CS170: Discrete Methods in Computer Science

Summer 2023
Introduction

Instructor: Shaddin Dughmi'

'These slides adapt some content from similar slides by Aaron Cote.



Course Basics

@ Instructor: Shaddin Dughmi (shaddin@)

@ TAs: Chandra Mukherjee (cmukherj@) and Neel Patel
(neelbpat@)

@ CPs: Ramiro Deo-Campo Vong (rdeocamp@usc),
David Lee (dhlee@), Aditya Prasad (aprasad4@)

@ Office Hours: TBD

@ Lecture: MWF 2:00-4:05 pm in GFS 118

@ Discussion: Thursday 2:00-4:05pm in GFS 118

@ Course duration: 6 weeks

@ Book: Essential Discrete Mathematics by Lewis and Zax

@ Website (forthcoming):
https://viterbi-web.usc.edu/ shaddin/cs170su23



Requirements and Grading

@ 4-5 homeworks, worth 50%
o No late homework allowed, but will discount lowest hw score by half

@ Midterm worth 20% (Thursday Jul 20, during discussion section)
@ Final worth 30% (Week of August 8, TBD).



What is this course about?

@ Discrete Math: disconnected, non-smooth objects (booleans,
integers, graphs, etc)
o Most relevant to computer science and algorithms
o Quite different from continous math like calculus
@ Logic and proofs
o Reason clearly and precisely by using logic, instead of relying
exclusivly on fallible intuition
e Proof: Argument which starts from assumptions (a.k.a. axioms),
applies rules of logic clearly in stepwise fashion, to establish a
conclusion



0 Generalization



Characterizing Triangles

@ Is there a triangle with sides of length 2,3,6? What about 2,3,47?
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Characterizing Triangles

@ Is there a triangle with sides of length 2,3,6? What about 2,3,47?

@ Is there a general rule to determine whether a triangle of given
side lengths exists?

Given three nonnegative numbers z, y, z with x < y < z, there is a
triangle with side lengths x, y, z if and only if z < z + . J

The “only if” part of this statement is often called the Triangle Inequality
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Pigeonhole Principle

@ In a group of 8 people, two of them must have been born on the
same day of the week.

Generalization 6/18



Pigeonhole Principle

@ In a group of 8 people, two of them must have been born on the
same day of the week.

@ What about 14 people? 15 people?

Generalization 6/18



Pigeonhole Principle

@ In a group of 8 people, two of them must have been born on the
same day of the week.

@ What about 14 people? 15 people?

@ If 11 pigeons go into 10 holes, there must be a hole with two
pigeons.

Generalization 6/18



Pigeonhole Principle

@ In a group of 8 people, two of them must have been born on the
same day of the week.

@ What about 14 people? 15 people?

@ If 11 pigeons go into 10 holes, there must be a hole with two
pigeons.

@ What about 170 pigeons and 169 holes? 85 holes? 84 holes?

Generalization 6/18



Pigeonhole Principle

@ In a group of 8 people, two of them must have been born on the
same day of the week.

@ What about 14 people? 15 people?

@ If 11 pigeons go into 10 holes, there must be a hole with two
pigeons.

@ What about 170 pigeons and 169 holes? 85 holes? 84 holes?
@ |s there a general principle here?

Generalization 6/18



Pigeonhole Principle

Pigeonhole Principle (colloquial)

If m pigeons go into n holes, and m > n, then there is a hole with two
pigeons.
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Pigeonhole Principle

Pigeonhole Principle (colloquial)

If m pigeons go into n holes, and m > n, then there is a hole with two
pigeons.

Pigeonhole Principle

If f: X - Y and | X| > |Y]|, then there are z1, 25 € X with 21 # x9
such that f(z1) = f(x2).

.

Extended Pigeonhole Principle

If f: X - Y and |X| > k|Y| for a positive integer k, then there are
distinct X1,%2,...Tky1 € X such that f(.’L’l) = f(.’])g) =...= f(a:kH).

i.e., if there are more than k times as many pigeons as holes, then
there is a hole with & + 1 pigeons.

Generalization 7/18



Fundamental Theorem of Arithmetic

@ Prime number: An integer greater than 1 which is divisible only by
itself and 1.

e 2,3,57,11,17,...

@ Write down the following numbers as a product of primes in
nondecreasing order: 15,18,60,61,62
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Fundamental Theorem of Arithmetic

@ Prime number: An integer greater than 1 which is divisible only by
itself and 1.
e 23,57,11,17,...
@ Write down the following numbers as a product of primes in
nondecreasing order: 15,18,60,61,62

Prime factorization of integer n

n=p{-ps? ... p*, where p; < ps <... < p; are primes, and
e1,...,e, are positive integers.

Fundamental Theorem of Arithmetic
Every integer n > 1 has one and only one prime factorization.

8/18
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Generalization

We just saw three illustrations of generalization: From a few examples,
we extrapolated a principle or statement which applies more broadly.

@ Useful in more situations
@ Saves you from redoing the work every time
@ Helps you understand what'’s really going on

@ Strips away irrelevant details and uncovers the common pattern /
phenomenon
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@ Mathematical Primitives and Notation



A set is a collection of things (or elements), which are called its
members.

@ Common to denote a set with uppercase, elements in lowercase.

@ When describing a set explicitly by listing its members, we use
curly braces

e E.g. A={1,2,3}.
@ z € X means that z is a member of set X.
@ = ¢ X means that z is not a member of X

@ Repetition does not matter, so can think of members as distinct
(i.e., different)

@ Order does not matter
@ | X| is the size (a.k.a. cardinality) of set X

@ A set may be finite (e.g. days of the week) or infinite (e.g. the
integers, real numbers, computer programs).
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A function f is a rule which associates each member of one set X with
exactly one member of another set Y'.

@ We write f : X — Y, and say f maps elements of the set X to
elements of the set Y.

@ If f associates = € X withy € Y, we write y = f(z). We call x the
argument or input of f, and y the value or output

@ Each x € X gets mapped to exactly one y € Y
@ Each y € Y may have one = € X that maps to it, or many, or none.

Mathematical Primitives and Notation 11/18



We will get into more detail on sets and functions later in the class.
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e Some Examples of Proofs



For positive integers a, b, we use a|b to denote that a divides b evenly.
We also say a is a factor (or divisor) of b.

If p, m, n are positive integers, p is prime, and p|mn, then p|m or p|n.
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For positive integers a, b, we use a|b to denote that a divides b evenly.
We also say a is a factor (or divisor) of b.

If p, m, n are positive integers, p is prime, and p|mn, then p|m or p|n.

@ p appears in the prime factorization of mn.

@ The (unique) prime factorization of mn can be obtained by
combining the prime factorizations of m and n.

@ p must have appeared in the prime factorization of m or n (or both)
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Extended Pigeonhole Principle

If f: X — Y and |X| > k|Y| for a positive integer k, then there are
distinct x1, xg, ... x4 € X such that f(z1) = f(x2) = ... = f(zr41).

i.e., If m pigeons go into n holes, and m > kn, then there is a hole with
k + 1 pigeons.
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Extended Pigeonhole Principle

If f: X — Y and |X| > k|Y| for a positive integer k, then there are
distinct x1, xg, ... x4 € X such that f(z1) = f(x2) = ... = f(zr41).

i.e., If m pigeons go into n holes, and m > kn, then there is a hole with
k + 1 pigeons.

@ Is it possible that each hole has at most & pigeons?
@ If that were the case, then there are at most kn pigeons overall

@ But the number of pigeons m is strictly greater than kn, so this
can’t be.

This is called a proof by contradiction.
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Given any m > 13 distinct integers between 2 and 40, at least two of
them must have a common divisor greater than 1.
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Given any m > 13 distinct integers between 2 and 40, at least two of
them must have a common divisor greater than 1.

@ Take each of the given m > 13 integers and map it to one of its
prime divisors arbitrarily.

@ Only 12 primes are relevant here, since there are 12 primes under
40: 2,3,5,7,11,13,17,19,23,29,31,37

@ By the pigeonhole principle, two of the given m integers must map
to the same prime. Therefore, they have a common divisor.
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There are arbitrarily large primes.
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There are arbitrarily large primes.

@ Take any prime p
@ plis divisible by all primes less than or equal to p

@ p! + 1is not divisible by any prime less than or equal to p
(remainder is 1)

@ By fundamental theorem of arithmetic, p! 4+ 1 has a prime divisor
that is bigger than p (possibly itself).

@ So for any prime p, we were able to show that there is a bigger
one.
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A number is rational if it can be written as 7, where a and b are
integers. Otherwise, we call it irrational.

\/2 is irrational.

Some Examples of Proofs 17/18



A number is rational if it can be written as ¢, where a and b are
integers. Otherwise, we call it irrational.

\/2 is irrational.

@ Suppose for a contradiction that /2 is rational.

@ There are a,b with 7 = V2. Take such a and b with no common
divisors (i.e. cancel out the common prime divisors).
@ a? =22

@ 2|a, and therefore a = 2k for some integer k

2 _a® _ 42 _ 912
- J)) =95 =5 =2k

@ 2[b?, and therefore 2/b.
@ But we took a and b with no common divisors, a contradiction!
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There exist two irrational numbers z, y, such that z¥ is rational.
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There exist two irrational numbers z, y, such that z¥ is rational.

@ We already know +/2 is irrational.

@ Consider \/i‘/é. Either this is rational or it is not.
@ If it is rational, we can take = = y = /2.

@ Ifitis irrational, then take z = ﬂﬁ and y = /2, both irrational.

V2
¥ = <ﬂﬁ> — /2° = 2, a rational!
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There exist two irrational numbers z, y, such that z¥ is rational.

@ We already know +/2 is irrational.

@ Consider \/i‘/é. Either this is rational or it is not.
@ If it is rational, we can take = = y = /2.

@ Ifitis irrational, then take z = ﬂﬁ and y = /2, both irrational.

V2
¥ = (ﬂﬁ> — /2° = 2, a rational!

We proved such z, y exist without identifying them! This sort of
existence proof is called “nonconstructive”.
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