Some Examples of Proofs 13/18
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Extended Pigeonhole Principle
If f : X → Y and |X| > k|Y | for a positive integer k, then there are
distinct x1, x2, . . . xk+1 ∈ X such that f(x1) = f(x2) = . . . = f(xk+1).

i.e., If m pigeons go into n holes, and m > kn, then there is a hole with
k + 1 pigeons.

Is it possible that each hole has at most k pigeons?
If that were the case, then there are at most kn pigeons overall
But the number of pigeons m is strictly greater than kn, so this
can’t be.

This is called a proof by contradiction.

Some Examples of Proofs 14/18
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Claim
Given any m ≥ 13 distinct integers between 2 and 40, at least two of
them must have a common divisor greater than 1.

Take each of the given m > 13 integers and map it to one of its
prime divisors arbitrarily.
Only 12 primes are relevant here, since there are 12 primes under
40: 2,3,5,7,11,13,17,19,23,29,31,37
By the pigeonhole principle, two of the given m integers must map
to the same prime. Therefore, they have a common divisor.

Some Examples of Proofs 15/18
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Claim
There are arbitrarily large primes.

Take any prime p

p! is divisible by all primes less than or equal to p

p! + 1 is not divisible by any prime less than or equal to p
(remainder is 1)
By fundamental theorem of arithmetic, p! + 1 has a prime divisor
that is bigger than p (possibly itself).
So for any prime p, we were able to show that there is a bigger
one.

Some Examples of Proofs 16/18
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A number is rational if it can be written as a
b , where a and b are

integers. Otherwise, we call it irrational.

Claim
√
2 is irrational.

Suppose for a contradiction that
√
2 is rational.

There are a, b with a
b =

√
2. Take such a and b with no common

divisors (i.e. cancel out the common prime divisors).
a2 = 2b2

2|a, and therefore a = 2k for some integer k

b2 = a2

2 = 4k2

2 = 2k2

2|b2, and therefore 2|b.
But we took a and b with no common divisors, a contradiction!
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Claim
There exist two irrational numbers x, y, such that xy is rational.

We already know
√
2 is irrational.

Consider
√
2
√
2. Either this is rational or it is not.

If it is rational, we can take x = y =
√
2.

If it is irrational, then take x =
√
2
√
2 and y =

√
2, both irrational.

xy =

(√
2
√
2
)√

2

=
√
2
2
= 2, a rational!

Note
We proved such x, y exist without identifying them! This sort of
existence proof is called “nonconstructive”.
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