CS170: Discrete Methods in Computer Science Summer 2023 Introduction

Instructor: Shaddin Dughmi ${ }^{1}$

[^0]
Course Basics

- Instructor: Shaddin Dughmi (shaddin@)
- TAs: Chandra Mukherjee (cmukherj@) and Neel Patel (neelbpat@)
- CPs: Ramiro Deo-Campo Vong (rdeocamp@usc), David Lee (dhlee@), Aditya Prasad (aprasad4@)
- Office Hours: TBD
- Lecture: MWF 2:00-4:05 pm in GFS 118
- Discussion: Thursday 2:00-4:05pm in GFS 118
- Course duration: 6 weeks
- Book: Essential Discrete Mathematics by Lewis and Zax
- Website (forthcoming):
https://viterbi-web.usc.edu/ shaddin/cs170su23

Requirements and Grading

- 4-5 homeworks, worth 50%
- No late homework allowed, but will discount lowest hw score by half
- Midterm worth 20\% (Thursday Jul 20, during discussion section)
- Final worth 30\% (Week of August 8, TBD).

What is this course about?

- Discrete Math: disconnected, non-smooth objects (booleans, integers, graphs, etc)
- Most relevant to computer science and algorithms
- Quite different from continous math like calculus
- Logic and proofs
- Reason clearly and precisely by using logic, instead of relying exclusivly on fallible intuition
- Proof: Argument which starts from assumptions (a.k.a. axioms), applies rules of logic clearly in stepwise fashion, to establish a conclusion

Outline

(9) Generalization

(2) Mathematical Primitives and Notation

(3) Some Examples of Proofs

Characterizing Triangles

- Is there a triangle with sides of length 2,3,6? What about 2,3,4?

Characterizing Triangles

- Is there a triangle with sides of length 2,3,6? What about 2,3,4?
- Is there a general rule to determine whether a triangle of given side lengths exists?

Characterizing Triangles

- Is there a triangle with sides of length 2,3,6? What about 2,3,4?
- Is there a general rule to determine whether a triangle of given side lengths exists?

Given three nonnegative numbers x, y, z with $x \leq y \leq z$, there is a triangle with side lengths x, y, z if and only if $z \leq x+y$.

The "only if" part of this statement is often called the Triangle Inequality

Pigeonhole Principle

- In a group of 8 people, two of them must have been born on the same day of the week.

Pigeonhole Principle

- In a group of 8 people, two of them must have been born on the same day of the week.
- What about 14 people? 15 people?

Pigeonhole Principle

- In a group of 8 people, two of them must have been born on the same day of the week.
- What about 14 people? 15 people?
- If 11 pigeons go into 10 holes, there must be a hole with two pigeons.

Pigeonhole Principle

- In a group of 8 people, two of them must have been born on the same day of the week.
- What about 14 people? 15 people?
- If 11 pigeons go into 10 holes, there must be a hole with two pigeons.
- What about 170 pigeons and 169 holes? 85 holes? 84 holes?

Pigeonhole Principle

- In a group of 8 people, two of them must have been born on the same day of the week.
- What about 14 people? 15 people?
- If 11 pigeons go into 10 holes, there must be a hole with two pigeons.
- What about 170 pigeons and 169 holes? 85 holes? 84 holes?
- Is there a general principle here?

Pigeonhole Principle

Pigeonhole Principle (colloquial)

If m pigeons go into n holes, and $m>n$, then there is a hole with two pigeons.

Pigeonhole Principle

Pigeonhole Principle (colloquial)

If m pigeons go into n holes, and $m>n$, then there is a hole with two pigeons.

Pigeonhole Principle

If $f: X \rightarrow Y$ and $|X|>|Y|$, then there are $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Pigeonhole Principle

Pigeonhole Principle (colloquial)

If m pigeons go into n holes, and $m>n$, then there is a hole with two pigeons.

Pigeonhole Principle

If $f: X \rightarrow Y$ and $|X|>|Y|$, then there are $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Extended Pigeonhole Principle

If $f: X \rightarrow Y$ and $|X|>k|Y|$ for a positive integer k, then there are distinct $x_{1}, x_{2}, \ldots x_{k+1} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)=\ldots=f\left(x_{k+1}\right)$.
i.e., if there are more than k times as many pigeons as holes, then there is a hole with $k+1$ pigeons.

Fundamental Theorem of Arithmetic

- Prime number: An integer greater than 1 which is divisible only by itself and 1.
- $2,3,5,7,11,17, \ldots$
- Write down the following numbers as a product of primes in nondecreasing order: 15,18,60,61,62

Fundamental Theorem of Arithmetic

- Prime number: An integer greater than 1 which is divisible only by itself and 1.
- $2,3,5,7,11,17, \ldots$
- Write down the following numbers as a product of primes in nondecreasing order: 15,18,60,61,62

Prime factorization of integer n

$n=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}$, where $p_{1}<p_{2}<\ldots<p_{k}$ are primes, and e_{1}, \ldots, e_{k} are positive integers.

Fundamental Theorem of Arithmetic

- Prime number: An integer greater than 1 which is divisible only by itself and 1.
- $2,3,5,7,11,17, \ldots$
- Write down the following numbers as a product of primes in nondecreasing order: 15,18,60,61,62

Prime factorization of integer n

$n=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}$, where $p_{1}<p_{2}<\ldots<p_{k}$ are primes, and e_{1}, \ldots, e_{k} are positive integers.

Fundamental Theorem of Arithmetic

Every integer $n>1$ has one and only one prime factorization.

Generalization

We just saw three illustrations of generalization: From a few examples, we extrapolated a principle or statement which applies more broadly.

- Useful in more situations
- Saves you from redoing the work every time
- Helps you understand what's really going on
- Strips away irrelevant details and uncovers the common pattern / phenomenon

Outline

(1) Generalization

(2) Mathematical Primitives and Notation
(3) Some Examples of Proofs

Sets

A set is a collection of things (or elements), which are called its members.

- Common to denote a set with uppercase, elements in lowercase.
- When describing a set explicitly by listing its members, we use curly braces
- E.g. $A=\{1,2,3\}$.
- $x \in X$ means that x is a member of set X.
- $x \notin X$ means that x is not a member of X
- Repetition does not matter, so can think of members as distinct (i.e., different)
- Order does not matter
- $|X|$ is the size (a.k.a. cardinality) of set X
- A set may be finite (e.g. days of the week) or infinite (e.g. the integers, real numbers, computer programs).

Functions

A function f is a rule which associates each member of one set X with exactly one member of another set Y.

- We write $f: X \rightarrow Y$, and say f maps elements of the set X to elements of the set Y.
- If f associates $x \in X$ with $y \in Y$, we write $y=f(x)$. We call x the argument or input of f, and y the value or output
- Each $x \in X$ gets mapped to exactly one $y \in Y$
- Each $y \in Y$ may have one $x \in X$ that maps to it, or many, or none.

We will get into more detail on sets and functions later in the class.

Outline

(1) Generalization

(2) Mathematical Primitives and Notation

(3) Some Examples of Proofs

For positive integers a, b, we use $a \mid b$ to denote that a divides b evenly. We also say a is a factor (or divisor) of b.

Claim

If p, m, n are positive integers, p is prime, and $p \mid m n$, then $p \mid m$ or $p \mid n$.

For positive integers a, b, we use $a \mid b$ to denote that a divides b evenly. We also say a is a factor (or divisor) of b.

Claim

If p, m, n are positive integers, p is prime, and $p \mid m n$, then $p \mid m$ or $p \mid n$.

- p appears in the prime factorization of $m n$.
- The (unique) prime factorization of $m n$ can be obtained by combining the prime factorizations of m and n.
- p must have appeared in the prime factorization of m or n (or both)

Extended Pigeonhole Principle

If $f: X \rightarrow Y$ and $|X|>k|Y|$ for a positive integer k, then there are distinct $x_{1}, x_{2}, \ldots x_{k+1} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)=\ldots=f\left(x_{k+1}\right)$.
i.e., If m pigeons go into n holes, and $m>k n$, then there is a hole with $k+1$ pigeons.

Extended Pigeonhole Principle

If $f: X \rightarrow Y$ and $|X|>k|Y|$ for a positive integer k, then there are distinct $x_{1}, x_{2}, \ldots x_{k+1} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)=\ldots=f\left(x_{k+1}\right)$.
i.e., If m pigeons go into n holes, and $m>k n$, then there is a hole with $k+1$ pigeons.

- Is it possible that each hole has at most k pigeons?
- If that were the case, then there are at most $k n$ pigeons overall
- But the number of pigeons m is strictly greater than $k n$, so this can't be.

Extended Pigeonhole Principle

If $f: X \rightarrow Y$ and $|X|>k|Y|$ for a positive integer k, then there are distinct $x_{1}, x_{2}, \ldots x_{k+1} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)=\ldots=f\left(x_{k+1}\right)$.
i.e., If m pigeons go into n holes, and $m>k n$, then there is a hole with $k+1$ pigeons.

- Is it possible that each hole has at most k pigeons?
- If that were the case, then there are at most $k n$ pigeons overall
- But the number of pigeons m is strictly greater than $k n$, so this can't be.
This is called a proof by contradiction.

Claim

Given any $m \geq 13$ distinct integers between 2 and 40 , at least two of them must have a common divisor greater than 1 .

Claim

Given any $m \geq 13$ distinct integers between 2 and 40, at least two of them must have a common divisor greater than 1.

- Take each of the given $m>13$ integers and map it to one of its prime divisors arbitrarily.
- Only 12 primes are relevant here, since there are 12 primes under 40: 2,3,5,7,11,13,17,19,23,29,31,37
- By the pigeonhole principle, two of the given m integers must map to the same prime. Therefore, they have a common divisor.

Claim

There are arbitrarily large primes.

Claim

There are arbitrarily large primes.

- Take any prime p
- p ! is divisible by all primes less than or equal to p
- $p!+1$ is not divisible by any prime less than or equal to p (remainder is 1)
- By fundamental theorem of arithmetic, $p!+1$ has a prime divisor that is bigger than p (possibly itself).
- So for any prime p, we were able to show that there is a bigger one.

A number is rational if it can be written as $\frac{a}{b}$, where a and b are integers. Otherwise, we call it irrational.

Claim

$\sqrt{2}$ is irrational.

A number is rational if it can be written as $\frac{a}{b}$, where a and b are integers. Otherwise, we call it irrational.

Claim

$\sqrt{2}$ is irrational.

- Suppose for a contradiction that $\sqrt{2}$ is rational.
- There are a, b with $\frac{a}{b}=\sqrt{2}$. Take such a and b with no common divisors (i.e. cancel out the common prime divisors).
- $a^{2}=2 b^{2}$
- $2 \mid a$, and therefore $a=2 k$ for some integer k
- $b^{2}=\frac{a^{2}}{2}=\frac{4 k^{2}}{2}=2 k^{2}$
- $2 \mid b^{2}$, and therefore $2 \mid b$.
- But we took a and b with no common divisors, a contradiction!

Claim

There exist two irrational numbers x, y, such that x^{y} is rational.

Claim

There exist two irrational numbers x, y, such that x^{y} is rational.

- We already know $\sqrt{2}$ is irrational.
- Consider $\sqrt{2}^{\sqrt{2}}$. Either this is rational or it is not.
- If it is rational, we can take $x=y=\sqrt{2}$.
- If it is irrational, then take $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$, both irrational.
$x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{2}=2$, a rational!

Claim

There exist two irrational numbers x, y, such that x^{y} is rational.

- We already know $\sqrt{2}$ is irrational.
- Consider $\sqrt{2}^{\sqrt{2}}$. Either this is rational or it is not.
- If it is rational, we can take $x=y=\sqrt{2}$.
- If it is irrational, then take $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$, both irrational.
$x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{2}=2$, a rational!

Note

We proved such x, y exist without identifying them! This sort of existence proof is called "nonconstructive".

[^0]: ${ }^{1}$ These slides adapt some content from similar slides by Aaron Cote.

